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Abstract

The higher-power derivative terms involved in the Faddeev-Hopf and Skyrme energy
functionals correspond to oo—energy, proposed by Eells and Sampson in [6]. T present
here a detailed study of Euler-Lagrange equations associated to this energy and its
second variation. Geometrically interesting examples of (stable) critical points are
outlined.

1 Introduction

Common tools in quantum field theory, non-linear o-models are known in differential
geometry mainly through the problem of harmonic maps between Riemannian manifolds.
Namely a (smooth) mapping ¢ : (M, g) — (N, h) is harmonic if it is critical point for the
energy functional [6],

1
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a generalization of the kinetic energy of Classical Mechanics.

Less discussed from differential geometric point of view are Skyrme and Faddeev-Hopf
models, which are c—models with additional fourth-power derivative terms (for an overview
including recent progress concerning both models, see [10]).

The first one was proposed in the sixties by Tony Skyrme [16], to model baryons as
topological solitons of pion fields (meanwhile it has been shown to be the low energy
limit of QCD in the 1/N, expansion). So a baryon is represented by an energy minimis-
ing, topologically nontrivial map ¢ : R® — S§3 with {|z| — oo} +— 1, called skyrmion.
Their topological invariant called degree is identified with the baryon number. The static
(conveniently renormalized) Skyrme energy functional is

1 1
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This energy has a topological lower bound: Eskyrne(p) > 1272|degp).

In the second one, stated in 1975 by Ludvig Faddeev and Antti J. Niemi [7], the
configuration fields are mappings ¢ : S* — S? C R3, supposed among other things to
model the gluon flux tubes in hadrons. The static energy in this case is given by

SFaddeev(SD) = /CQHd(P”Q + C4<d§0 A d§07 30>2 (12)

Again the field configurations are indexed by an invariant, their Hopf number: Q €
73(S?) = Z ("topological charge”, ”linking number”) and the energy has a topological



2 R. Slobodeanu

bound: Eraggeev(p) > C - |Q|3/ 4. Although this model can be viewed as a constrained
variant of the Skyrme model, it exhibits important specific properties, e.g. it allows
knotted solitons 1.

Both models rise the same kind of topologically constrained minimization problem:
find out static energy minimizers among each topological class (i.e. of prescribed baryon
or Hopf number). We can give an unitary treatment for both if we take into account that
they are particular cases of the following energy-type functional:

1

it CXMN) =R Ena) = 3 [ (1961 + - 2(s)] v, (13)

where (M, g), (N,h) are (smooth) Riemannian manifolds, x > 0 is a coupling constant
and o2(¢p) is the second elementary symmetric function of the eigenvalues of ¢*h with
respect to g.

Even if the variational problem for the op,-energy has already been treated in [3, 5, 21],
very little is known about its solutions. From our point of view, the particularities of
p = 2 case are worth to be outlined for their differential geometric interest in its own,
if not for providing possible hints in the identification or description of solitons for the
original physical models.

The present generalization of (1.1) and (1.2) was proposed in [11, 13]. Other general-
izations of the Skyrme and Faddeev energies are discussed in [9, 18, 22].

2 Higher power energies and the Cauchy-Green tensor

Let ¢ : (M™,g) — (N", h) a smooth mapping between Riemannian manifolds. The so
called first fundamental form of ¢ is the symmetric, positive semidefinite 2-covariant
tensor field on M, defined as ¢*h, cf. [5]. Alternatively, using the musical isomorphism,
we can see it as the endomorphism C, = d¢’ o dy : TM — TM, where d¢' : TN — T'M
denote the adjoint of dp. When m = n = 3, this corresponds to the (right) Cauchy-
Green (strain) tensor of a deformation in non-linear elasticity (we shall maintain this
name for C, in the general case).

The Cauchy-Green tensor is always diagonalizable; let A} > .-+ > A2 > \2 | = ... =
A2, = 0 be its (real, non-negative) eigenvalues (where r := rank(dy) everywhere). Recall
that \; are also called principal distortion coefficients of .

