ON A CLASS OF TWISTORIAL MAPS

RADU PANTILIE

ABSTRACT

We show that a natural class of twistorial maps gives a pattern for ap-
parently different geometric maps, such as, (1,1)-geodesic immersions from
(1,2)-symplectic almost Hermitian manifolds and pseudo horizontally confor-
mal submersions with totally geodesic fibres for which the associated almost
CR-structure is integrable. Along the way, we construct for each constant
curvature Riemannian manifold (M, g), of dimension m , a family of twistor
spaces {ZT(M)}ISK%m such that Z,.(M) parametrizes naturally the set of
pairs (P, J), where P is a totally geodesic submanifold of (M, g), of codimen-
sion 2r, and J is an orthogonal complex structure on the normal bundle of P

which is parallel with respect to the normal connection.

INTRODUCTION

In the complex-analytic category, the twistor space of a manifold M, endowed
with a twistorial structure, parametrizes the set of certain submanifolds — the
twistors — of M. For example (see [I7] and the references therein), the twistor
space of a three-dimensional complex Einstein-Weyl space (M3, ¢, D) consists
of the (maximal) degenerate surfaces of (M3, ¢) which are totally geodesic with
respect to D . Also, the twistor space of a four-dimensional anti-self-dual complex-
conformal manifold (M*,¢) consists of the self-dual surfaces of (M*,¢) (similar
comments apply, for example, to the complex-quaternionic manifolds of dimen-
sion at least eight). Further, the space of (unparametrized) isotropic geodesics of
a complex-conformal manifold is, in a natural way, a twistor space [9] .

In the smooth category, the definition of almost twistorial structure is slightly
different [13] ; it follows that, in the smooth category, the twistors are certain sub-
manifolds for which the normal bundle is endowed with a (linear) CR-structure.
These submanifolds may well be just points. For example, the twistor space Z of a
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three-dimensional conformal manifold (M3, ¢) is a five-dimensional CR-manifold
consisting of the orthogonal nontrivial CR-structures on (M3, ¢) [10] (assuming
(M3, ¢) real-analytic, Z is a real hypersurface, endowed with the induced CR-
structure, in the space of isotropic geodesics of the germ-unique complexification
of (M?3,c)). Also, it is well-known (see [13] and the references therein) that the
twistor space of a four-dimensional anti-self-dual conformal manifold (M4?,c) is a
complex manifold, of complex dimension three, consisting of the positive orthog-
onal complex structures on (M?,¢) (similar comments apply, for example, to the
quaternionic manifolds of dimension at least eight).

On the other hand (see [I3] and the references therein), the twistor space Z of
a three-dimensional Einstein-Weyl space (M3, ¢, D) is, locally, a complex surface
consisting of the pairs (v, J), where « is a geodesic of D and J is an orthogonal
complex structure on the normal bundle of v (obviously, if M3 is oriented then Z
is just the space of oriented geodesics of D). In , below, we generalize this ex-
ample by constructing for each constant curvature Riemannian manifold (M, g),

of dimension m > 3, a family of twistor spaces {ZT(M ) }1< 1 such that, locally,
<r<gm

Z.(M) is a complex manifold, of complex dimension r(2m — 3r 4+ 1)/2, consist-
ing of the pairs (P, J), where P is a totally geodesic submanifold of (M,g), of
codimension 2r, and J is an orthogonal complex structure on the normal bundle
of P which is parallel with respect to the normal connection (the particular case
r = 1 is due to [I] ). Moreover, we prove that, in dimension at least four, the
constant curvature Riemannian manifolds give all the Weyl spaces for which this
construction works (Theorem [5.4]).

A map ¢ : M — N between manifolds endowed with twistorial structures is
twistorial if it maps consistently (some of the) twistors on M to twistors on N
(see §2| for a definition suitable for this paper and [13] for a more general defini-
tion; cf. [17]).

In this paper, we show that apparently different geometric maps are examples
of such twistorial maps:

e in §3], we study twistorial immersions between even dimensional oriented
Weyl spaces endowed with the associated nonintegrable almost twistorial struc-
tures (see Example [3.1]; cf. [6] ),

e in {4, we study (1,1)-geodesic immersions from (1,2)-symplectic almost
Hermitian manifolds,

e in §5|, we study pseudo horizontally conformal submersions with totally ge-
odesic fibres for which the associated almost CR-structure is integrable.

In §1], we prove a powerful integrability result (Theorem [1.1]; cf. [14] ) which
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can be applied to all of the examples of almost twistorial structures known to
us. Here, we use this result to give the necessary and sufficient conditions for
the integrability of several almost CR-structures and almost f-structures (see,
for example, Theorems [£.1] and [5.4]), related to the twistorial maps we consider.

See [I7], [12] and [13] for more information on almost twistorial structures and
twistorial maps.

I am grateful to John C. Wood, and Eric Loubeau for useful comments, and
to Liviu Ornea for useful discussions.

