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Abstract

For a given skew symmetric real n × n matrix N , the bracket [X,Y ]N =
XNY − Y NX defines a Lie algebra structure on the space Sym(n,N) of sym-
metric n×n real matrices and hence a corresponding Lie-Poisson structure. The
purpose of this paper is to investigate the geometry, integrability, and lineariz-
ability of the Hamiltonian system Ẋ = [X2, N ], or equivalently in Lax form, the
equation Ẋ = [X,XN +NX], on this space along with a detailed study of the
Poisson geometry itself. Integrability on a generic symplectic leaf of Sym(n,N)
with the Lie-Poisson structure is proved if N has distinct eigenvalues. This is
established by finding another compatible Poisson structure.

If N is invertible several remarkable identifications can be implemented.
First, (Sym(n,N), [·, ·]) is Lie algebra isomorphic with the symplectic Lie alge-
bra sp(n,N−1) associated to the symplectic form on Rn given by N−1. In this
case, the system is the reduction of geodesic flow of the left invariant Frobenius
metric on the underlying symplectic group Sp(n,N−1). Second, the trace of
the product of matrices defines a non-invariant non-degenerate inner product
on Sym(n,N) which identifies it with its dual. Therefore Sym(n,N) carries a
natural Lie-Poisson structure as well as a compatible “frozen bracket” struc-
ture. The Poisson diffeomorphism from Sym(n,N) to sp(n,N−1) maps our
system to a Mischenko-Fomenko system, thereby providing another proof of its
integrability if N is invertible with distinct eigenvalues. Third, there is a sec-
ond ad-invariant inner product on Sym(n,N); using it to identify Sym(n,N)
with itself and composing it with the dual of the Lie algebra isomorphism
with sp(n,N−1), our system becomes a Mischenko-Fomenko system directly on
Sym(n,N).

If N is invertible and has distinct eigenvalues, it is shown that this geodesic
flow on Sym(n,N) is linearized on the Prym subvariety of the Jacobian of
the spectral curve associated to a Lax pair formulation with parameter of the
system. If, on the other hand, N has nullity one and distinct eigenvalues, in
spite of the fact that the system is completely integrable, it is shown that the
flow does not linearize on the Jacobian of the spectral curve but that a complex
generalization does linearize on the generalized Jacobian of the spectral curve.
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1 Introduction

The Problem and Discussion of the Results. Fix N ∈ so(n), the space of
skew symmetric n × n matrices, also regarded as the Lie algebra of SO(n), the n-
dimensional proper orthogonal group. This paper continues the analysis, begun in
Bloch and Iserles [2006], of the following set of ordinary differential equations on
Sym(n), the linear space of n× n symmetric matrices:

Ẋ = [X2, N ]. (1.1)

Here, X ∈ Sym(n), Ẋ denotes the time derivative, and initial conditions are denoted
X(0) = X0 ∈ Sym(n). It is easy to check that [X2, N ] ∈ Sym(n), so that if the
initial condition is in Sym(n) then X(t) ∈ Sym(n) for all t. As will be seen shortly,
this system is Hamiltonian and, despite its quadratic dependence on X, conservation
of energy guarantees that solutions of (1.1) exist for all t ∈ R.

Because of the obvious identity
[
X2, N

]
= [X,XN +NX] = X2N − NX2,

equation (1.1) may be rewritten in the Lax form

Ẋ = [X,XN +NX], (1.2)

again with initial conditions X(0) = X0 ∈ Sym(n).1

Define the N -bracket by [X,Y ]N := XNY − Y NX. It is easy to check that
this makes Sym(n) into a Lie algebra and with this structure it will be denoted
Sym(n,N). The structure of this Lie algebra is completely analyzed in the present
paper. Using the trace inner product, identify Sym(n,N) with its dual and endow
it with the associated Lie-Poisson structure. As will be done below, it is straightfor-
ward to show that the system (1.1) is Hamiltonian with respect to this Lie-Poisson
structure with Hamiltonian equal the quadratic form defined by the Frobenius met-
ric. Interestingly, the system is also Hamiltonian with respect to a compatible
“frozen” Poisson structure; this provides a bi-Hamiltonian structure for equation
(1.1). We study the Poisson geometry on Sym(n,N) for both Poisson structures
and, in particular, determine the generic leaves and the Casimir functions of both
Poisson structures relative to which the system (1.1) is bi-Hamiltonian. The Poisson
geometry in the case N is not invertible turns out to be particularly rich.

A key result of the paper is that if N has distinct eigenvalues (one of which
could be zero), this system is integrable on the generic symplectic leaf of Sym(n,N)

1Integrable equations that bear a formal resemblance to equation (1.1); that is, to (1.2), in the
context of free associative algebras are given in Mikhailov and Sokolov [2000] and Odesskii and
Sokolov [2006].
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(of either the Lie-Poisson or the frozen Lie-Poisson structures). The proof makes
use of the Lax pair with parameter found in Bloch and Iserles [2006] to find a class
of integrals that, as we show using the preceding bi-Hamiltonian structure together
with a technique inspired by Morosi and Pizzocchero [1996], are in involution.2

Related work on bi-Hamiltonian structures may be found in Meshcheryakov [1983]
and Bolsinov [1992]. Independence is proved directly.

We show that if N is invertible, the Lie algebra Sym(n,N) is isomorphic to
the symplectic Lie algebra sp(n,N−1), where the symplectic form on Rn is given by
N−1. Thus, in this case, the system (1.1) is Lie-Poisson on (the dual of) sp(n,N−1),
and so the system is the (Euler-Poincaré or Lie-Poisson) reduction of the geodesic
flow on the underlying symplectic group, denoted by Sp(n,N−1), relative to the
Frobenius metric.

IfN is invertible there is a Poisson diffeomorphism from sp(n,N−1) to Sym(n,N),
the inverse of which maps our system to a Mischenko-Fomenko system (see Mis-
chenko and Fomenko [1976, 1978, 1979])3, thereby providing another proof of in-
tegrability in the case that N is invertible with distinct eigenvalues. In addition,
by identifying the symmetric matrices with themselves by an an ad-invariant inner
product if N is invertible (as opposed to the standard identification by the trace of
the product used before which is valid in general, even if N is not invertible), our
flow can be seen as a Mischenko-Fomenko flow on its dual. A byproduct of our work
is thus bi-Hamiltonian structure for the associated Mischenko-Fomenko system on
sp(n,N−1). Bi-Hamiltonian structures for Mischenko-Fomenko systems were first
discussed in Meshcheryakov [1983], Bolsinov [1992], and later in Morosi and Pizzoc-
chero [1996]. We also note that the sequence of integrals we produce by our Lax
pair with parameter method on Sym(n,N) is not produced by shifting the argu-
ments in Casimir functions. Relative to the Lie-Poisson structure on Sym(n,N),
our method for analyzing this system appears to be fundamentally different from
completely integrable systems either of rigid body or Toda type (on symmetric ma-
trices) and none of the standard involution theorems (see e.g. Ratiu [1980]) seem
to be applicable.