The elementary symmetric functions in the eigenvalues of p*h represent a measure of
the geometrical distortion induced by the map 2. They are called principal invariants 3
of de:

o) =3 N o) = > NN o) = A2 A2,
=1

i<j=1

V. Arnold gives a nice interpretation of this energy: ”... the functional on such mappings that is a

(weighted) sum of two terms. The first term is the Dirichlet integral (of the squared derivative) of the map
. The second term is the energy of the corresponding vector field directed along the fibers of the map”.
2The first characterizes the behaviour of lengths ratio: ||de(X)||*> < o1]|X||?, the second of area elements
ratio: ||de(X) A dp(Y)]|? < 02||X AY]|? and so on.
3The reason behind this name is that two linear mappings are orthogonally equivalent if and only if
they have the same principal invariants.
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or, with alternative notations:
ai(p) =2e(p);  o2(p) = APdel®; i aule) = (),

where e(p) = %Hd(pHQ is the energy density of ¢ and v(p) = /det(p*h) is the volume
(density) of ¢, cf. [6, (3)].

Remark 2.1. At any point of M, there is an orthonormal basis {e;} of corresponding
eigenvectors for ¢*h at that point. Moreover, according to [14, Lemma 2.3], we have a
local orthonormal frame of eigenvector fields, around any point of a dense open subset of
M. In particular, for such local "eigenfields” we have: p*h(e;,e;) = 6;;A%, so {dp(e;)} are
orthogonal with norm ||de(e;)|| = A;.

Remark 2.2 (Classes of smooth mappings characterized by their distortion). (i) When
m >nand r € {0,n}, if /\% = ... = A2 = \?, we say that our map is horizontally weakly
conformal (HWC) or semiconformal, cf. [2, p. 46]. If moreover grad\ € Ker dy, then
the map is called horizontally homothetic (HH).

(i) When m < n and r € {0,m}, if A2 = ... = A2 = A2, we say that our map is
(weakly) conformal, cf. [2, p. 40]. If m = n this notion is equivalent to the above one.

(73¢) When the codomain is endowed with an almost Hermitian structure J, a class
of mappings that includes the above ones was defined by [dy o d¢t, J] = 0, cf. [12].
These maps are called pseudo horizontally weakly conformal maps (PHWC). For
the extension of this concept, the discussion on the corresponding notion of pseudo hor-
izontally homothetic (PHH) maps see [17] and the references therein. Here we point
out only that PHWC condition implies that the eigenvalues of ¢*h have multiplicity 2
(A2 = X3, A3 =A%, ... A2, = \2), the eigenspaces are invariant w.r.t. the induced metric
almost f—structure, F'¥, on the domain and that the PHH condition in a broader sense is
F?[(VxF?)(X)+ (Vpex F?)(F?X)] =0, VX € Ker ((F?)? +1).

According to [6], up to a half factor, we shall call o,—energy, the following functional

En) =5 [ aulolne 2.1)

Therefore, the generalized energy (1.3) reads

1
Enal9) = Enl0) +rEn(e) =5 [ | N300 (2.2

i<j

Let us recall another type of (higher power) energy-type functional that will be useful
for our further discussion. The p-energy of a (smooth) map is defined as:

1
&)= [ el
PJm
The corresponding Euler-Lagrange operator/equations are, cf. [19]

7p(p) = [[de P2 [7(¢) + (p — 2)dy(grad(In|de]))] = 0,
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where 7(p) := traceVdyp is the tension field of ¢ (i.e. the Euler-Lagrange operator asso-
ciated to &,, =: £).
In particular, for p = 4, we have ||d¢||? [7() + 2d¢(grad(In ||dep||))] = 0, or equivalently

e(p)7(p) + dp(grad(e(p)) = 0. (2.3)

Remark 2.3. It is easy to see that &,(¢) = 1 [,(ldell* — ll*h|*)vy = Ei(p) —
% i) v ng*h||2ug. In fact, the relation with 4-energy is more clear if we point out that,
according to Newton’s inequalities,

n—1

oy () < Ea(¢p)-

with equality if and only if \; = ... = A,. If in addition ¢ is of bounded dilation of order
K, we have also the reversed inequality

2

W&L(‘P) < &gy ().

3 Euler-Lagrange equations for o,—energy

Let {¢;} a (smooth) variation of ¢ with variation vector field v € T'(0~'T'N), i.e.

v(x) = %(ZC) eT

ot o ap(x)N7 Ve € M.

In this section, we are looking for critical points of oo—energy, i.e. mappings that satisfy
d

dtlo
Recall that to every v € T'(¢ !TN), we can associate a vector field on M, X, €

(Kerdy)*, defined by:

Ex, (1) = 0, for any variation. For simplicity I call these maps oo—critical.