1. AN INTEGRABILITY RESULT

Let F; be a complex submanifold of the Grassmannian manifold Gr,, (m;,C),
1 <r; <m;, (j =1,2). Suppose that there exists a complex Lie subgroup G;
of GL(mj;, C) whose canonical action on Gr,,(m;, C) induces a transitive action
on Fj; thus, F; = G,;/H;, as complex manifolds, where H; is the isotropy group
of G; at some point of F}, (j =1,2).

Let (P;,M,Gj) be a (smooth) principal bundle endowed with a connection
V,, (j =1,2), where M is a (smooth connected) manifold, dim M = m;. We
suppose that (P, M,G) is a subbundle of the complex frame bundle of TCM.
Denote Q; = P; Xg, Fj and let 7 C TQ; be the connection induced by V; on
Qj; note that, Qj = P/Hj, (j = 1,2) .

Denote @ = 1*(Q1 X Q2) where ¢ : M — M x M is defined by «(x) = (z,z), for
any x € M, and let m : ) — M be the projection. Obviously, ker d7 is a complex
vector bundle.

The connections V; and V, induce a connection 7 (C TQ) on @ and let
%y C #C be the subbundle characterised by dn(%)(p, q) = p, for all (p,q) € Q.
Define

G =4y @ (ker dmr)™!
' =4y ® (kerdm)"° .
Let T be the torsion of V; and let R; be the curvature form of V;, (j =1,2).

Theorem 1.1 (cf. [14], [6] ). If dimc Fy > 1 then &' is nonintegrable. Further-
more, the following assertions are equivalent:

(1) ¢ is integrable.

(i) T(A%p) S p, Ri(A%p)(p) C p. Ra(A®p)(q) C g, for all (p,q) € Q.

Proof. Let G = G x G5 and let g and g; be the Lie algebras of G and G},
respectively, (7 = 1,2). Let P = /*(P; x P) and denote, also, by m and % the
projection w : P — M and the connection 5 C TP induced by V; and V5 on
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P. Note that, (kerdn)® = P x (g 7g).
Let Hy, and H, be the isotropy groups of GG; and G4 at some points py and gq
of Fi and F5, respectively. Let H = H; X Hy and denote by b its Lie algebra.
Let % p C #C be characterised by (A7), (%,r) = u(po), for all (u,v) € P.
Clearly, dv)(%.p) = % and (dv)) (%) = %.p where ¢ : P — @ is the projection.
Define
Yp=%prDPXhdPxg,

gjlg:go7p@P><E@PXg.
Obviously, dy/(%p) = ¢, dv(9p) = 9", ()" 1(¥) = 9, () 1Y) = 9.

Therefore, ¢ is integrable if and only if ¥p is integrable. Similarly, ¢’ is nonin-

(1.1)

tegrable if and only if ¢}, is nonintegrable.

For each £ € C™ let B({) be the horizontal (complex) vector field on P
characterised by (d7)w)(B(£)) = u(&) for any (u,v) € P. Obviously, the map
P xpy—%p, (u,v),8) = B(&) ), for (u,v) € P and § € py, is an isomor-
phism of vector bundles. Also, if A € g; and £ € C™ then [A, B(§)] = B(A¢)
and [A, B(€)] = 0 (cf. [7, Chapter III] ).

If dime F; > 1 then for any A € g;\b; and £ € py we have AE ¢ po. Hence,
[A, B(§)] = B(A¢) is nowhere tangent to ¢4 p. Therefore ¢}, and ¢’ are nonin-
tegrable.

The equivalence (i) <= (ii) follows straightforwardly from Cartan’s structural
equations (cf. [15]). O

Let p be a section of (), ; we shall denote by the same letter p the corresponding
complex vector subbundle of T€M. Then the map Q3 — Q. ¢ — (Pra(q)» ) » for
any q € ()9, is an embedding, where my : ()3 — M is the projection. Denote
by the same symbol s the image of this embedding. Then ¢¥? = ¢ NTQ, is a
subbundle of TQ), .

Note that, 4?7 does not depend of V. In fact, we could define ¥? as follows.
Firstly, let 4% be the subbundle of T°Q, which is horizontal, with respect to the
connection induced by Vi on Qs , and such that dme(%4)) = p. Then we have
g7 =GP @ (ker dmy)"?.

From Theorem we easily obtain the following result.

Corollary 1.2 (cf. [§]). The following assertions are equivalent:
(1) 97 is integrable.
(ii) p is integrable and Ro(A2p)(q) C q for any x € M and q € my~ ().

Remark 1.3. Theorem and Corollary can be easily generalized to the
case when () is a fibre bundle for which the typical fibre is a complex manifold
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and the structural group is a complex Lie group whose action on the typical fibre
is transitive and holomorphic.

2. ALMOST TWISTORIAL STRUCTURES AND TWISTORIAL MAPS

An almost CR-structure on a (smooth connected) manifold M is a section J
of End(#) such that J? = —1Id, for some distribution J# on M ; if 2 = TM
then J is an almost complex structure on M. Let .# be the eigenbundle of (the
complexification of) J corresponding to —i; we say that .Z is the complex distri-
bution associated to J. Then J is integrable if % is integrable (that is, for any
X, Y € I'(Z) we have [X,Y] € I'(#)). A CR-structure is an integrable almost
CR-structure; a complex structure is an integrable almost complex structure (see
13, 52)).

