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1 Introduction

Harmonic maps between Riemannian manifolds, ϕ : (M, g) → (N,h) are critical points
for the Dirichlet energy functional (see e.g. [4]):

E(ϕ) =
1
2

∫
M
‖dϕ‖2vg.

a generalization of the kinetic energy of Classical Mechanics.
Among the most studied classes of harmonic maps are those one that are, in addition,

horizontally weakly conformal (HWC) cf. [4] (this class is given precisely by harmonic
morphisms). Another well known type of harmonic maps is given by holomorphic maps
from a cosymplectic (semi-Kähler) manifold to a (1, 2)-symplectic (quasi-Kähler) one,
according to a classical result of Lichnerowicz [14]. Moreover, holomorphic maps between
almost Kähler manifolds are minimizers in their homotopy class for the Dirichlet energy.

In this paper we turn our attention to the following energy-type functional proposed in
[25] as a generalization of the Faddeev-Hopf static Hamiltonian [11] from hadron physics:

EFH(ϕ) =
1
2

∫
M

(
‖dϕ‖2 + α‖ϕ∗Ω‖2

)
vg, (1.1)

where α ≥ 0 is a coupling constant and Ω denotes the Kähler 2-form on the target (N, J, h)
of the map ϕ.

The main goal in what follows is to find critical maps for (1.1) that belong to the two
classes mentioned above (HWC and holomorphic). As the original model was concerned
with the case M = S3, N = S2, we are interested to work with a broader notion of
holomorphic map that allow also odd dimensional domains. Pseudo horizontally weakly
conformal maps (PHWC) into almost Hermitian manifolds, a class that includes also HWC
mappings, show to be the appropriate choice.

The paper is organized as follows. The next section survey for further use some known
facts about PHWC maps [15], their harmonicity and the corresponding notion of pseudo
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horizontally homothetic (PHH) map. Besides we show that a wider perspective is possible
by considering mappings from a Riemannian manifold to a f -structured one (rather than
just almost complex) and by approaching their harmonicity also from the point of view
of conformal geometry. We stress the fact that PHWC property answers the question
when we can endow the domain with an almost f -structure compatible with the given
metric, such that our map becomes holomorphic in an appropriate sense. Finally, Section 3
investigates the PHWC (stable) critical points for the strong coupling limit of the Faddeev-
Hopf model using the variational formulae derived in [25]. Two of the main applications
are:
(*) a holomorphic submersion between Kähler manifolds (or some appropriate analogue)
is a critical point for the (full) Faddeev-Hopf functional if it has constant Dirichlet energy
along horizontal curves;
(**) a Kähler targeted semiconformal (HWC) submersion is a critical point for the strong
coupling Faddeev-Hopf functional if and only if it is 4-harmonic.

2 PHWC mappings

2.1 Generalities about (almost) f-structures

An almost f -structure on Mm is a section F of End(TM) such that F 3+F = 0. According
to [26], the rank k, of F , is even and constant. If k = m, then F is an almost complex
structure on M .

A couple (g, F ) is called metric almost f-structure if g is a compatible metric, i.e.
g(FX, Y ) + g(X, FY ) = 0. In this case we have an orthogonal decomposition:

T CM = T 0M ⊕ T (1,0)M ⊕ T (0,1)M,

where T 0M , T (1,0)M and T (0,1)M are the eigenbundles of F corresponding to 0, i and -i,
respectively. We say that F = T 0M⊕T (0,1)M is the complex distribution associated
to F , cf. [19].

Definition 2.1. ([19]) A map ϕ : (M,FM ) → (N,FN ), between manifolds endowed with
almost f -structures, is called holomorphic if dϕ(FM ) ⊆ FN , where FM and FN are the
complex distributions associated to FM and FN , respectively.

In real terms, the above definition says that ϕ is holomorphic if:

dϕ(FMX)− FNdϕ(X) ∈ Ker FN , ∀X ∈ TM. (2.1)

In particular, when both FM and FN are almost complex structures, we find again the
well-known definition of a holomorphic map: dϕ ◦ JM − JN ◦ dϕ = 0.