9(X,,Y) = h(v,dp(Y)), VY eT(TM).

Remark 3.1. Denoting a,(Y,Z) = h(V{v,dp(2)),VY,Z € T'(TM) and div¥v :=
trace ,,, we can easily check that:

(i.) pn tzogoth(Y, Z)=o,(Y,Z)+ a(Z,Y);

(”) av(Yv Z) =g (VYXva Z) - h(?}, Vd(p(Y, Z));
(74i.) divPv = divX, — h(v, 7(p));

(iv.) ¢ is harmonic iff div¥v = divX,, Yv € (¢ !TN).
For further use let us denote by A, the (1,1)-tensor on M associated to ay, i.e. a,(Y,Z) =
g(AY, 7).
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We have

d 2 2
Ghenten =5 [ Zdt\ (e Plde(epl?) =5 [ 5757 2 2] (e ~ ldgi(enl)

- [ 3% {Z (V0. doler)) - h<vz1v,d¢<ei>>} vy
% k
= [ b0, ~20e()7(0) + diplarade(ovy

+ /M {h (v, EZ: A%Vdgp(ei, ei)> — EZ: Agg(vein, €z')} Vg.

Denote X = > A2g(Xy, e;)ei. Then:

div}? - Z)‘?Q(veinv ei) =9 (va Z lek(/\%) + Z()\ZZ - Az).g(veiezﬁ ek)] ek) (3 1)
=h(v, de([dive"h]F)).
Notice that [dive*h]f = divC, and trace(Vdep) o C, = 3, A2Vdep(e;, €;).

Definition 3.1. We call oo—tension field of the map ¢ the following section of of the
pull-back bundle ¢~ 'TN:

T () = 2[e()7(0) + dip(grade(yp))] — trace(Vdyp) o Cp — dp(divCy).
We have obtained the following

Proposition 3.1 (The first variation formula).

d
il Esy (1) / h(v, 7o, (@

In particular, a map @ is oo —critical if it satisfies the following Euler-Lagrange equations
2le(¢)7(p) + de(grade(yp))] — trace(Vdy) o C, — dp(divC,) = 0. (3.2)
The following corollary is to be compared with the results in [17].

Corollary 3.1. (i) Any totally geodesic map is oo—critical.

(ii) A harmonic map will be (also) oo—critical if and only if:
de(grade(y Z)\QVdgo €i,€;). (3.3)
(7i1) A HC submersion is oa—critical if and only if:

(n — 4)grad™ (In\) + (m —n)u¥ =0, (3.4)

that is if and only if it is 4-harmonic.
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(1i1") A HH submersion is oy—critical if and only if it has minimal fibres.

(1it") A HC submersion onto a four-manifold is oy—critical if and only if it has
minimal fibres.

(iv) A PHH submersion with minimal fibres is oo—critical if and only if it has
constant energy density, e(p), along horizontal directions.

Proof. (i) By definition, a totally geodesic map satisfies Vdep = 0. In this case it is
known that ¢*h is parallel and its eigenvalues are constant. Consequently every term in
(3.2) cancels.

(73) Recall that, for any smooth map we have the identity (cf. [2, Lemma 3.4.5]):
divS(p) = de(yp) — divp™h = —h(7(¢), dy), (3.5)

where S(¢) := e(p)g — @*h is the stress-energy tensor of the map.
In particular, for a harmonic map we have 7(¢) = 0, so dy(grade(y)) = dp(divC,),
relation that simplifies (3.2) to (3.3).

(44i) For a HC submersion we have Cy|y; = A?Id (where ‘H is the horizontal distribution).
So the terms involving the Cauchy-Green tensor is (3.2) are equal to
trace(Vde) o Cy, + dip(divC,) = traceV(dp o Cy) = A27(p) + dyp(gradr?).
Recall that for HC submersions (of dilation \) the tension field is given by [2, Prop. 4.5.3]:
7(p) = —dp ((n — 2)gradIn A + (m — n)u") .

Replacing the two above identities in (3.2) and taking into account that e(¢) = (n/2)\?
we get the equation (3.4). Statements (i7i') and (iii”) are obvious consequences of this
equation.