An almost f-structure on M is a section F of End(T'M) such that F3+F = 0.
Let # = T°M @ T%'M where T°M and T%'M are the eigenbundles of F' cor-
responding to 0 and —i, respectively; we say that .% is the complex distribution
associated to F'. Then F' is integrable if % is integrable. An f-structure is an
integrable almost f-structure (see [13, §2]).

If # is the complex distribution associated to a CR-structure or an f-structure
on a manifold M then, obviously, .# N.Z is (the tangent bundle of) a foliation
on M.

Let F be an almost f-structure on M and let T'°M and T%'M be its eigen-
bundles corresponding to i and —i, respectively. Then J = F|pi0pa701)s i an
almost CR-structure on M; we shall call J the almost CR-structure induced by
F'. Note that, I’ is not determined by .J; also, if F' is integrable then J is not
necessarily integrable.

An (almost) CR-structure on a conformal manifold (M, c) is an (almost) CR-~
structure J on M such that J* 4+ J = 0; obviously, this holds if and only if the
complex distribution associated to J is isotropic.

An (almost) f-structure on a conformal manifold (M,c) is an (almost) f-
structure F' on M such that F* + F' = 0; obviously, this holds if and only if
TY'M is isotropic and T°M = (TLOM & To’lM)L. Therefore an almost f-
structure on a conformal manifold is determined by its eigenbundle correspond-
ing to i (or —1). Equivalently, if we denote by J the almost CR-structure whose
eigenbundle corresponding to i is TVOM then F' «+— J establishes a bijective
correspondence (which depends on ¢) between almost f-structures on (M, ¢) and
almost CR-structures on (M, c).
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Definition 2.1. A map ¢ : (M, FM) — (N, FY), between manifolds endowed
with almost f-structures (or, almost CR-structures), is holomorphic if dp(FM) C
FN FM

, where and .Z" are the complex distributions associated to F™ and

FN_ respectively.

Remark 2.2. An almost f-structure F' on M is integrable if and only if for any
x € M there exists an open neighbourhood U > x and a holomorphic submersion
¢ from (U, F|y) onto some complex manifold (N, .J) such that kerdp = T°M
[15] ; we say that the f-structure F|y is defined by ¢. A simple f-structure is
an f-structure (globally) defined by a holomorphic submersion with connected
fibres.

We end this section with the definitions of almost twistorial structure and
twistorial map suitable for the purpose of this paper; more general definitions are
given in [13] (cf. [I7] ).

Definition 2.3. An almost twistorial structure on a manifold M is a quadruple
T=(Q,M,7,J), where 7 : Q — M is a locally trivial fibre space and J is an
almost CR-structure or an almost f-structure on ) which induces almost complex
structures on each fibre of 7. We say that 7 is integrable if J is integrable; a
twistorial structure is an integrable almost twistorial structure. Suppose that 7
is a twistorial structure such that there exists a surjective submersion ¢ : ) — Z
whose fibres are the leaves of .# N .# , where .Z is the complex distribution
associated to J. Then Z, endowed with the CR-structure dp(.%) , is the twistor
space of T.

Definition 2.4. Let ¢ : M — N be a map between manifolds endowed with the
almost twistorial structures 7y = (Qur, M, 7ar, JM) and 7y = (Qn, N, mn, TV).
Suppose that there exists a section p of @)y and a map @ : p(M) — @y such
that my o @ = ¢ o my|pr) and the tangent bundle of p(M) is preserved by
JM: denote by JP the restriction of J™ to the tangent bundle of p(M). We
shall say that ¢ : (M, 7y) — (N, 7y) is a twistorial map (with respect to @), if
D (p(M),J?) — (Qn,TYN) is holomorphic; that is, d®(FP) C FV where F?
and .Z are the complex distributions associated to J? and J%, respectively.

3. TWISTORIAL IMMERSIONS BETWEEN WEYL SPACES

We start this section with two related examples of almost twistorial structures.

Example 3.1. Let (M, ¢, D) be an oriented, even-dimensional Weyl space and
let 7 : @@ — M be the bundle of positive maximal isotropic spaces on (M, ¢) (the
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positive maximal isotropic spaces on (M, c) are the eigenspaces, corresponding
to —i, of the positive orthogonal complex structures on (M, c)). As kerdr is
a complex vector bundle, we have an isomorphism of complex vector bundles
(ker dm)® = (kerdm)'® @ (kerdnm)®l. Let s# C TQ be the connection induced
by D on Q. Let 4° C s#C be the complex vector subbundle characterised by
dm(94)) = q, for any ¢ € Q, and define

G =4y @ (ker dm)™!
' =4y © (kerdm)"° .

Let J and J' be the almost complex structures whose eigenbundles corre-
sponding to —i are ¢ and ¥’ respectively.

Obviously, if dim M = 2 then Q = M and J = J' is the positive Hermitian
structure of (M?,¢).

Note that, J does not depend of D whilst if dim M > 4 then J’ determines
D (that is, if D; is another Weyl connection on (M, ¢) which induces J’ then
D = D ; this follows from [13, Proposition 2.6] ).