Definition 2.2. ([19]) An almost f -structure F is called integrable if F is integrable
(i.e. for any X, Y ∈ Γ(F) we have [X, Y ] ∈ Γ(F)); an f -structure is an integrable almost
f -structure.

Example. If an almost contact structure is normal ([5]), then it is integrable in the sense
of the above definition, cf. [13] (the converse is not necessarily true). For instance any
circle bundle over a complex manifold inherits on its total space, a normal almost contact
structure.
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2.2 The general PHWC condition

The following definition generalizes the corresponding one given in [9, 15] (when the
codomain is endowed with an almost complex structure), respectively in [10] (when the
codomain is endowed with an almost f -structure):

Definition 2.3. Let (M, g) be a Riemannian manifold and (N,F, h) a manifold endowed
with a metric almost f -structure. A map ϕ : (M, g) −→ (N,F, h) is pseudo horizontally
weakly conformal (PHWC) if:

F ◦ [dϕ ◦ dϕt, F ] = 0 (2.2)

where dϕt stands for the adjoint map, dϕt
x : Tϕ(x)N → TxM , characterized by: g(X, dϕt

x(E)) =
h(dϕx(X), E), ∀X ∈ TxM,E ∈ Tϕ(x)N .

The following result generalizes [15, Remark 6]:

Proposition 2.1. A PHWC map ϕ : (M, g) −→ (N,F, h) induces a metric almost f-
structure, Fϕ, on M , with respect to which ϕ becomes holomorphic.

Proof. We note firstly that dϕt(T (1,0)N) is a g-isotropic distribution on M .

g(dϕt(T (1,0)N), dϕt(T (1,0)N)) = h(T (1,0)N, dϕ ◦ dϕt(T (1,0)N)) = 0,

as dϕ ◦ dϕt(T (1,0)N) ⊆ T 0N ⊕ T (1,0)N , cf. (2.2). According to [23, Prop. 2.2],
for any g-isotropic distribution there exists an unique metric f -structure, Fϕ, on M ,
such that dϕt(T (1,0)N) = Ker (Fϕ − i). Denote by T CM = T 0M ⊕ T 1,0M ⊕ T 0,1M the
corresponding orthogonal splitting. It is easy to remark that: dϕt(T (0,1)N) = Ker (Fϕ + i)
and dϕ(T 0M) ⊆ T 0N .

It is clear now that ϕ is holomorphic, according to Definition 2.1, i.e. dϕ(T 0M ⊕
T (0,1)M) ⊆ T 0N ⊕ T (0,1)N . �

Remark 2.1. (i) The PHWC condition does not depend on the metric on the codomain
but only on the conformal class of the metric on the domain.

(ii) rankFϕ = rankF + rank dϕ− dimN.
In particular, if ϕ is submersive (rank dϕ = dimN), then rankFϕ = rankF . If F = J

is an almost complex structure on N (rankF = dimN), then rankFϕ = rank dϕ (we have,
moreover, Ker Fϕ = Ker dϕ).

Example. Besides holomorphic maps between almost Hermitian manifolds, the following
(already known) classes of mappings satisfy PHWC condition (2.2):

(i) stable harmonic mappings to an irreducible Hermitian symmetric space of compact
type, cf. [8];

(ii) (φ, J)–holomorphic mappings from a metric almost contact manifold (M,φ, ξ, g) to
an almost Hermitian manifold (N, J, h), i.e. mappings that satisfy dϕ ◦ φ = J ◦ dϕ;

(iii) semiconformal / horizontally weakly conformal (HWC) mappings, i.e. mappings
that satisfy dϕ ◦ dϕt = λ2id, cf. [4];

(iv) contact - holomorphic mappings between almost contact manifolds, cf. [7].