Since the system (1.1) is integrable and its integrals are polynomials, one would
expect that this system may be algebraically completely integrable (as defined, for
example, in Adler, van Moerbeke, and Vanhaecke [2004]). It turns out that the
situation is quite involved.

If N is invertible and has all eigenvalues distinct, then the linearization criterion
in Adler, van Moerbeke, and Vanhaecke [2004] or Griffiths [1985] applies and the
system is linearizable on the Jacobian of the associated spectral curve. In spite
of this fact, we could not prove that the system is algebraically completely inte-
grable. However, the spectral curve has an involution, and thus the system is in fact
linearizable on a Prym variety.

If N has odd size, distinct eigenvalues, and nullity one, we show by the concrete
2A related result on bi-Hamiltonian structures for rigid body type equations with a parameter

can be found in Bolsinov and Borisov [2002]. Note that the bi-Hamiltonian structure in the present
paper is for the equations without parameter, which is more relevant for the present study.

3We thank A. Bolsinov for this observation and the referee for a related observation.
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study of the case n = 5 that the system (1.1) is not linearizable on the Jacobian
of the spectral curve. On the other hand, it was already shown that the system
is integrable, so this situation is an example of an integrable system all of whose
integrals are polynomials but whose flow does not linearize on the Jacobian of the
spectral curve.

However, if N has distinct eigenvalues and X ∈ gln(C), it is proven that the
system is a generalized algebraic completely integrable system by linearizing it on the
generalized Jacobian of the spectral curve. Related work on complex integrability
(rather than generalized algebraic integrability) may be found in Mumford [1984],
Vanhaecke [1998, 2001].

The Structure of the Paper. In §2, the Lie algebra structure on the space of
symmetric matrices induced by N is introduced and in the case in which N is in-
vertible, the isomorphism with sp(n,N−1) is set up. In §3, two compatible Poisson
structures are defined and the associated bi-Hamiltonian structure is analyzed, and
the symplectic leaves and Casimir functions of both Poisson structures are deter-
mined. In §4 the system (1.1) is shown not to directly lie in this family. However, the
dual of a Lie algebra isomorphism defines a Poisson isomorphism from sp(n,N−1)
to Sym(n,N); its inverse maps (1.1) to a Mischenko-Fomenko system on sp(n,N−1)
if N has distinct eigenvalues. This fact provides a proof of complete integrability of
(1.1) if N is invertible with distinct eigenvalues. §5 returns to the system (1.1) on
Sym(n,N), presents the Lax pair with parameter, and finds a new family of func-
tions containing the right number of functionally independent integrals of motion;
this set of functions is thus a candidate for the Liouville integrals. In §6 involutivity
of these integrals is shown using the bi-Hamiltonian structure and §7 proves the in-
dependence of these functions provided that N has distinct eigenvalues and is either
invertible or has nullity one. Finally, §8 is devoted to the proofs of the linearization
statements given above.

2 The Lie Algebra and the Euler–Poincaré Form

Regarding N as a Poisson tensor on Rn, the bracket of two functions f, g is defined
in the standard way as

{f, g}N = (∇f)TN∇g. (2.1)

The Hamiltonian vector field associated with a function h (with the convention that
ḟ(z) = Xh(z) · ∇f(z) = {f, h} (z)) is easily checked to be given by

Xh(z) = N∇h(z). (2.2)

Quadratic Functions. For each X ∈ Sym(n), define the quadratic Hamiltonian
QX by

QX(z) :=
1
2
zTXz, z ∈ Rn.

Let Q := {QX | X ∈ Sym(n)} be the vector space of all such functions. Note that
the map Q : X ∈ Sym(n) 7→ QX ∈ Q is an isomorphism. Using (2.2) it follows that
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the Hamiltonian vector field of QX has the form

XQX
(z) = NXz. (2.3)

The Poisson bracket of two such quadratic functions is easy to work out.

Lemma 2.1. For X,Y ∈ Sym(n), we have

{QX , QY }N = Q[X,Y ]N , (2.4)

where, as earlier, [X,Y ]N := XNY − Y NX ∈ Sym(n). In addition, Sym(n) is a
Lie algebra relative to the Lie bracket [·, ·]N and with this structure will be denoted
Sym(n,N). Therefore, Q : X ∈ (Sym(n,N), [·, ·]N ) 7→ QX ∈ (Q, {·, ·}N ) is a Lie
algebra isomorphism.

Proof. Using (2.1), we have

{QX , QY }N (z) = (∇QX) (z)TN (∇QY ) (z) = (Xz)T NY z = zTXNY z

=
1
2
zT (XNY − Y NX) z = Q[X,Y ]N (z).

Recall that the notation QV is reserved only for symmetric matrices V . Since
X,Y ∈ Sym(n,N) implies that [X,Y ]N = XNY −Y NX ∈ Sym(n,N) we can write
Q[X,Y ]N in the preceding equation.

The bracket [·, ·]N on Sym(n,N) is clearly bilinear and antisymmetric. The
Jacobi identity follows by a straightforward direct verification. �

It is a general fact that Hamiltonian vector fields and Poisson brackets are related
by

[Xf , Xg] = −X{f,g}, (2.5)

where the bracket on the left hand side is the Jacobi-Lie bracket. Thus, it is natural
to look at the corresponding algebra of Hamiltonian vector fields on the Poisson
manifold (Rn, {·, ·}N ) associated to quadratic Hamiltonians. If we take f = QX and
g = QY , with Xf = NX and Xg = NY , and recall that the Jacobi-Lie bracket
of linear vector fields is the negative of the commutator of the associated matrices,
then we have the following result, which can also be verified directly.