(iv) PHH submersions with minimal fibres are, in particular, harmonic maps. As for any
PHWC mapping the eigenvalues of ¢*h have multiplicity equal to 2 and ¢*h is F-invariant,
according to (i7) such a map must satisfy:

de(grade(p)) = Z )\?[Vdgp(ei, ei) + Vdp(Fe;, Fe;).

(2

But PHH hypothesis assures precisely that Vdp(X, X)+ Vdp(FX, FX) =0,VX € I'(H).
Then our conclusion easily follows. |

Remark 3.2. The Euler-Lagrange operator of &, that has already been derived in [21]:

Top () = traceV(dy o xp-1(9)),

where x,—1(p) is the Newton tensor. In p = 2 case, x1(p) = 2e(p)Idrp — dp' o dp and
then we can obtain easily the equation (3.2). Nevertheless, in this particular case, I have
prefered to derive the first variation ab initio, for the sake of completeness (as the reader
access to the reference [21] might be difficult).
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4 Weak o,-Stability

Let {4t} a (smooth) two-parameter variation of ¢ with variation vector fields v,w €
L(p 'TN), ie.

’U(l‘) — 8@@5

8<Pt s
= : M.
5 (@ ‘(t,s):(0,0)7 w(x) (x) Vo €

0s (t,5)=(0,0)’

We ask when the following bilinear function is positive semi-definite for a oo-critical
mapping ¢, which will be consequently called stable critical point:
82
Hess?? (v, w) = ——&,
2(0,0) = 2 Eanl1)

(t,)=(0,0)

Let us now recall some standard notations: (-,-) is the metric induced by the base man-
ifold metric on various tensor bundles on it (and |-| is the corresponding norm); Ric? is the
fiberwise linear bundle map on ¢ !TN defined by Ric?(v) = > 12 RN (v,dp(e;))dp(e;);
(V¥)? is the second order operator on I'(¢ T N) defined as [(V¥)?0](X,Y) = V4 Viv —
Véxyv; the rough Laplacian along ¢ is A¥ = trace(V¥)? and on compactly supported sec-
tions has the property: [,, hW(A%v,v)vg = — [}, > M(VEv, VEv)vy = — [, V¥, VP0)r,.

Proposition 4.1 (The second variation formula).

82
%g@ (SOt,s)

o 0):2/ {div¥v - divPw + e(¢) (V¥v, V¥w) — h(Ric¥v, w)]} v,
) M
+ / h (w, 2trace(Vdy) o A, + trace[(V?)?v + RY (v,dp)dy] o C,) vy
M
+ / { X (divXy) + h(trace(V?)?v + Ric¥v, dp(Xy)) } vy
M
¢ ¢
+ /M {—h (VXWT(cp), v) +h (w, Vdivq,v) } Vg
(4.1)

Proof. We have:

s o o
a0 == [ {1 (Vhgg o))+ (G Thanten))

where 75,(¢) = 74(p) — trace(Vdy) o C, — dp(divCy) is the Euler-Lagrange operator
calculated in the previous section (74(-) is the 4-tension field, cf. Remark 2.1).

The first line in (4.1) is derived from 74 (¢ s) term, cf. [19] (for a detailed proof see [1]).

Let us derive the other two terms. The variation of the term trace(Vdy) o C, gives us:

0d

b (G Vo ldeeatedl? - Vaguatesen] ) |

20, (€4, €i)h(w, Vdp(ei, e)) + h (w, Z )\? [(V‘P)zheiv + RN(U, dg@(eﬁ)dgp(eﬁ]) .

(2
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The variation of the term dy(divC,) gives us:
0P
(G Vo let e aonaten )| o=

0P
h <8 \ V5o [ei(e(@r,s)) + h(T(prs), dpr s(e)] d@t,s(%‘)) ‘(t,s):(0,0):

e; [divXy, — h(7(p),v)] h(w,do(e;)) + h(w, V7 v) + h((V¥)*0 + Ric®v, dp(e;))h(w, dp(e;))

grad™e(p)"
+ h(7(p), ijv)h(w,dgo(ej)) — h(w, v[de( S v) =

Xou(divX,) + hltrace(V#)% + Ric?, dg(X,)) — h (V5 7(0).0) + b (w0, 95 pv)
where we have used again (3.5). [ |

Remark 4.1. Another version of the second variation formula for oo—energy can be ob-
tained from the general formula derived in [21, p. 37], which has the advantage of revelat-
ing the associated o,~Jacobi operator. Nevertheless one of the terms is rather difficult to
handle in general, so we shall work with the above formula which has more explicit terms.