For the sake of simplicity, for the remainder of the article, we will make the assumption
that the target is endowed with an almost complex structure. Most of the results in
the rest of this section can be easily extended to the general case of PHWC maps to a
f–structured manifold.
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2.3 PHWC submersions

Suppose now that ϕ is submersive. The restriction of dϕx to the horizontal space Hx =
(Ker dϕx)⊥ maps that space isomorphically onto Tϕ(x)N . Denote its inverse by ̂ ; for any
Z ∈ Tϕ(x)N , the vector Ẑ ∈ Hx is called the horizontal lift of Z (this operation can be
extended to local vector fields).

As ϕ takes values in an almost Hermitian manifold (N, J, h), we have an almost complex
structure naturally induced on H and an almost f -structure, F , that extends it: F |H(X) =
JH(X) = ̂Jdϕ(X) and F |V = 0, where V = Ker dϕ.

In this case, the PHWC condition is equivalent to the compatibility of JH with the
domain metric g (i.e. F is a metric almost f -structure). Indeed, starting with the remark
that dϕt : TN → H is this time an isomorphism, we obtain (for an arbitrary compatible
metric h on N):

g(JHX, dϕtE) = h(dϕ(JHX), E) = h(J(dϕX), E) = −h(dϕX, JE)

= −g(X, dϕtJE) = −g(X, dϕ−1(dϕ(dϕtJE)))

= −g(X, dϕ−1(J(dϕ(dϕtE))) = −g(X, JHdϕtE).

In this case, an alternative terminology for PHWC is horizontally holomorphic cf. [22].

Remark 2.2. (i) If (N, J) is a complex manifold (i.e. J is integrable), then the almost
f -structure induced by a PHWC submersion ϕ : (M, g) −→ (N, J) is integrable, according
to [21, Remark 2.2]. Moreover, all f -structures (locally) appear in this way.

(ii) Let (zα)α=1,n be local complex coordinates on the complex manifold (N, J). The

PHWC condition is equivalent to gij ∂ϕα

∂xi
∂ϕβ

∂xj = 0, ∀α, β, cf. [15, Lemma 3].

(iii) If the fibers of ϕ are 1-dim. and M is orientable, we have seen [24] that the induced
f -structure is an almost contact metric structure, φ. It is integrable but not necessarily
normal. The supplementary condition that assures the normality is given in [24, Theorem
4.1].

2.4 Harmonicity of PHWC maps

A mapping is harmonic if and only if its tension field vanishes, cf. [4]. The tension field
of a PHWC map into an almost Hermitian manifold (N, J, h) is given by

τ(ϕ) = JdivϕJ − dϕ(FdivF ), (2.3)

where divϕJ = tracegϕ
∗∇NJ and divF = trace ∇F .

Therefore a PHWC mapping to an (1,2)-symplectic manifold (i.e. (∇XJ)(Y )+(∇JXJ)(JY ) =
0) will be harmonic if and only if FdivF = 0, cf. [17]. If FdivF = 0, then I shall call the
(almost) f -structure, F , cosymplectic.

For submersions, if we consider a local adapted frame {ei, F ei, eα} (i.e. an orthonormal
frame such that eα ∈ Ker F,∀α), then the above relation reads:

τ(ϕ) =
n∑

i=1

J
(
(∇ϕ

ei
J)(dϕ(ei)) + (∇ϕ

Fei
J)(dϕ(Fei))

)
− dϕ

(
F [(∇eiF )(ei) + (∇FeiF )(Fei)] + (m− 2n)µV

)
,

(2.4)

where µV denotes the mean curvature of the fibres.
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2.5 Pseudo horizontally homothetic maps

Let ϕ : (M, g) −→ (N, J, h) be a PHWC submersion with minimal fibres onto a (1,2)-
symplectic manifold. If the induced f -structure F , on M , satisfies

F ((∇XF )(X) + (∇FXF )(FX)) = 0, ∀X ∈ Ker (F 2 + I), (2.5)

then ϕ has the following property: if P is an complex submanifold of N , then K =
ϕ−1(P ) ⊂ M is a f -invariant minimal submanifold of M , cf. [17, Prop. 7].