If dim M > 4 then J' is nonintegrable (that is, always not integrable) whilst
if dim M = 4 then J is integrable if and only if (M?*,¢) is anti-self-dual and if
dim M > 6 then J is integrable if and only if (M, c) is flat; these well-known
results (see [6, §4], [14} §5], [15] §3]) follow from Theorem [L.1].

Obviously, (Q, M, n,J) and (Q, M, 7, J’) are almost twistorial structures on
M; we shall call (Q, M, 7, J") the nonintegrable almost twistorial structure asso-
ciated to (M, c, D).

Let (M, cy, DM) and (N, ey, DY) be even-dimensional oriented Weyl spaces
and let 73, = (Qur, M, mpr, J3y) and 7 = (Qn, N, mn, Jx ) be the associated non-
integrable almost twistorial structures.

Suppose that ¢ : M < N is an injective immersion. Then orient (T'M)+
such that the isomorphism TN|y = TM & (TM)* be orientation preserving
and let 7 : Q@ — M be the bundle of positive maximal isotropic spaces on
((TM)J_> CNl(TM)i) :

If p is a (local) section of @y then we shall denote by JP the almost Hermitian
structure on (M, cpr) such that p is the eigenbundle of J? corresponding to —i;
similarly, for Q)5 . Standard arguments show that the following assertions are
equivalent:

(i) p: (M, J?) — (Qu, T};) is holomorphic.
(ii) D]‘%Y is a section of p for any sections X and Y of p.
(iii) DY JP = —JPDALJP, for any X € T'M.
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(iv) (AP wy) D = 0, where wyy is the Kéhler form of (M, ¢y, JP) (defined
by wy(X,Y) = ey (JPX,Y), for any X, Y € TM).
Furthermore, if assertion (i), (ii) or (iii) holds then D™ is the Weyl connection
of (M, cpr, JP) (see [12, Remark 3.3]).

We shall denote by JP the almost complex structure on ) whose eigenbundle
corresponding to i is constructed, similarly to 4?7 of Corollary [I.2], by using the
connection induced by ITo DY on @ and the complex vector subbundle p of T“M ,
where IT : TN|y — (T'M)* is the orthogonal projection.

Let L be the line bundle of (N,cy). We define a section A of the bundle
(L|m)? @ A*T*M @ A2((TM)*4)" by

A(X7 Y) U7 V) - Z CN(D])\?ZGJ U)CN(‘D];;ZGJ V) - CN(‘D]X\/['ZIM U)CN(DJ)\QZlM V) )
for any x € M and X,Y € T,M, U,V € (T,M)*, where {Z,} is any conformal
local frame on (M, cy) defined on some open neighbourhood of z. It is easy to

see that A does not depend of DV. Furthermore, if M is an umbilical submanifold

of (N,cy) then A=0.

Corollary 3.2 (cf. [19]). The almost complex structure J? does not depend of
the Weyl connection DY . Moreover, the following assertions are equivalent:

(i) J? is integrable.

(ii) JP is integrable and (W + A)(AZ2p,A%q) = 0 for any x € M and q € Q,,
where W is the Weyl tensor of (N, cy) .

Proof. A straightforward calculation gives the following relation, essentially due
to Ricci (see [2, 1.72(e)]),

(3.1) en(RNX, YU, V) = en (RN X, YU, V) + AX,Y,U, V) ,

for any X, Y € TM and U,V € (TM)*, where RY and R are the curvature
forms of DV and IT o DV, respectively.
Also, we have (see [4])

(3.2) en(RNX, YU, V) = -W(X,Y,U, V) + FN(X,Y)en(U, V) |

for any X, Y € TM and U,V € (TM)*, where W is the Weyl tensor of (N, cy)
and F'V is the curvature form of the connection induced by D" on L.
The proof now follows quickly from Corollary [I.2). O

Remark 3.3. In Corollary 3.2], if dim M = 2 then assertion (ii) is automat-
ically satisfied whilst if codimM = 2 then the second part of assertion (ii) is
automatically satisfied.
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Let p be a section of ), which is isotropic with respect to ¢y. Then for any
map @ : p(M) — Qn such that myo® = @ omy |y there exists a unique section
q of () such that Pop=p©dq.

The following result reduces to [0, Theorem 5.3, when dim M =2, dim N = 4
(see [13, Proposition 5.2] ).

Proposition 3.4 (cf. [19] ). Let @ be given by the sections p and q of Qp and Q ,
respectively, with p isotropic with respect to cy . Then the following assertions
are equivalent:

(i) ¢ : (M, 1)) — (N, 75) is twistorial, with respect to & .

(ii) ¢ is (1,1)-geodesic with respect to J? and, p : (M, JP) — (Puy, Jyy) and
q: (M, J?P) — (Q,TP) are holomorphic.