Proposition 2.2. Equations (2.4) and (2.5) imply

N [X,Y ]N = [NX,NY ] . (2.6)

Letting LH denote the Lie algebra of linear Hamiltonian vector fields on Rn

relative to the commutator bracket of matrices, (2.6) states that the map

X ∈ (Sym(n,N), [·, ·]N ) 7→ NX ∈ (LH, [·, ·])

is a homomorphism of Lie algebras4.
4We thank Gopal Prasad for suggesting isomorphisms of this type; they are closely related to

well-known properties of linear Hamiltonian vector fields, as in Marsden and Ratiu [1994], Propo-
sition 2.7.8.
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Invertible Case. If N is invertible, then this homomorphism is an isomorphism.
In addition, the non-degeneracy of N implies that n is even and that Rn is a
symplectic vector space relative to the symplectic form defined by N−1, that is,
(u,v) 7→ u ·N−1v for u,v ∈ Rn. Therefore, the Lie algebra (LH, [·, ·]) is isomorphic
to the Lie algebra sp(n,N−1) of linear infinitesimally symplectic maps of Rn relative
to the symplectic form defined above by N−1. Recall that elements Z ∈ sp(n,N−1)
are characterized by the identity ZTN−1 + N−1Z = 0 which is equivalent to the
statement that N−1Z is a symmetric n × n matrix. Thus NX ∈ sp(n,N−1) is
equivalent to X = XT , as expected.

We summarize these considerations in the following statement that can also be
found in Trofimov and Fomenko [1995] at the end of remark 22 in §44 page 245.

Proposition 2.3. Let N ∈ so(n). The map Q : X ∈ (Sym(n,N), [·, ·]N ) 7→ QX ∈
(Q, {·, ·}N ) is a Lie algebra isomorphism. The map Φ : X ∈ (Sym(n,N), [·, ·]N ) 7→
NX ∈ (LH, [·, ·]) is a Lie algebra homomorphism and if N is invertible it induces
an isomorphism of (Sym(n,N), [·, ·]N ) with sp(n,N−1).

Noninvertible Case. Assume that N is a general skew-symmetric matrix, not
necessarily invertible. We shall determine now the structure of the Lie algebra
(Sym(n,N), [·, ·]N ). The point of departure is the fact that if N is non-degenerate,
then X ∈ (Sym(n,N), [·, ·]N ) 7→ NX ∈ (LH, [·, ·]) = (sp(n,N−1), [·, ·]) is a Lie
algebra isomorphism. Recall that if Rn has an inner product, which we shall take in
what follows to be the usual dot product associated to the basis in which the skew-
symmetric matrix N is given, and L : Rn → Rn is a linear map, then Rn decomposes
orthogonally as Rn = imLT ⊕ kerL. Taking L = N in this statement and recalling
that NT = −N , we get the orthogonal decomposition Rn = imN ⊕kerN . Let 2p =
rankN and d := n−2p. Then N̄ := N |imN : imN → imN defines a non-degenerate
skew symmetric bilinear form and, by the previous proposition, (Sym(2p), [·, ·]N̄ ) is
isomorphic as a Lie algebra to (sp(2p, N̄−1), [·, ·]). In this direct sum decomposition
of Rn, the skew- symmetric matrix N takes the form

N =
[
N̄ 0
0 0

]
,

where N̄ is a (2p)× (2p) skew-symmetric non-degenerate matrix.
The Lie algebra (Sym(2p), [·, ·]N̄ ) acts on the vector space M(2p)×d of (2p) × d

matrices (which we can think of as linear maps of kerN to imN) by S ·A := SN̄A,
where S ∈ (Sym(2p), [·, ·]N̄ ) and A ∈ M(2p)×d. Indeed, if S, S′ ∈ Sym(2p) and
A ∈M(2p)×d, then

[S, S′]N̄ ·A = (SN̄S′ − S′N̄S)N̄A = SN̄S′N̄A− S′N̄SN̄A
= S · (S′ ·A)− S′ · (S ·A). (2.7)

Now form the semidirect product Sym(2p)sM(2p)×d. Its bracket is defined by

[(S,A), (S′, A′)] = ([S, S′]N̄ , S ·A′ − S′ ·A)
= (SN̄S′ − S′N̄S, SN̄A′ − S′N̄A) (2.8)
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for any S, S′ ∈ Sym(2p) and A,A′ ∈M(2p)×d.
Next, define the Sym(d)-valued Lie algebra two-cocycle

C : Sym(2p)sM(2p)×d × Sym(2p)sM(2p)×d → Sym(d)

by
C((S,A), (S′, A′)) := AT N̄A′ − (A′)T N̄A (2.9)

for any S, S′ ∈ Sym(2p) and A,A′ ∈M(2p)×d. The cocycle identity

C([(S,A), (S′, A′)], (S′′, A′′)) + C([(S′, A′), (S′′, A′′)], (S,A))
+ C([(S′′, A′′), (S,A)], (S′, A′)) = 0

for any S, S′, S′′ ∈ Sym(2p) and A,A′, A′′ ∈ M(2p)×d is a straightforward verifica-
tion. Now extend Sym(2p)sM(2p)×d by this cocycle. That is, form the vector
space (Sym(2p)sM(2p)×d)⊕ Sym(d) and endow it with the bracket

[(S,A,B), (S′, A′, B′)]C :=
(
SN̄S′ − S′N̄S, SN̄A′ − S′N̄A,

AT N̄A′ − (A′)T N̄A
)

(2.10)

for any S, S′ ∈ Sym(2p), A,A′ ∈M(2p)×d, and B,B′ ∈ Sym(d).

Proposition 2.4. The map

Ψ : ((Sym(2p)sM(2p)×d)⊕ Sym(d), [·, ·]C)→ (Sym(n,N), [·, ·]N )

given by

Ψ(S,A,B) :=
[
S A
AT B

]
(2.11)

is a Lie-algebra isomorphism.

Proof. It is obvious that Ψ is a vector space isomorphism, therefore only the Lie-
algebra homomorphism condition needs to be verified. So, let (S,A,B), (S′, A′, B′) ∈
(Sym(2p)sM(2p)×d)⊕ Sym(d) and compute

Ψ([(S,A,B), (S′, A′, B′)]) = Ψ(SN̄S′ − S′N̄S, SN̄A′ − S′N̄A,AT N̄A′ − (A′)T N̄A)

=
[
SN̄S′ − S′N̄S SN̄A′ − S′N̄A

(SN̄A′ − S′N̄A)T AT N̄A′ − (A′)T N̄A

]
=
[
S A
AT B

] [
N̄ 0
0 0

] [
S′ A′

(A′)T B′

]
−
[
S′ A′

(A′)T B′

] [
N̄ 0
0 0

] [
S A
AT B

]
= [Ψ(S,A,B),Ψ(S′, A′, B′)]N

as required. �

For a different description of the structure of this Lie algebra using its Levi
decomposition and not involving cocycles see Trofimov and Fomenko [1995], §44,
Remark 22, page 245.
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Euler–Poincaré Form. The Euler–Poincaré form for the equations can be de-
rived as follows. Identify Sym(n,N) with its dual using the the positive definite
inner product

〈〈X,Y 〉〉 := trace (XY ) , for X,Y ∈ Sym(n,N). (2.12)

Remark. The inner product 〈〈X,Y 〉〉 is not ad-invariant relative to the N -bracket,
but the bilinear form

κN (X,Y ) := trace(NXNY ), (2.13)

is invariant, as is easy to check. Note that for N invertible κN is non-degenerate and
hence an inner product and provides another method of identifying Sym(n) with its
dual. We shall return to this observation at the end of §4.