In [3], the same property was proved for pseudo horizontally homothetic (PHH) sub-
mersions. Recall that a map is PHH if by definition it is PHWC and satisfies [dϕ ◦ ∇M

X ◦
dϕt, J ] = 0, ∀X ∈ Ker (F 2 + I). For submersions, this means that JH is ∇H-parallel
in horizontal directions. Standard examples of PHH mappings are holomorphic mappings
from a Sasakian (or Kählerian) domain to a Kähler target.

A PHH submersion with minimal fibres is a (weakly) stable harmonic map, cf. [1].
Further properties and examples of PHH harmonic submersions can be found in [2, 6].

For horizontally weakly conformal maps both conditions (2.5) and PHH reduce to
horizontal homothety (HH), i.e. the conformal factor λ is constant in horizontal directions.

2.6 Conformal geometry viewpoint

Let (M, [g]) be a conformal manifold ([g] denotes a conformal class of Riemannian metrics).
A Weyl connection D on (M, [g]) is a torsion-free linear connection which preserves

the conformal class [g], cf. [12] (in this case we say that D defines a Weyl structure on
M). Preserving the conformal class means that for any g̃ ∈ [g], there exists a 1-form θg̃

(called the Higgs field) such that:

Dg̃ = −2θg̃ ⊗ g̃.

This formula is conformally invariant in the sense that, if g̃ = e2fg, then θg̃ = θg − df .
Conversely, if one starts with a fixed Riemannian metric g on M (with ∇g the Levi-

Civita connection) and a fixed 1-form θ (with θ] the dual vector field with respect to g),
then the connection

DXY = ∇g
XY + θ(X)Y + θ(Y )X − g(X, Y )θ], (2.6)

is a Weyl connection, preserving the conformal class of g. Clearly, (g, θ) and (e2fg, θ−df)
define the same Weyl structure. If, moreover, θ is an exact 1-form, then D is the Levi-
Civita connection of some representant of the conformal class.

Suppose now (Mm, g) endowed with a metric almost f -structure. Consider the Weyl
structure (2.6) constructed with an arbitrary 1-form on M . Then, with respect to an
adapted orthonormal frame {ei, F ei, eα} (i.e. eα’s span KerF ), we have:

FdivDF =
∑
i,α

F [(DeiF )(ei) + (DFeiF )(Fei) + (DeαF )(eα)]

= Fdiv∇
g
F + (m− 2)F 2θ].
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So if I take θ] = 1
m−2Fdiv∇

g
F , then D, the Weyl connection associated to the dual

1-form θ, will have the property that:

FdivDF = 0.

Notice that D is not uniquely determined. Analogously to [18, Def. 4.2] for the almost
complex case, we introduce the following:

Definition 2.4. A Weyl connection on (M, [g], F ) will be called Weyl connection com-
patible with F if FdivDF = 0.

Recall that we have an extended notion of harmonicity for maps defined on a conformal
manifold [18, Def. 2.1]. Analogously to [18, Prop. 4.5], we have:

Proposition 2.2. A PHWC map ϕ : (M, g) → (N, J, h) to a (1,2)-symplectic manifold is
harmonic with respect to some compatible Weyl connection on (M, [g], Fϕ).

3 Critical points for the Faddeev-Hopf functional

The strong coupling limit for the (generalized) Faddeev-Hopf model involves the variational
problem for the following energy-type functional, cf. [25]:

E∞FH (ϕ) := lim
α→∞

α−1EFH(ϕ) = ‖ϕ∗Ω‖2
L2 =

1
2

∫
M
〈ϕ∗Ω, ϕ∗Ω〉vg, (3.1)

where ϕ : (M, g) → (N, J, h) are mappings defined on a compact, oriented Riemannian
manifold, with values in a Kähler manifold with the fundamental 2-form Ω = h(J ·, ·).
According to [25, Corollary 2.4], such a mapping will be a critical point for this functional
if and only if:

(δϕ∗Ω)] ∈ Ker dϕ. (3.2)

We can remark that if the target is only a symplectic manifold, the above result is still
true (so in the following the Kähler hypothesis can be weakened).