Proof. Assertion (i) holds if and only if p()M) is an almost complex submanifold of
(Qur, Tjy) and @ = (p(M), Tislpny) — (Qn, J4) is holomorphic. It is clear that
p(M) is an almost complex submanifold of (Qyr, J;,) if and only if p : (M, JP) —
(Par, J4r) is holomorphic. Then @ : (p(M), T3, |par)) — (@n, J%) is holomorphic
if and only if @op: (M, J?) — (Qn,T}) is holomorphic. From [I3, Proposition
2.6] it follows quickly that, assertion (i) is equivalent to (a) DY € I'(p) , for any
X,Y €T(p), (b) DYY € T(p®q), for any X, Y € T'(p), and (c) DXU € T'(p@q),
for any X € I'(p), U € I'(q) .

Note that, if (b) holds, condition (c) is equivalent to II(DXU) € I'(q), for
any X € I'(p),U € I'(¢). Thus, if (b) holds, condition (c) is equivalent to
q: (M, J?) — (Q,TJP) be holomorphic.

Also, if (a) holds, condition (b) is equivalent to (Ddy)(X,Y) € I'(p @ q), for
any X,Y € I'(p). As D™ and DV are torsion free, Ddy is symmetric. It follows
quickly that, if (a) holds, then (b) is equivalent to (Ddg)*Y = 0.

The proposition is proved. O

Remark 3.5. 1) If assertion (i) or (ii) of Proposition holds then DM is the
Weyl connection of (M, cys, JP); if, further, ¢ is conformal then DM is equal to
the connection induced by DV on M.

2) A result similar to (but more complicated than) Proposition [3.4]can be given
for twistorial submersions between Weyl spaces endowed with the nonintegrable
almost twistorial structures. It follows again that such maps are (1, 1)-geodesic
(in particular, harmonic) and, if the codomain is of dimension two, harmonic
morphisms.

Let ¢ : (M,cp) — (N,cn) be a conformal injective immersion. Denote by
Q + Q the pull-back by ¢ of Qy x @, where ¢ : M — M x M is defined by
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v(x) = (x,z), for any € M. Let J and J’ be the almost complex structures on
@ + Q whose eigenbundles corresponding to —i are constructed, similarly to ¢
and ¢, respectively, of Theorem , by using the connections induced by DM
and IT o DV on Qs and @, respectively.

Proposition 3.6. Let & : Q) + Q — Qn be defined by (p,q) = p @ q, for any
(p.q) € Qu + Q.

(i) The following assertions are equivalent:
(i1) @: (Qm + Q,T) — (Qn, In) is holomorphic.
(12) M is an umbilical submanifold of (N,cy) .
(i) If dim M > 4 then the following assertions are equivalent:
(iil) @ : (Qm + Q,T') — (Qn, Ty) is holomorphic.
(ii2) ¢ is geodesic.

Proof. Let xo € M and let pg, qo be positive maximal isotropic spaces which are
tangent and normal, respectively, to M at xy. Let S C M be a surface such that
xo € S and one of the two isotropic directions tangent to S at xy are contained
in pg ; denote by Xy a nonzero element of T 5)5 N po (obviously, X is well-defined,
up to some complex factor).

We may suppose that there exist two sections p and ¢ of @y and @), respec-
tively, over S which are horizontal at xy and such that p,, = po and ¢, = qo -

From [I3], Proposition 2.6] it follows quickly that @ : (Qx +Q,J) — (Qn, IN)
is holomorphic if and only if, for any xo € M and any such sections p and ¢, we
have DY Y € po @ qo and DY U € po @ o, for any local sections Y of p and U
of q; equivalently, cN(D])\QOK U) = 0 for any local section Y of p and U of ¢. The
proof of (i) follows quickly.

Similarly, @ : (Qu + Q,J') — (@n,J}) is holomorphic if and only if, for
any o € M and any such sections p and ¢, we have D])\Q—OY € po P qo and
D%U € po D qo, for any local sections Y of p and U of ¢. It follows that (iil) is
equivalent to the fact that the Weyl connection induced by D on M is equal to
DM and, for any zo € M and any such sections p and g, we have CN(DJ)\Q—OY, U)=0
for any local sections Y of p and U of ¢. The proof of (ii) follows quickly. O

Similarly to the proof of Proposition [3.6(ii) , we obtain the following:

Remark 3.7 (cf. [6]). If dim M = 2 then the equivalence (iil) <= (ii2), of
Proposition , remains true if we replace (ii2) with the following assertion:
(ii2) M? is a minimal surface in (N, cy, DV).
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4. ON (1,1)-GEODESIC SUBMANIFOLDS

Let (N, cy, DY) be a Weyl space. For 1 <r < %dim N,let tn, : Qny — N be
the bundle of isotropic spaces on (N, c¢y) of complex dimension 7. Denote by Jy
and Jy . the almost CR-structures on @)y, whose eigenbundles corresponding to
—i are constructed, similarly to ¢ and ¢’ respectively, of Theorem [I.1], by using
the connection induced by DY on Qy,, and by taking Q = N the trivial bundle
over N.

Note that, Jn, does not depend of DY whilst 7}, determines D". Further-
more, by Theorem , the almost CR-structure Jy . is nonintegrable whilst, if
r =1 then Jy is integrable [10]. We shall prove the following result.

Theorem 4.1. The following assertions are equivalent, if r > 2 :
(1) TN is integrable.
(ii) (N, cn) is flat.