Let us notice that, according to the Remark 3.1, we have
divPudiviw =[divX, — h(v, 7(¢))][divXy — h(w, 7(@))]
=divX,divXy + h(v, 7(p))h(w, 7(p)) — divX,h(w, T(¢ )) — divXyh(v, 7(p))
=divX,divXy + h(v, () h(w, () + H(VE w+ V5 0, 7(p))
+h (V§v7(¢), w) +h (Vin@p), v) + divergence terms

~— —

Applying the general formula div(fX) = X (f)+ fdivX, we get X (divY)+divXdivY =
div((divY)X), so on a closed Riemannian manifold (M, g), for any two vector fields X
and Y, the following identity holds

/M (X (divY) + divXdivY] v, = 0.

Therefore, using the above observations, we can rewrite (4.1) in a different form. As
the simplifications are not enlightening in the general case, we shall apply them only in
particular situations, as we shall see below.

Let us start with a particularly important case, the one of harmonic maps that are
also og—critical (so they are critical points for the full energy (1.3)). When M supports
a transitive action of R, then by a Derrick-type argument [4], all possible stable critical
solutions for the full energy (1.3) must be harmonic and oo—critical.

Corollary 4.1 (o0o—Hessian of harmonic oo—critical mappings).
Hess?? (v,v) = /M {2e(y) [|V‘pv\2 — Ric?(v,v)] + (divXy) }1/9
+ / h (v, 2trace(Vdy) o A, + trace[(V?)?v + RY (v, dgp)dy] o Cs) vg
M

+ / {h (trace(V¥®)?v + Ric?v, dp(X,)) + h (w, Vive v) } Vg.
M ®
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(4.2)

If moreover e(y) is constant, the last term vanishes.

Let us now particularize the above result to the most simple case, the one of harmonic
horizontally homothetic (HH) maps, i.e. the dilation A is constant in horizontal directions
and fibres are minimal.

Corollary 4.2 (oco—Hessian of harmonic HH mappings).

Hess?? (v,v) = /M {(n —2)X\* [|[V*v]* = h(RicPv,v)] + (divX,)?} vg. (4.3)
In particular, any harmonic HH submersion to a surface is a weakly stable oo—critical
point.
Example. The Hopf map S? — S? is a (weakly) stable critical point for the strong
coupling limit of the Faddeev-Hopf model (as proved in [18, Theorem 5.2]).

In the end of this section, let us consider the stability of oo—critical mappings given
by Corollary 3.1(iv) which could be related to the rational map ansatz [8]. To facilitate
the exposition consider the simpler case of holomorphic maps between compact Kéhler
manifolds, ¢ : (M, J,g) — (N, JV,h) (which are in particular PHH maps).

Recall that, in this case, we can define the following connexion in the pull-back bundle,
cf. [20]:

D9u(X) = V90— VNV, VX e T(TM),

that has the immediate property D¥v(JX) + JVD%v(X) =0, VX.
We can check that:

(V)2 0+ (V) ey ge, v + BY (v, dg(er))dip(er) + RN (v, dp(Jey))dp(Jer) =
gN (vfkwv(ek) + V5, D%0(Jer) = V8, o, Jek@sov) .
From this identity we can deduce:
h (V)2 er0 + (V) e, ge,v + BY (v, dp(er))dep(er) + RY (v, dp(Jey))dp(Tey), w) =

— h(D%v(er), D%w(er)) — [9(Ve, X0, ex) + 9(V e, Xo, Jek)],
(4.4)

where X is defined by h (D%v(Y), JNw) := g(Xo,Y), VY.

Remark 4.2. Recall that the Hessian of a harmonic map, for the (0;-) energy, is given
by (see e.g. [20], [2, p. 92]):

Hess, (v, w) = — /M h (trace[(V“’)Qv + RN (v, dp)dy], w) vy = /M h(Jp(v),w) vg.

For a holomorphic map between compact Kéhler manifolds, taking the sum in (4.4) gives
us:

h (trace[(V?)?v + RN (v, dp)dy], v) = —%]CD‘PUF —divXy,
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where X is defined by h (D¥v(Y),JNv) = ¢(X;1,Y), VY. Therefore Hess,(v,v) =
5 oy | ©?v[?vy which gives us the stability (as harmonic maps) of holomorphic maps be-
tween compact Kahler manifolds, an infinitesimal version of a classical Lichnerowicz result
[20].