Define the Lagrangian l : Sym(n,N)→ R on the Lie algebra (Sym(n,N), [·, ·]N )
by

l(X) =
1
2

trace
(
X2
)

=
1
2

trace
(
XXT

)
=

1
2
〈〈X,X〉〉 . (2.14)

Proposition 2.5. The equations

Ẋ = [X2, N ] (2.15)

are the Euler-Poincaré equations5 corresponding to the Lagrangian (2.14) on the Lie
algebra (Sym(n,N), [·, ·]N ).

Proof. Recall that the general (left) Euler-Poincaré equations on a Lie algebra g

associated with a Lagrangian l : g→ R are given by

d

dt
Dl(ξ) = ad∗ξ Dl(ξ),

where Dl(ξ) ∈ g∗ is the Fréchet derivative of l at ξ. Equivalently, for each fixed
η ∈ g, we have

d

dt
Dl(ξ) · η = Dl(ξ) · [ξ, η]. (2.16)

In our case, letting ξ = X and η = Y arbitrary, time-independent, equations (2.16)
become

d

dt
〈〈X,Y 〉〉 = 〈〈X, [X,Y ]N 〉〉

= 〈〈X,XNY − Y NX〉〉 ;

that is,

trace
(
ẊY

)
= trace (X(XNY − Y NX))

= trace
(
(X2N −NX2)Y

)
,

which gives the result. �

5For a general discussion of the Euler-Poincaré equations, see, for instance, Marsden and Ratiu
[1994].



3 Poisson Structures 10

3 Poisson Structures

Two compatible Poisson structures on Sym(n,N) are introduced in this section.
Their associated Poisson geometry is studied in detail. These two structures together
with the bi-Hamiltonian methodology will be the key to proving integrability of (1.1).

Two Poisson Structures. Identifying Sym(n,N) with its dual using the inner
product 〈〈·, ·〉〉 defined in (2.12), endows Sym(n,N) with the the (left, or minus)
Lie-Poisson bracket

{f, g}N (X) = − trace
[
X
(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)]
, (3.1)

where ∇f is the gradient of f relative to the inner product 〈〈·, ·〉〉 on Sym(n,N).
Later on we shall also need the frozen Poisson bracket

{f, g}FN (X) = − trace
(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)
. (3.2)

It is a general fact that the Poisson structures (3.1) and (3.2) are compatible in the
sense that their sum is a Poisson structure (see e.g. Exercise 10.1-5 in Marsden and
Ratiu [1994]).

For what follows it is important to compute the Poisson tensors corresponding to
the above Poisson brackets. Recall that the Poisson tensor can be viewed as a vector
bundle morphism B : T ∗(Sym(n,N)) → T (Sym(n,N)) covering the identity. It is
defined by B(dh) = {·, h}N for any locally defined smooth function h on Sym(n,N).
Since Sym(n,N) is a vector space, these bundles are trivial and hence the value BX
at X ∈ Sym(n,N) of the Poisson tensor B is a linear map BX : Sym(n,N) →
Sym(n,N) by identifying Sym(n,N) with its dual using the inner product 〈〈·, ·〉〉.

Proposition 3.1. Denote the value at X ∈ Sym(n,N) of the Poisson tensors cor-
responding to the Lie-Poisson (3.1) and frozen (3.2) brackets by BX and CX , re-
spectively. Then for any Y ∈ Sym(n,N) we have

BX(Y ) = XYN −NYX (3.3)
CX(Y ) = Y N −NY. (3.4)

Proof. Let f and g be locally defined smooth functions on Sym(n,N). The defini-
tion of BX gives

〈〈∇f(X), BX(∇g(X)〉〉 = {f, g}N (X)

= − trace
[
X
(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)]
= trace

[
∇f(X)

(
X∇g(X)N −N∇g(X)X

)]
= 〈〈∇f(X), X∇g(X)N −N∇g(X)X〉〉,
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which implies (3.3) since any Y ∈ Sym(n,N) is of the form ∇g(X), where g(X) =
〈〈X,Y 〉〉. Similarly, the definition of CX gives

〈〈∇f(X), CX(∇g(X)〉〉 = {f, g}FN (X)

= − trace
(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)
= trace

[
∇f(X)

(
∇g(X)N −N∇g(X)

)]
= 〈〈∇f(X),∇g(X)N −N∇g(X)〉〉,

which proves (3.4). �

Hamiltonian Vector Fields. Let us determine the Hamiltonian vector fields
associated to a smooth function for both Poisson brackets. Recall that if g is a
Lie algebra, the Lie-Poisson equations defined by h ∈ C∞(g∗) relative to the minus
Lie-Poisson bracket are

µ̇ = ad∗δh/δµ µ

where µ ∈ g∗.
We shall identify Sym(n,N)∗ with itself via the inner product 〈〈·, ·〉〉. Therefore,

for any X,Y, Z ∈ Sym(n,N), we have〈〈(
adNY

)∗
X,Z

〉〉
= 〈〈X, [Y,Z]N 〉〉 = trace (XYNZ −XZNY )

= trace ((XYN −NYX)Z) = 〈〈XYN −NYX,Z〉〉

and hence (
adNY

)∗
X = XYN −NYX.

If h ∈ C∞(Sym(n,N)), we denote by ∇h(X) the gradient relative to the inner
product 〈〈 , 〉〉. Therefore, the Lie-Poisson equations for h ∈ C∞(Sym(n,N)) are

Ẋ =
(

adN∇h(X)

)∗
X,

that is,
Ẋ = X∇h(X)N −N∇h(X)X. (3.5)

Similarly, Hamilton’s equations for the frozen bracket are

Ẋ = ∇h(X)N −N∇h(X). (3.6)

In particular, if h(X) = trace(X2)/2, equation (3.5) becomes Ẋ =
[
X2, N

]
. Simi-

larly, if h(X) = trace(X3)/3, equation (3.6) becomes Ẋ =
[
X2, N

]
.

If N is invertible, we have seen that there is an ad-invariant inner product
κN (X,Y ) = trace(NXNY ). Therefore, we can identify Sym(n,N)∗ with itself using
the inner product κN . Denote by

(
adNY

)†
the adjoint relative to κN of the N -adjoint
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map adNY (Z) := [Y, Z]N , for any Z ∈ Sym(n,N). To determine it, let M,Y,Z ∈
Sym(n,N) be arbitrary (M thought of as an element in the dual), compute

κN

((
adNY

)†
M,Z

)
= κN (M, [Y, Z]N ) = trace (NMN(Y NZ − ZNY ))

= trace (N(MNY − Y NM)NZ) = κN ((MNY − Y NM), Z) ,

and conclude that (
adNY

)†
M = MNY − Y NM = [M,Y ]N .