Proof. Assume r > 2 and let R and W be the curvature form of D and the
Weyl tensor of (N, cy), respectively. We shall prove that the following assertions
are equivalent:

(a) R(A?p)(p) C p for any p € Qn,, -

(b) en(R(X,Y)X,Y) =0 for any X,Y € T®N spanning an isotropic space.

(c) W=0.
Indeed, as any two-dimensional isotropic space on (N, cy) is contained in some
p € Qn,, we obviously have (a)==(b). Also, (b) <= (c) (see [16] ) and, as
R(A?p)(p) = W(A%p)(p), for any isotropic space p on (N, cy) , we have (c)==(a).

By Theorem [L.1], we have (i) <= (a), and, by the Weyl theorem on flat

conformal manifolds, (ii) <= (c¢). The theorem is proved. O

Let M C N be a submanifold, dim M = 2r. Let cpy = cyl,, and let DM be the
Weyl connection on (M, cyr) induced by DN, Also, let 75, = (Qur, M, mar, Tif)
be the nonintegrable almost twistorial structure associated to (M, ¢y, DM) .

Suppose that there exists a section p of @y, which is tangent to M. As be-
fore, denote by J? the almost Hermitian structure on (M, ¢ps) whose eigenbundle
corresponding to —i is p.

Similarly to Proposition [3.4], we obtain the following result (cf. [18]).

Proposition 4.2. The following assertions are equivalent.

(i) p: (M, J?) = (Qn,, Ty,) is holomorphic.

(ii) (M, JP) is a (1,1)-geodesic submanifold of (N,cyn, DY) and the map p :
(M, J?) — (Qur, Tyy) is holomorphic.



12 R. PANTILIE

Remark 4.3. 1) Proposition can be easily formulated in similar vein to
Proposition [3.4.

2) With the same notations as in Proposition 4.2, p : (M, J?) = (Qn.+, Inr)
is holomorphic if and only if J? is integrable and (M, J?) is a (2, 0)-geodesic sub-
manifold of (N, cy, DV) .

3) In Proposition [4.2], assume that (N, cy, DV) is the Euclidean space R™ with
its canonical conformal structure and flat connection. Then Qyn, = R" X Q,,
where @, C Gr,(n,C) is the manifold of isotropic r-dimensional subspaces of
Cn.

Let p=myop: M — F where my : R" X Q,,, — @, is the projection. Then
p: (M, JP) — (Qny, Jy,) is holomorphic if and only if p : (M, J?) — Q,,, is
holomorphic.

Thus, by Proposition, (M, J?) is a (1,1)-geodesic submanifold of (N, cy, DY)
and p : (M, J?) — (Qur, Tys) is holomorphic if and only if p : (M, J?) — Qn,
is holomorphic. In the particular case dim M = 2, this gives M? minimal in
R™ if and only if p holomorphic which leads to the Weierstrass representation of
minimal surfaces in Euclidean space.

4) A result similar to Proposition can be easily written by working with
the inclusion map Qy — Qn -

o. f—STRUCTURES AND PSEUDO HORIZONTALLY CONFORMAL SUBMERSIONS

We start this section by recalling the following definition.

Definition 5.1 (see [1],[3]). A map ¢ : (M,c¢) — (N,J) from a conformal
manifold to an almost complex manifold is pseudo horizontally weakly confor-
mal if it pulls back (1,0)-forms on N to isotropic 1-forms on (M,c). A map is
pseudo horizontally conformal if it is submersive and pseudo horizontally weakly
conformal.

Remark 5.2. 1) A submersion ¢ : (M,c) — (N, J) from a conformal manifold
to an almost complex manifold is pseudo horizontally conformal if and only if
there exists an almost f-structure F on (M,c) such that T'M = kerdy and
v : (M, F)— (N,J) is holomorphic (cf. [I1] ).

2) Let (M, c) be a conformal manifold and let F' be an almost f-structure on
M. Then F is an f-structure on (M, c) if and only if it is locally defined by
pseudo horizontally conformal submersions onto complex manifolds.

Let (M,c, D) be a Weyl space, dimM = m. For 1 < r < %m, let mar, :

Qurr — M be the bundle of isotropic spaces on (M, c) of complex dimension
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7. For p € Qu, let FP be the skew-adjoint f-structure on (T, .M, Cxyr,(p))
whose eigenspace corresponding to —i is p. Thus, Q. is also the bundle of
skew-adjoint f-structures on (M, ¢) with kernel of dimension m — 2r .

Let s be the connection induced by D on @, and let T°Qy . C 2 be
the subbundle characterised by d7rM7T(TT?Q ) = kerFP for all p € Qpr, . Also,
let 4, C #C be the subbundle such that d7rM7r((€%)p) is the eigenspace of FP
corresponding to —i, for all p € Q... Denote T%'Qus, = % & (ker d7rM7r)0’1 and
let Far, be the almost f-structure on @)z, whose eigenbundles corresponding to
0 and —i are T°Qys, and T%'Qyy, , respectively. Also, let Fj, . be the almost
f-structure on @)yr, whose eigenbundles corresponding to 0 and —i are T°Q M
and 4 & (ker dmys, )"0, respectively.