Now suppose in addition that a holomorphic map between compact Kéahler manifolds
has grade(yp) € Kerdp. Then it becomes a ogo—critical map. By standard techniques, using
(4.4) and a trick similar to (3.1), we obtain

Corollary 4.3 (oco—Hessian of holomorphic oy—critical maps between Kéhler manifolds).

(0.2 dp(X,)

1 1
Hess7? (v, v) :/ {(diVXv)Q + e(p)|D%v|* — 5(@”@,@‘% o Cy) — B
M

©

1 /M {2 ; h (JND%v(er), dp(er)) h (v, Vdep(er, €k))} Vg,
(4.5)

where (D¥v,D%v o Cy) =23, \2||D%v(ex)||®. In particular, a holomorphic map between
compact Kdhler manifolds with grade(y) € Kerdy is weakly stable under variations that
are holomorphic up to first order (i.e. D%v =0).

We can check that for the last term we can also use:
2h (v, Vdp(er, er)) = g (JDX,(ex),ex) — h (JNQWU(ek),dcp(ek)) and
D¥dp(Xy)(Y) = de(DX,(Y)), VY, where © := Didnr

5 Full generalized Faddeev-Skyrme energy

In this section we shall discuss the full energy (1.3).
From the above discussion, it is clear that a map ¢ is oy o—critical if it satisfies the
following Euler-Lagrange equations

[2e(p) + 1]7(p) + 2dp(grade(y)) — trace(Vdy) o C, — dp(divCy,) = 0.

Harmonic HH mappings are clearly the simplest examples of oy o—critical points. From
(4.3) we can deduce that the full o1 o-Hessian on harmonic HH maps is given by

Hess,"* (v,v) = /M {1+ k(n —2)A?) [|[V#0]* — h(Ric¥v,v)] + k(divX,y)* vy (5.1)

5.1 The Hopf map

In [15] it was proved the fact that the Hopf map from S? into S? minimizes the p-energy in
its homotopy class for p > 4 and that it remains true locally for 3 < p < 4. Consequently,
for the Hopf map which is obviously 4-harmonic, we have:

Hessi4 (v,v) = 2/ {|IV#]? = h(Ric*v,v) + (divX,)?*} vy > 0,
M
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where we have used the second variation formula for 4-harmonic maps [19] and the fact
that the Hopf map can be regarded as a Riemannian submersion (choosing S? to be of
radius 1/2).

But, for the Hopf map formula (5.1) gives us:

Hessy'"* (v, v) :/ {|V‘pv|2 — h(Ric¥v,v) + k(divX,) }ug
M
:/ {|V¢U\2 — h(Ric¥v,v) + (div.X,) }Vg / Kk — 1)(divX,)?y,
M
which is clearly positive if kK > 1. Therefore the Hopf map is a stable critical point for
the full o7 o—energy if K > 1 (as it has been already established in [18, Theorem 5.3] by

computing the spectrum of the Jacobi operator). Notice that in this case o 2-energy
coincides with (1.2) and with the energy introduced in [18].

5.2 Homothetic local diffeomorphisms

Let us particularize further to the case of HH maps between spaces of equal dimensions
m =n (if n > 3 they are homothetic local diffeomorphisms, cf. [2, Theorem 11.4.6]). As
v = A"2dp(X,), we can check that:

IV¥#0|? — h(Rictv,v) = A% ([VX,|* — Ric™ (X,, X)) .

Therefore, in this case we have:

Hessg,"” (v,v) = /M {2+ k(n—2)) [[VX,]? — Ric™ (Xy, X)] + r(divXy)?} v,
Employing now the general Yano identity [23]

/M {|VX|2 — Ric(X, X) + (divX)? — ;|£Xg|2} vy =0, (5.2)

we get the following expression

o -2 -2
Hess"? (v, v) :/ {WMXUQP — A2+ (n— 3)n)(diva)2} Vg
M

Notice now that, according to Newton inequality

2
1 2 2
-|L 2>2 ve‘Xv i2>* ve'Xvai = —(di Xv2
jexolt > 2Y oVt [ S| = 2

where equality is reached when X, is a conformal vector field.
Therefore our homothetic map (between equidimensional manifolds) is (weakly) stable
critical point for the full generalized Skyrme energy, i.e. Hessg"?(v,v) > 0, provided that:

204 (-2 2 A 4 (- 3
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This inequality can be satisfied (by non-constant maps) only when n = 2 (trivially) and
n = 3. In the latter case we get the condition:
1
A > ’ (5.3)
2K
that coincides with the condition found in [11, 13] (for k = 1). Recall that when m =n =3
and k = 1, it has been proved [11] that if A > 1, then diffeomorphic homotheties are, up to
isometries, the only absolute minimizers of the Skyrme energy among all maps of a given
degree.