The goal of this section is to identify PHWC submersions with Kähler targets, that
satisfy (3.2). Unless otherwise stated, all the mappings considered in the rest of the paper
will be Kähler targeted.

Let us begin with an easy to check formula that will be useful in what follows:

Lemma 3.1. Let ϕ be a submersion between Riemannian manifolds, and let Y, Z be
horizontal (local) vector fields on the domain. Then, for any vector field X, we have:

(∇Xϕ∗h) (Y, Z) = h(∇dϕ(X, Y ),dϕ(Z)) + h(dϕ(Y ),∇dϕ(X, Z)). (3.3)

Proposition 3.1. Let ϕ : (M, g) → (N, J, h) be a PHWC submersion from a compact,
oriented Riemannian manifold. Then any two of the following statements imply the third:

(i) The f-structure, F , induced on M is cosymplectic (i.e. FdivF = 0)

(ii) ϕ is a critical point of E∞FH (i.e. it verifies the equation (3.2))

(iii) With respect to any (local) adapted orthonormal frame {Ej , FEj , Eα} on M , the
pullback of the codomain metric satisfies:∑

j

[(
∇Ejϕ

∗h
)
(FEj , Z)−

(
∇FEjϕ

∗h
)
(Ej , Z)

]
= 0, ∀Z ∈ (Ker dϕ)⊥.
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Proof. The PHWC condition assures us that: Ω̂(X, Y ) := ϕ∗Ω(X, Y ) = ϕ∗h(FX, Y ). In
order to compute its co-differential, we start with:

(∇XΩ̂)(Y, Z) = X[ϕ∗h(FY, Z)]− ϕ∗h(F∇XY, Z)− ϕ∗h(FY,∇XZ)
= [h(∇ϕ

Xdϕ(FY ),dϕ(Z)) + h(dϕ(FY ),∇ϕ
Xdϕ(Z))]

− ϕ∗h(F∇XY, Z)− ϕ∗h(FY,∇XZ)
= ϕ∗h((∇XF )Y, Z) + h(∇dϕ(X, FY ),dϕ(Z)) + h(dϕ(FY ),∇dϕ(X, Z))

= ϕ∗h((∇XF )Y, Z) + (∇Xϕ∗h) (FY, Z), ∀X, Y, Z ∈ Ker (F 2 + I).

With respect to a (local) adapted orthonormal frame {Ej , FEj , Eα} (i.e. Eα ∈ Ker F ),
for any horizontal vector field Z on M , we have:

−δΩ̂(Z) =
∑
j,α

ıEj (∇Ej Ω̂)(Z) + ıFEj (∇FEj Ω̂)(Z) + ıEα(∇EαΩ̂)(Z)

= ϕ∗h(divF,Z) +
∑

j

[(
∇Ejϕ

∗h
)
(FEj , Z)−

(
∇FEjϕ

∗h
)
(Ej , Z)

]
.

(3.4)

On the other hand, δΩ̂(Z) = g((δϕ∗Ω)], Z). As ϕ is a submersion, Ker dϕ = KerF and
our conclusion easily follows.

�

Note that any submersive harmonic PHWC map which satisfies (iii) from Proposition
3.1 will be critical point of the full Faddeev-Hopf functional (1.1) (i.e. for every value of
the coupling, α, not just the infinite coupling limit).

Corollary 3.1. A PHWC submersion that satisfies

∇dϕ(X, T (0,1)M) ⊆ ϕ−1T (1,0)N, ∀X ∈ Γ(H) (3.5)

is a critical point for E∞FH if and only if it has minimal fibres.

Proof. The condition (3.5) assures us that ∇dϕ(X, FY ) = −J∇dϕ(X, Y ) which implies
immediately the condition (iii) from Proposition 3.1.