Remark 5.3. 1) Each of the almost f-structures Fys, and F), . determines D .
2) With the same notations as in Section [4], the almost CR-structures induced
by Fu, and Fy, . are Jyr, and Jy, . , respectively.

It is well-known (see [15, Theorem 3.5]) that if m = 3 then Fj,; is integrable
if and only if (M, ¢, D) is Einstein-Weyl. Also, from Theorem [1.1]it easily follows
that ), is nonintegrable. We shall prove the following:

Theorem 5.4. If m > 4 then the following assertions are equivalent:

(1) Farr is integrable.

(ii) D is, locally, the Levi-Clivita connection of a constant curvature represen-
tative of c.

Proof. Let R be the curvature form of the connection induced by D on L*® T M,
where L is the line bundle of M. We claim that the following assertions are
equivalent:

(a) R(A%(p*)) (p*) S p* for any p € Quryr -

(b) e(R(X,Y)X,Y) =0 for any X,Y € TCM spanning a degenerate space.

(¢) (M,c, D) is flat and Einstein—Weyl.
Indeed, as any two-dimensional degenerate (and, if 7 = 1, nonisotropic) space
on (M, c) is contained in p* for some p € Qyr,-, we obviously have (a)=(b).
Also, by [16], assertion (b) implies that (M,c) is flat; it follows quickly that
(b)==(c). By a result of M. G. Eastwood and K. P. Tod ([5, Theorem 1]; see
[4, Theorem 5.2]), (c) <= (ii). Clearly, (ii)==(a) and the proof follows from
Theorem [L1]. O

Remark 5.5. By Theorems and [5.4], if Fs, is integrable then Jyy,, is inte-
grable.
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Let (M, g) be a Riemannian manifold of constant curvature such that Fy;, is
simple. Then there exists a holomorphic submersion from (Qas,, Farr) onto a
complex manifold Z,(M) whose fibres are the leaves of T°Q,.. Then Z,.(M) is
the twistor space of (Qurr, M, Tary, Farr) (cf. [1L, §6.8]).

Proposition 5.6 (cf. [13]). Let p be a section of Qur,r and let FP be the corre-
sponding almost f-structure on (M,c). The following assertions are equivalent:
(i) p: (M, FP) — (Qur, Fary) is holomorphic.
(ii) F? is integrable and locally defined by pseudo horizontally conformal sub-
mersions with geodesic fibres and for which the integrability tensor of the hori-
zontal distribution is of degree (1,1).

Proof. Assertion (i) is equivalent to the fact that DxY € I'(pt), for any XY €
[(pt); in particular, if (i) holds then FP is integrable. Clearly, (i) is also equiv-
alent to DxY € T'(pt), for any X,Y € I'(p*). Therefore, if (i) holds then
ptNpt (= (p®p)t = kerF?) is geodesic.

Thus, if (i) holds then F? is integrable and locally defined by pseudo horizon-
tally conformal submersions with geodesic fibres; furthermore, if X, Y € I'(p) and
U € T((p®p)*) then, as F? is integrable, we have [U, X],[U,Y] € I'(p*) and
it follows that ¢(U,[X,Y]) = —2¢(DyX,Y) = 0. This completes the proof of
(i)=(ii).

By definition, F? integrable if and only if p* integrable. It follows that if F” is
integrable then DxY € I'(pt), for any X,Y € I'(p). Also, if ker F? (= (p ® p)*)
is geodesic then Dy V € T'(pt), for any U,V € F((p ® ]_Q)J‘) . Furthermore, an
argument as above shows that if F'? is integrable then the integrability tensor of
(p ®Dp)* is of degree (1,1) if and only if DyX € ['(p*), for any X € I'(p) and
U eI ((p®p)*). This completes the proof of (ii)==(i). O

Remark 5.7. Let F' be an f-structure on M. It is obvious that the almost CR-
structure T%'M is integrable if and only if the integrability tensor of T*OM @
T%'M is of degree (1,1).

From Proposition [5.6| we easily obtain the following result.

Corollary 5.8 (cf. [13]). Let p be a section of Qa1 and let FP be the correspond-
ing almost f-structure on (M, c). The following assertions are equivalent:

(i) p: (M, F?) — (Qur,1, Fara) is holomorphic.

(ii) F? is integrable and locally defined by submersive harmonic morphisms with
geodesic fibres (of codimension two).

Let (M, g) be a real analytic Riemannian manifold, dim M = m. Then (M, g)
admits a (germ-unique) complexification (M®, ¢%). Let myc, @ Qpe, — M be
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the bundle of r-dimensional isotropic spaces on (M, ¢%). If 1 <r < %m, the
complex version of Theorem says that the following assertions are equivalent
(cf. [T7, §2] and the references therein):

(i) For any p € Qyc, there exists a coisotropic and geodesic complex sub-
manifold S of (M€, g©) of (complex) rank m — 2r , with respect to g© , such that
TTFMC,T(ZJ)S =p

(ii) (M, g©) has constant (sectional) curvature.