If h ∈ C∞(Sym(n,N)), denote by ∇Nh(M) the gradient relative to the inner prod-
uct κN . Therefore, the Lie-Poisson equations for h ∈ C∞(Sym(n,N)) are

Ṁ =
(

adN∇Nh(M)

)†
M =

[
M,∇Nh(M)

]
N
. (3.7)

For example, if h(M) = trace(N2MN2M)/2, then for any S ∈ Sym(n,N) we get

trace(N2MN2S) = dh(M) · S = κN
(
∇Nh(M), S

)
= trace

(
N∇Nh(M)NS

)
and hence

∇Nh(M) = NMN,

so Hamilton’s equations (3.7) are

Ṁ = [M,NMN ]N . (3.8)

Note that if l(X) = 〈〈X,X〉〉 /2 = trace(X2)/2 then the Legendre transform
M := ∇N l(X) = N−1XN−1 gives the Hamiltonian

h(M) := κN (M,X)− l(X) =
1
2

trace(N2MN2M).

Hence the Lie-Poisson equation (3.8) is equivalent to the Euler-Poicaré equation
(2.15). One can check this fact explicitly: substituting for M in terms of X in (3.8)
gives (2.15) and vice versa.

Generic Leaves. Next, the dimension of the generic leaves of the two Poisson
brackets are determined. The Lie-Poisson bracket is treated first. The following
Proposition follows from Trofimov and Fomenko [1995], §44, Proposition 23, page
245. We give below an elementary proof.

Proposition 3.2. Let n = 2p + d, where 2p = rankN . The generic leaves of the
Lie–Poisson bracket {·, ·}N are 2p(p+ d)-dimensional.
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Proof. As in the proof of Proposition 2.4, we orthogonally decompose Rn = imN⊕
kerN so that N̄ = N | imN : imN → imN is an isomorphism. In this decomposition
the matrix N takes the form

N =
[
N̄ 0
0 0

]
and, according to the isomorphism Ψ in Proposition 2.4, the matrix X can be written
as

X =
[
S A
AT B

]
,

where S ∈ Sym(2p), B ∈ Sym(d), and A ∈M(2p)×d. Therefore, if

Y =
[
U C
CT D

]
∈ Sym(n,N)

with U ∈ Sym(2p), D ∈ Sym(d), C ∈M(2p)×d, the Poisson tensor of the Lie-Poisson
bracket {·, ·}N takes the form (see Proposition 3.1)

BX(Y ) = XYN −NYX

=
[
S A
AT B

] [
U C
CT D

] [
N̄ 0
0 0

]
−
[
N̄ 0
0 0

] [
U C
CT D

] [
S A
AT B

]
=
[
SUN̄ − N̄US +ACT N̄ − N̄CAT −N̄UA− N̄CB

ATUN̄ +BCT N̄ 0

]
.

Since N̄ is invertible, the kernel of BX : Sym(n,N)→ Sym(n,N) is therefore given
by all U ∈ Sym(2p), D ∈ Sym(d), and C ∈M(2p)×d such that

SUN̄ − N̄US +ACT N̄ − N̄CAT = 0 and UA+ CB = 0.

To compute the dimension of the maximal symplectic leaves, we assume that the
matrix X is generic. So, supposing that B is invertible, we have C = −UAB−1 and(

S −AB−1AT
)
UN̄ − N̄U

(
S −AB−1AT

)
= 0.

Since S−AB−1AT ∈ Sym(2p) is given, this condition is identical to the vanishing
of the Poisson tensor on the dual of the Lie algebra

(
Sym(2p, N̄), [· , ·]N̄

)
evaluated at

S −AB−1AT . But N̄ is invertible so, according to Proposition 2.3, this Lie algebra
is isomorphic to sp(2p, N̄−1) whose rank is p. Therefore, the kernel of the map

U ∈ Sym(2p, N̄) 7→
(
S −AB−1AT

)
UN̄ − N̄U

(
S −AB−1AT

)
∈ Sym(2p, N̄)

for generic S −AB−1AT has dimension p.
Since C = −UAB−1 is uniquely determined and D ∈ Sym(d) is arbitrary, we see

that the dimension of the kernel of BX for generic X has dimension p+ d(d+ 1)/2.
Thus, the dimension of the generic leaf of the Lie–Poisson bracket {·, ·}N is

1
2

(2p+ d)(2p+ d+ 1)− p− 1
2
d(d+ 1) = 2p(p+ d)

as claimed in the statement of the proposition. �
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Proposition 3.3. All the leaves of the frozen Poisson bracket {·, ·}FN are

(i) 2p(p+ d)-dimensional if N is generic, that is, all its non-zero eigenvalues are
distinct, and

(ii) p(p+ 1 + 2d)-dimensional if all non-zero eigenvalue pairs of N are equal.

Proof. Proceeding as in the proof of the previous proposition and using the same
notation for N , X, and Y , the Poisson tensor of the frozen bracket takes the form

CX(Y ) = Y N −NY =
[
U C
CT D

] [
N̄ 0
0 0

]
−
[
N̄ 0
0 0

] [
U C
CT D

]
=
[
UN̄ − N̄U N̄C
CT N̄ 0

]
.

Thus, since N̄ is invertible, the kernel of CX is given by all U ∈ Sym(2p), D ∈
Sym(d), C ∈M(2p)×d such that C = 0 and UN̄ − N̄U = 0.

Since N̄ is non-degenerate, there exists an orthogonal matrix Q such that

N̄ = QT
[

0 V
−V 0

]
Q,

where V = diag(v1, . . . , vp) and vi ∈ R, vi 6= 0 for all i = 1, . . . , p. Therefore,

0 = UN̄ − N̄U = UQT
[

0 V
−V 0

]
Q−QT

[
0 V
−V 0

]
QU

= QT
(
QUQT

[
0 V
−V 0

]
−
[

0 V
−V 0

]
QUQT

)
Q

is equivalent to

Ũ

[
0 V
−V 0

]
−
[

0 V
−V 0

]
Ũ = 0 (3.9)

where Ũ := QUQT ∈ Sym(2p). Write

Ũ =
[
U11 U12

UT12 U22

]
with U11 and U22 symmetric p×p matrices and U12 an arbitrary p×p matrix. Then
(3.9) is equivalent to

U22 = V U11V
−1 = V −1U11V and UT12 = −V −1U12V = −V U12V

−1. (3.10)

(i) Assume now that vi 6= vj if i 6= j. Since V U11V
−1 = V −1U11V is equivalent

to V 2U11V
−2 = U11, it follows that

v2
i

v2
j

u11,ij = u11,ij for all i, j = 1, . . . , p,
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where u11,ij are the entries of the symmetric matrix U11. Since the fraction on the
left hand side is never equal to one for i 6= j, this relation implies that u11,ij = 0 for
all i 6= j. Thus U11 is diagonal and U22 = U11. A similar argument shows that U12

is diagonal. However, then it follows that U12 = −UT12 which implies that U12 = 0.
Therefore, the kernel of the map U 7→ UN̄ − N̄U is p-dimensional.