5.3 Constrained stability

The original Skyrme model (1.1) requires solutions of a constrained variational problem:
we must search stable critical solutions of fized degree (see [13]).

Remark 5.1. Recall that the degree of a map between closed Riemannian manifolds
w: (M"™ g)— (N" h) can be computed as:

fM SO*(Vh).

degy = oIy

Moreover, when N = S™, Hopf theorem tells us that two smooth mappings have the same
degree if and only if they are homotopic.

Let us consider again the case of harmonic HH mappings. The condition (6.1) is trivially
satisfied, so the volume is preserved up to first order by any variation of ¢. Using (6.2), we
can deduce that the (constrained) o1 o-Hessian of a harmonic HH map, w.r.t. variations
that preserve V() (or equivalently, the degree) up to second order, is given by

Hess,, (v, v) = /M {;(AQ +(n—2)r) > [(Lx,9)(eie)]* — (A2 + (n— 3)&)(divXU)2}

7

2

2/ {(A‘Q +(n—2)k)— A2+ (n— 3)@} (divXy)?y,.
M Ln

So, in order to have constrained stability for such maps (i.e. I:IEESZI’Q (v,v) > 0), we are

leaded to the same condition as in the non-constrained case, namely (5.3) for n = 3 (and
no condition for n = 2).

6 Appendix - Variations of the volume functional

The volume functional on (smooth) maps ¢ : (M™,g) — (N", h) with M compact is given
by:

Vie) = /M Vdet(p*h) vy = /M AMAg - Ay Vg

This quantity is non-zero at points where ¢ is an immersion.

Vg
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Let us see when this quantity is preserved up to first order under a variation {¢;} with
variation vector v.

SOt /Zav 6“61 H)\ v,.

J#

If ¢ is a (weakly) conformal map, then \;’s are all equal (\; = \,Vi) and we get:

Glven = [ S anene) vy = [ i, — b, ()] v

M
- / h (v, dp(gradA™ %) + A" 27(¢)) v,
M

We can interpret the above identity either as a first variation formula or as follows:

A variation {p;} of a weakly conformal map preserves the volume V' (¢) up to
first order if and only if its variation vector field satisfies:

v L (m—2)dp(gradln\) + 7(p). (6.1)

Now let us see when the volume is preserved up to second order:

der(e;), der(e;)

*
ih(ei, ei) ki i<j ki j

By simple derivation the first right hand term takes the form:

‘ V?/dtd@t(ei%d@t(@i)) 2 [HV v]|2 + (e, e) — RN (v, d(p(ei),dcp(ei),v)] — (e, €;)?
dtlo Sp%"h(ei, el-) )\? ’

where u = Vf/dtdgot(%)b.
Again, if ¢ is a (weakly) conformal map (A; = A, Vi), then the above formula becomes:

d2
@‘OV(%) :/ AL N2 [|V¢U\2 + divPu — Ric? (v, v) Zav €i,€;) 24 QZQU ei, i) (€j, ;)
M 1<j

:/ Amt {/\2 UV"’JUP + div¥u — Ric? (v, v)] + (divFv)? — 2 Z av(er ei)Q} N
M

i

If, in addition, A is constant (¢ is harmonic) the above relation simplifies to

m—4 2 2 : : 2 1 2
dt2‘ V (,Dt =A /M {/\ [|V¢U| - Rlcw(v,l})] + (leXU) ~3 Z[EX” (ei,ei)] Vg.

i
Once more we can interpret the above relations either as second variation formulae or
as follows:



14

R. Slobodeanu

A variation {¢;} of a homothetic map preserves the volume V' (¢) up to second
order if and only if its variation vector field satisfies:

/M {/\2 [IV90l? - Ric? (v, v)] + (divX,)? - %Z[(ﬁxvg)(ei, ei)]Q} —

%

(6.2)
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