Assume (M€, g%) (and, hence, also (M, g)) to be of constant curvature. Then,
locally, the twistor space (in the sense of [I7, Definition 2.1] ) Z,.(M®) parametrizes
the coisotropic geodesic (complex) submanifolds of (M, ¢©) of rank m — 2r. It
follows that, locally, we may assume T°Q s, simple and such that each of its
leaves intersects the fibres of m/, at most once (apply [I7, Remark 2.2(3)]).
Then Z,.(M) is an open submanifold of Z,(M®); moreover, Z,.(M) is endowed
with a holomorphic m-dimensional family of submanifolds each of which is holo-
morphically diffeomorphic to the space of isotropic r-dimensional spaces on C™;
the members of this family are called the twistor submanifolds of Z,(M) (see [17,
Remark 2.2(1)]).

We shall say that two submanifolds S and S’ of a manifold W are transversal
if 1,5NT,S"={0},at each x € SNS".

Corollary 5.9. Let (M, g) be a Riemannian manifold of constant curvature and
letl <r< %m, where m = dim M .

Then any pseudo horizontally conformal submersion, locally defined on (M, g),
with geodesic fibres of dimension m — 2r and for which the integrability tensor
of the horizontal distribution is of degree (1,1) corresponds, locally, to a com-
plex submanifold, of dimension r, of Z.(M) which is transversal to the twistor
submanifolds.

Proof. Any (local) pseudo horizontally conformal submersion ¢ on (M, g) with
connected geodesic fibres of dimension m — 2r and for which the integrability
tensor of the horizontal distribution is of degree (1, 1) defines an f-structure F'¥ on
(M, g) . Moreover, by Proposition , F¥ corresponds to a holomorphic section
p?: (M, F?) — (Qurr, Farr) - Hence, T°Q s, induces a foliation on p? (M) whose
leaves are mapped by 7y, onto the fibres of ¢. Thus, locally, the projection
Qumr — Z.(M) maps p?(M) onto a complex r-dimensional submanifold N¥ of
Z(M). Then ¢ — N¥ gives the claimed correspondence. O

Remark 5.10. Let (M, g) be a constant curvature Riemannian manifold and let
1<r< %m, where m = dim M.



16 R. PANTILIE

Then Z,(M) parametrizes naturally the set of pairs (P,J) where P is a to-
tally geodesic submanifold of (M,g), of codimension 2r, and J is an orthogonal
complex structure on the normal bundle of P which is parallel with respect to the
normal connection. (By and (3.2), the normal connection on the normal
bundle of any totally umbilical submanifold of a conformally-flat Riemannian
manifold is flat.)

Let ¢ be a (local) pseudo horizontally conformal submersion on (M, g) with
connected geodesic fibres of dimension m — 2r and for which the integrability
tensor of the horizontal distribution is of degree (1,1). Let N¥ be the codomain
of ¢ and let J¥ be the orthogonal complex structure on (ker dy)t with respect
to which d|(erae)+ is holomorphic at each point.

Then the correspondence of Corollary is given by ¢ —— N¥ where the
inclusion map N¥ — Z,(M) is defined by y — (¢ (y), J?|o-1()) » (v € N¥).

From Corollary [5.9 we obtain the following result of P. Baird and J. C. Wood.

Corollary 5.11 ([1]). Let (M,g) be a Riemannian manifold of constant cur-
vature. Then any submersive harmonic morphism, locally defined on (M, g),
with geodesic fibres of codimension two corresponds, locally, to a complex one-
dimensional submanifold of Z1(M) which is transversal to the twistor submani-
folds.

We end by describing the twistor spaces of the space forms R™, S™ and H™
(cf. [I, §6.8]). For this, we firstly describe the twistor spaces of the complex
Euclidean space C™ and of the complex unit hypersphere S™(C).

Let Qmy € Grp,—(m,C) be the space of coisotropic subspaces of C™ of rank
m—2r . We shall denote by the same symbol @), its image through the complex
analytic diffeomorphism Gr,,_.(m,C) — Gr,(m,C) defined by p — p*, for any
p € Gryr(m,C). Thus, @, C Gr.(m,C) is the space of isotropic subspaces
of C™ of complex dimension r. Let E,, and F,,, be the restrictions to @, ,
of the tautological vector bundles on Gr,,_.(m,C) and Gr,(m,C), respectively.
As Z,(C™) is the space of coisotropic planes in C™ of rank m — 2r, we have
Z€™) = (Quy x C) /B, = Fy,,.

Similarly, Z, (Sm((C )) is the space of (maximal) coisotropic geodesic subman-
ifolds of S™(C), of rank m — 2r. As any such submanifold is the intersection
of S™(C) with a coisotropic subspace, of rank m — 2r + 1, of C™"!, we have
Z,(5"(C)) = Quen,

It follows that Z,.(R™) = F ., Z,(S™) = Q41 and Z,(H™) = Qmy1,\ Cnr
for some closed set C,,, C Qm41,. To describe Cy, ., consider the complex Eu-
clidean space C™*! as the complexification of the Minkowski space R7"! so that
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the complexification of H™ C R}**! to be the complex hypersphere, of radius the

imaginary unit. Then C,,, is the set of coisotropic subspaces p C C™"! of rank
m — 2r + 1 such that p* "R £ {0} .
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