On the other hand, as N is endowed with a Kähler structure, from the following easy
to check relation (true for all X, Y ∈ Γ(H)):

0 =
(
∇ϕ

XJ
)
dϕ(Y ) = dϕ ((∇XF )Y ) +∇dϕ(X, FY )− J∇dϕ(X, Y ), (3.6)

we can deduce that dϕ ((∇XF )Y ) + 2∇dϕ(X, FY ) = 0. In particular, we also have:
dϕ ((∇XF )X + (∇FXF )FX) = 0 and therefore the condition (i) from Proposition 3.1 is
also satisfied if and only if ϕ has minimal fibres. �

Notice that a map as above will satisfy (2.5) and will be (1, 1)-geodesic (see [4]).
As the strong coupling term of the Faddev model comprises fourth power derivative

terms, we expect some resemblance to the case of 4–energy. Let us recall that p–harmonic
maps are critical points for the p–energy Ep(ϕ) = 1

p

∫
M ‖dϕ‖pvg (see e.g. [16] and references

therein).
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Corollary 3.2. (i) A PHH submersion is a critical point for the Faddeev-Hopf functional
E∞FH if and only if divϕ∗h|H = 0.
(ii) A PHH submersion with gradH‖dϕ‖2 = 0 is a critical point of the Faddeev-Hopf
functional E∞FH if and only if it has minimal fibres. In this case it is moreover harmonic
and 4-harmonic.

Proof. By a similar computation as for the proof of Proposition 3.1, using (3.6) we can
check that:

(∇XΩ̂)(Y, Z) = − (∇Xϕ∗h) (Y, FZ)− ϕ∗h(Y, (∇XF )Z), ∀X, Y, Z ∈ Ker (F 2 + I).

Therefore:

δΩ̂(Z) = divϕ∗h(FZ) +
∑

j

[
ϕ∗h(Ej , (∇EjF )Z) + ϕ∗h(FEj , (∇FEjF )Z)

]
.

As our PHH hypothesis (i.e. F parallel in horizontal directions) assures the cancellation
of every term in the above sum, the conclusion follows.

For the second statement, use the fact that a PHH submersion is harmonic if and only
if it has minimal fibres and then take into account that a submersion is harmonic if and
only if its stress-energy tensor is divergence free: divSϕ = (1/2)‖dϕ‖2 − divϕ∗h = 0.

�

Example. (i.) A holomorphic submersion from a Kähler manifold (or a compact Vais-
man manifold) onto a Kähler manifold, which has constant energy density (in horizontal
directions), is a critical point of the full Faddeev-Hopf functional (1.1).

(ii.) A Boothby-Wang fibration of a compact, regular Sasakian (or just K-contact)
manifold over a Kähler (or just almost Kähler) manifold is a critical point of the full
Faddeev-Hopf functional (1.1) (on the total space we consider the metric g = ϕ∗h + η⊗ η
induced from the base, see [5]).

For semiconformal (HWC) particular case, a more precise statement can be made,
providing us with class of examples that extend [25, Examples 3.1, 3.3]:

Proposition 3.2. A semiconformal (HWC) submersion ϕ : (Mm, g) → (N2n, J, h) with
dilation λ is a critical point for the Faddeev-Hopf functional E∞FH if and only if:

(2n− 4)gradH(lnλ) + (m− 2n)µV = 0. (3.7)

that is, if and only if it is 4-harmonic (morphism, [16]).

Proof. Semiconformal submersions are in particular PHWC, so we always have an induced
metric almost f -structure, F , on M and, in addition:

FdivF = (2n− 2)gradH(lnλ) + (m− 2n)µV . (3.8)

As ϕ∗h|H×H = λ2g|H×H, in this case we shall have, for any Y , Z horizontal vector fields :

(∇XΩ̂)(Y, Z) = X(λ2)g(FY,Z) + λ2g((∇XF )Y, Z).