Concluding, the dimension of every leaf of the frozen Poisson structure equals
1
2(2p+ d)(2p+ d+ 1)− p− 1

2d(d+ 1) = 2p(p+ d).
(ii) The other extreme case is when vi = vj =: v for all i, j = 1, . . . , p. Then

V = vI, where I is the identity matrix, and (3.10) becomes U22 = U11, UT12 =
−U12. Therefore, the kernel of the map U 7→ UN̄ − N̄U has dimension equal to
1
2p(p+ 1) + 1

2p(p− 1) = p2.
Concluding, the dimension of every leaf of the frozen Poisson structure equals

1
2(2p+ d)(2p+ d+ 1)− p2 − 1

2d(d+ 1) = p(p+ 1 + 2d). �

Casimir Functions. The next job will be to determine Casimir functions for both
brackets. Here is the main result.

Proposition 3.4. Let the skew symmetric matrix N have rank 2p and size n :=
2p+ d. Choose an orthonormal basis of R2p+d in which N is written as

N =

 0 V 0
−V 0 0
0 0 0

 ,
where V is a real diagonal matrix whose entries are v1, . . . , vp.

(i) If vi 6= vj for all i 6= j, then p + d(d + 1)/2 Casimir functions for the frozen
Poisson structure (3.2) are given by

CiF (X) = trace(EiX), i = 1, . . . , p+
1
2
d(d+ 1),

where Ei is any of the matricesSkk 0 0
0 Skk 0
0 0 0

 ,
0 0 0

0 0 0
0 0 Sab

 .
Here Skk is the p× p matrix all of whose entries are zero except the diagonal
(k, k) entry which is one and Sab is the d × d symmetric matrix having all
entries equal to zero except for the (a, b) and (b, a) entries that are equal to
one.

(ii) If vi = vj for all i, j = 1, . . . , p, then p2 + d(d+ 1)/2 Casimir functions for the
frozen Poisson structure (3.2) are given by

CiF (X) = trace(EiX), i = 1, . . . , p2 +
1
2
d(d+ 1),
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where Ei is any of the matricesSkl 0 0
0 Skl 0
0 0 0

 ,
 0 Akl 0
−Akl 0 0

0 0 0

 ,
0 0 0

0 0 0
0 0 Sab

 .
Here Skl is the p× p symmetric matrix having all entries equal to zero except
for the (k, l) and (l, k) entries that are equal to one and Akl is the p× p skew
symmetric matrix with all entries equal to zero except for the (k, l) entry which
is 1 and the (l, k) entry which is −1.

(iii) Denote

N̄ =
[

0 V
−V 0

]
The p + d(d + 1)/2 Casimir functions for the Lie-Poisson bracket {·, ·}N on
the open set det(B) 6= 0 (see (2.11)) of Sym(2p+ d) are given by

Ck(X) :=
1
2k

trace
([(

S −AB−1AT
)
N̄−1

]2k)
., for k = 1, . . . , p

and
Ck(X) = trace(XEk), for k = p+ 1, . . . , p+

1
2
d(d+ 1) ,

where Ek is any matrix of the form0 0 0
0 0 0
0 0 Sab

 .
In the special case when N is full rank the Casimir functions are just

Ck(X) =
1
2k

trace
[(
XN−1

)2k]
, for k = 1, . . . , p,

Proof. To prove (i), recall from Proposition 3.3(i) that the kernel of the Poisson
tensor CX has dimension p+ 1

2d(d+ 1). Moreover, if E belongs to this kernel, then
the linear function given by X 7→ trace(EX) has gradient E, which is annihilated
by the Poisson tensor CX . Thus all CiF are Casimir functions. Since the gradients
of all these functions are the p + 1

2d(d + 1) matrices in the statement which are
obviously linearly independent, it follows that the functions CiF form a functionally
independent set of Casimir functions for the frozen bracket {·, ·}FN .

Part (ii) has an identical proof.
Now consider Part (iii). First, we compute the gradient relative to 〈〈·, ·〉〉. We

compute for any

δX =
[
δS δA

(δA)T δB

]
∈ Sym(n,N)
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the derivative

DCk(X) · δX = trace
(
N̄−1

(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1(

(δS)− (δA)B−1AT −AB−1(δA)T +AB−1(δB)B−1AT
))
. (3.11)

Now denote

∇Ck(X) =
[
α β
βT γ

]
so that

trace
(
∇Ck(X)(δX)

)
=
〈〈
∇Ck(X), δX

〉〉
= trace

([
α β
βT γ

] [
δS δA

(δA)T δB

])
= trace

(
α(δS) + β(δA)T + βT (δA) + γ(δB)

)
. (3.12)

By (3.11) and (3.12) we have

α = N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1

β = −N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1AB−1

γ = B−1AT N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1AB−1

where in each term we have 2k factors of N̄−1. Therefore

∇Ck(X) =
[

α −αAB−1

−B−1ATα B−1ATαAB−1

]
with α given above. Now we check that all these matrices ∇Ck(X) are in the kernel
of the operator of the Lie-Poisson operator BXY = XYN −NYX. Indeed,

X∇Ck(X)N −N∇Ck(X)X

=
[
S A
AT B

] [
α −αAB−1

−B−1ATα B−1ATαAB−1

] [
N̄ 0
0 0

]
−
[
N̄ 0
0 0

] [
α −αAB−1

−B−1ATα B−1ATαAB−1

] [
S A
AT B

]
=
[
S A
AT B

] [
αN̄ 0

−B−1ATαN̄ 0

]
−
[
N̄α −N̄αAB−1

0 0

] [
S A
AT B

]
=
[
SαN̄ −AB−1ATαN̄ 0
ATαN̄ −BB−1ATαN̄ 0

]
−
[
N̄αS − N̄αAB−1AT N̄αA− N̄αAB−1B

0 0

]
=
[
(S −AB−1AT )αN̄ − N̄α(S −AB−1AT ) 0

0 0

]
.