Then, taking the trace w.r.t. an adapted orthonormal frame, we obtain:

−δΩ̂(Z) = λ2g(FdivF − 2gradH(lnλ), FZ) (3.9)

Now taking into account also (3.8), the conclusion follows. �
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Corollary 3.3. (i). A horizontally homothetic submersion is a stationary point for the
full Faddeev-Hopf functional (1.1) if and only if it has minimal fibres.

(ii). A semiconformal submersion onto a four-manifold is a stationary point for the
full Faddeev-Hopf functional (1.1) if and only if it has minimal fibres.

3.1 Stability

According to [25, Corollary 4.9], the Hessian of a critical ϕ for the energy E∞FH is

Hessϕ(v, v) = ‖ϕ∗d(ıvΩ)‖2
L2 +

∫
M

Ω(v,∇ϕ
Zϕ

v)vg, ∀v ∈ Γ(ϕ−1TN)

where Zϕ = (δϕ∗Ω)].
Therefore a sufficient condition for a critical point of E∞FH to be (weakly) stable is

the second term of Hessϕ(v, v) to be nonnegative. In particular, if δϕ∗Ω(V ) = 0,∀V ∈
Ker dϕ, this second term will vanish. But for a PHWC submersion we can check that
(∇Xϕ∗Ω)(Y, V ) = −ϕ∗h(FY,∇XV ) and therefore

−δϕ∗Ω(V ) =
n∑

i=1

λ2
i g([Ei, FEi], V ), ∀V ∈ Ker dϕ,

where λ2
i are the nonzero eigenvalues of ϕ∗h with respect to g and {Ei, FEi} a frame of

horizontal eigenvector fields (which exists around almost any point of M , cf. [22]). We
can easily conclude that a critical PHWC submersion for E∞FH is (weakly) stable if any of
the following statements holds good:
(a) the horizontal distribution H is integrable;
(b) the induced f -structure on M satisfies

(∇XF )(X) + (∇FXF )(FX) = 0, ∀X ∈ Γ(H).

On the othe hand, as basic vector fields locally span the horizontal distribution of a
submersion ϕ, for any v ∈ Γ(ϕ−1TN), exists Xv local horizontal vector field on M such
that v = dϕ(Xv). In this case, as ∇ϕ

V dϕ(X) = dϕ([V,X]) we have

Ω(v,∇ϕ
V v) = ϕ∗h(FXv, [V,Xv]), ∀V ∈ Ker dϕ. (3.10)

If this term vanishes our submersive critical point will be stable.
Let us illustrate these situations with the following result (for the notions related to

contact geometry we refer to [5]).

Proposition 3.3. Let ϕ : (M2n+1, φ, ξ, η, g) → (N2n, J, h) be a (φ, J)-holomorphic, hor-
izontally homothetic submersion from an almost contact metric manifold to a (almost)
Kähler one. Then ϕ is a stable critical point for E∞FH in any of the following cases:
(i) (φ, ξ, η, g) is a nearly cosymplectic structure;
(ii) (φ, ξ, η, g) is a Kenmotsu structure;
(iii) (φ, ξ, η, g) is a Sasakian structure.
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Proof. For horizontally homothetic submersions Proposition 3.1 - (iii) always holds. In
all three cases φ is, in particular, a cosymplectic f -structure, so we can apply Proposition
3.1 (for φ = F ) and conclude that the map is critical.

Nearly cosymplectic structures are defined by (∇Xφ)X = 0, so the above (b) condition
is true, providing stability. For Kenmotsu manifolds, the contact distribution (which
coincides with H) is integrable, so the above (a) condition is true.

In the last case, as Lξdη = 0 and g(X, φY ) = dη(X, Y ), we can use (3.10) to show that
the second term of the Hessian is equal to zero. �

Notice that the almost contact structure on M could be seen as the induced f -structure
by ϕ, as a horizontally homothetic map is automatically PHWC (in fact it is moreover
PHH, as the target is supposed to be Kähler).

Corollary 3.4. Boothby-Wang fibrations considered in Example 3-(ii) (in particular the
Hopf fibration) are stable critical points for E∞FH .
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