This vanishes if and only if

(S −AB−1AT )αN̄ − N̄α(S −AB−1AT ) = 0. (3.13)
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However, we know that α = N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1

where in each factor we have 2k factors of N̄−1. We replace α with this expression
in (3.13) and get

(S −AB−1AT )αN̄ − N̄α(S −AB−1AT )

= (S −AB−1AT )N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1N̄

− N̄N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1(S −AB−1AT )

= (S −AB−1AT )N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
−
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1(S −AB−1AT ) = 0

since both factors are equal; each once contains 2k − 1 factors of N̄−1.
However, sp(2p, N̄−1) is identified with the subalgebra consisting of the (1, 1)

blocks of elements of Sym(n,N) (see Proposition 2.4). The isomorphism S ∈
Sym(2p, N̄) 7→ N̄S ∈ sp(2p, N̄−1) given in Proposition 2.3 identifies the basis of
p Casimirs in the dual of sp(2p, N̄−1) (given by the even traces of the powers of a
matrix) with the functions S 7→ trace

[
(SN̄−1)2k

]
/2k. Therefore the functions Ck

for k = 1, . . . , p given in the statement of the proposition are functionally indepen-
dent Casimirs for the Lie-Poisson bracket of Sym(n,N).

To see that the remaining functions Ck(X) = trace(XEk) are Casimirs observe
that in this case

∇Ck(X) =
[
0 0
0 Sab

]
and

BX(∇Ck(X)) =
[
S A
AT B

] [
0 0
0 Sab

] [
N̄ 0
0 0

]
−
[
N̄ 0
0 0

] [
0 0
0 Sab

] [
S A
AT B

]
= 0.

Since the matrices Sab span symmetric k×k matrices, these Casimirs are functionally
independent. The two sets of Casimirs are also independent taken together, since
each set depends only on a subset of independent variables and these two sets of
variables are disjoint. We have thus obtained p+ d(d+ 1)/2 Casimirs, which is the
codimension of the generic leaf, thus proving that they generate the space of all
Casimir functions of the Lie-Poisson bracket. �

The Equations in the Degenerate Case. If N is degenerate, representing it
and the matrix X ∈ Sym(n,N) as in Proposition 2.4, the equations Ẋ = [X2, N ]
are equivalent to the system 

Ṡ = [S2 +ATA, N̄ ]

Ȧ = −N̄(SA+AB)

Ḃ = 0.
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Example. It is illuminating to examine the system in the lowest dimension de-
generate case, i.e. p = 1 and d = 1. Let

X =

a e f
e b g
f g c

 =:
[
S A
AT c

]

and

N =

 0 1 0
−1 0 0
0 0 0

 =:
[
N̄ 0
0 0

]
.

Then the dynamics becomes

ȧ = −2(ae+ eb+ fg)

ḃ = 2(ae+ eb+ fg)
ċ = 0

ė = a2 + f2 − b2 − g2

ġ = af + ge+ cf

ḟ = −(ef + bg + gc) .

In this case the two Casimir functions of the Lie-Poisson bracket are given by

C1 =
1
2

(
−ba+

g2a

c
+ e2 − 2

fge

c
+
f2b

c

)
= −detX

2c

and by C2 = c, so that ċ = 0 in equations of motion expresses the conservation of
this Casimir directly.

As we shall see in forthcoming sections the two integrals of motion which prove
integrability are trace(X) and trace(X2). We already know these are conserved
since the flow is isospectral. Observe also that conservation of trace(X) is given by
summing the first two equations of motion while trace(X)2/2 is the Hamiltonian.

We illustrate this example with time plots in Figure 3.1 and two phase plots
plots in Figure 3.2.

4 The Sectional Operator Equations and Relation to
Mischenko-Fomenko Flows

It is shown that the equation (1.1) can be mapped to a Mischenko-Fomenko type
system (see Mischenko and Fomenko [1976, 1978, 1979] or Trofimov and Fomenko
[1995]) in the case N is invertible with distinct eigenvalues.

The Mischenko-Fomenko Construction. Consider a semisimple complex or
real split Lie algebra g with Killing form 〈·, ·〉. Let h be a Cartan subalgebra, let
a, b ∈ h and a be regular (i.e. its value on every root is non-zero). Define the
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Figure 3.1: Time plot of flow in the 3 by 3 case for a, b, c, e, f , and g.
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Figure 3.2: Phase plane portraits in the 3 by 3 case projected to the a-e and the b-e
planes.

sectional operators Ca,b,D : g → g by Ca,b,D(ξ) := ad−1
a adb(ξ1) + D(ξ2) where

ξ = ξ1 + ξ2, ξ2 ∈ h, ξ1 ∈ h⊥ (the perpendicular is taken relative to the Killing form
and thus h⊥ is the direct sum of all the root spaces), and D : h→ h is an arbitrary
invertible symmetric operator on h. Then Ca,b,D : g→ g is an invertible symmetric
operator (relative to the Killing form) satisfying the condition

[Ca,b,D(ξ), a] = [ξ, b] (4.1)

for all ξ ∈ g.
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The Lie-Poisson bracket on g∗ ∼= g (the isomorphism being given by the Killing
form) has the expression

{f, g}(ξ) = −〈ξ, [∇f(ξ),∇g(ξ)]〉

for any f, g ∈ C∞(g), where ∇ is taken relative to 〈·, ·〉. Hamilton’s equations for
h ∈ C∞(g) have thus the form

ξ̇ = [ξ,∇h(ξ)].

In particular, if

h(ξ) :=
1
2
〈Ca,b,D(ξ), ξ〉

then∇h(ξ) = Ca,b,D(ξ) since Ca,b,D is 〈·, ·〉-symmetric. Thus the equations of motion
are

ξ̇ = [ξ, Ca,b,D(ξ)]. (4.2)

Example: For g = so(n), the Killing form is a multiple of the symmetric bi-
invariant two-form (Ω1,Ω2) 7→ tr(Ω1Ω2), and one chooses C−1(Ω) := ΩJ + JΩ for
a given diagonal matrix J satisfying Ji + Jj > 0 if i 6= j. We have

[C(M), J ] = [M,J2]

for any M ∈ so(n). Then Ṁ = [M,C(M)] is the n-dimensional rigid body equation.
Note in this case that J and J2 are not in the Cartan subalgebra of so(n), but the
general theory in Mischenko and Fomenko [1978, 1979] deals also with this situation
for any semisimple complex or real split Lie algebra; J an J2 are in the Cartan
subalgebra (after one makes them trace zero) of sl(n,C).

Returning to the general case note that (4.2) can be written as

d

dt
(ξ + λa) = [ξ + λa,C(ξ) + λb] (4.3)

if and only if (4.1) holds.
Now it is obvious that ξ 7→ fk(ξ + λa), k = 1, . . . , ` := rank(g) = dim h, are

conserved on the flow of (4.3), for any element of the basis of the polynomial Casimir
functions f1, . . . , f` and any parameter λ. Since the fk are polynomial, it follows
that the coefficients of λi in the expansion of fk(ξ+λa) in powers of λ are conserved
along the flow of (4.2). There are redundancies: some coefficients of λi vanish and
other coefficients are Casimir functions.

Mischenko and Fomenko [1978, 1979] proved the following result.

Theorem 4.1. Let g be a semisimple complex or real split Lie algebra and C :
g → g a symmetric operator satisfying (4.1). Then the Lie-Poisson system ξ̇ =
[ξ, C(ξ)] on g defined by the Hamiltonian H(ξ) = 〈C(ξ), ξ〉/2 is completely integrable
on the maximal dimensional adjoint orbits of the Lie algebra g and its commuting
generically independent first integrals are the non-trivial coefficients of λi in the
polynomial λ-expansion of
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fi,λ(ξ) = fi(ξ + λa)

which are not Casimir functions; here f1, . . . , f` is the basis of the ring of polynomial
invariants of g. In addition, all functions fi,λ commute with H.

A Poisson Isomorphism for N invertible. We want to compare the Lie-Poisson
bracket (3.1) on Sym(n,N) with that on sp(n,N−1)∗.

To obtain the Lie-Poisson bracket on sp(n,N−1)∗ we identify sp(n,N−1)∗ with
sp(n,N−1) via the invariant non-degenerate symmetric bilinear form

〈〈Z1, Z2〉〉 := trace (Z1Z2) .

Therefore, the Lie-Poisson bracket on sp(n,N−1)∗ ∼= sp(n,N−1) is given by

{φ, ψ}sp(Z) := −〈〈Z, [∇φ(Z),∇ψ(Z)]〉〉 , (4.4)

where ∇ is taken relative to 〈〈·, ·〉〉 and φ, ψ : sp(n,N−1)→ R are smooth functions.
In the following proposition, Sym(n,N)∗ is identified with itself using the non-

invariant inner product 〈〈·, ·〉〉 (see (2.12)).

Proposition 4.2. The map Z ∈
(
sp(n,N−1), {·, ·}sp

)
7→ ZN ∈ (Sym(n,N), {·, ·}N )

is an isomorphism of Lie-Poisson spaces.

Proof. By Proposition 2.3, the map Φ : (Sym(n,N), [·, ·]N ) →
(
sp(n,N−1), [·, ·]

)
given by Φ(X) := NX is a Lie algebra isomorphism. Therefore its dual Φ∗ :(
sp(n,N−1), {·, ·}sp

)
→ (Sym(n,N), {·, ·}N ) is an isomorphism of Lie-Poisson spaces

(see, e.g., Marsden and Ratiu [1994]). Since for any Z ∈ sp(n,N−1) and Y ∈
Sym(n,N) we have

〈〈Φ∗(Z), Y 〉〉 = 〈〈Z,Φ(Y )〉〉 = 〈〈Z,NY 〉〉 = trace(ZNY ) = 〈〈ZN, Y 〉〉

it follows that Φ∗(Z) = ZN . �

Since N is invertible, as we have seen in §3, Sym(n,N)∗ can be identified with
itself using the ad-invariant inner product κN . To compute the pull-back Φ† :
sp(n,N−1) → Sym(n,N) if we identify Sym(n,N)∗ with itself using κN , let Z ∈
sp(n,N) and Y ∈ Sym(n,N). We get

κN (Φ†(Z), Y ) = 〈〈Z,Φ(Y )〉〉 = 〈〈Z,NY 〉〉 = trace(ZNY ) = κN (N−1Z, Y )

and hence
Φ†(Z) = N−1Z. (4.5)
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The Mischenko-Fomenko System on
(
sp(n,N−1), {·, ·}sp

)
. We now show that

for N with distinct eigenvalues Φ∗ maps the system (1.1) to a Mischenko-Fomenko
system on

(
sp(n,N−1), {·, ·}sp

)
. Indeed, denoting X := Φ∗(Z) = ZN , we get

Ż = ẊN−1 = [X2, N ]N−1 = X2 −NX2N−1

= ZNZN −NZNZNN−1 = [Z,NZN ].

The following lemma, which can easily be verified, shows that the linear invertible
operator C : sp(n,N−1) → sp(n,N−1) defined by C(Z) = NZN is a sectional
operator.

Lemma 4.3. The map C

(i) is well-defined, i.e. NZN indeed belongs to sp(n,N−1),

(ii) is symmetric relative to 〈〈·, ·〉〉,

(iii) satisfies [C(Z), N−1] = [N,Z],

(iv) is of the form Ca,b,D with a = N−1, b = −N , and D having the same formula
as C on the Cartan algebra.

Applying the Mischenko-Fomenko Theorem 4.1 we get the following result.

Proposition 4.4. Let N be invertible with distinct eigenvalues. The system

Ż = [Z,NZN ] (4.6)

is integrable on the maximal dimensional orbits of sp(n,N−1) and its generically
independent integrals in involution are the non-trivial coefficients of λi in the poly-
nomial expansion of 1

k tr(Z + λN−1)k that are not Casimir functions, k = 2, . . . , n.
The Hamiltonian for (4.6) is H(Z) := trace((ZN)2)/2.

Pushing forward Z by the map Φ∗ we obtain the following statement.

Theorem 4.5. Let N be invertible with distinct eigenvalues. The equation Ẋ =
[X2, N ] is an integrable Hamiltonian system on the maximal dimensional symplectic
leaf of Sym(n,N) defined by the function l(X) = tr(X2)/2 relative to the Lie-Poisson
bracket (3.1). The independent integrals in involution are the non-trivial coefficients
of λi in the polynomial expansion of 1

k tr(XN−1 + λN−1)k that are not Casimir
functions, k = 2, . . . , n.

The Mischenko-Fomenko System on the Dual of Sym(n). For N invertible
we can also show that our system (1.1) is a system of Mischenko-Fomenko type
directly on Sym(n,N) viewed as its own dual under the ad-invariant inner product
κN (X,Y ) = trace(NXNY ) defined in equation (2.13).

Recall from Proposition 2.3 the Lie algebra isomorphism

Φ : X ∈ (Sym(n,N), [ , ]N ) 7−→ Z := NX ∈ (sp(n,N−1), [ , ]).
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It is easy to see that the ad-invariant inner product κN on Sym(n,N) is pushed
forward by Φ to the non-degenerate ad-invariant form given by the trace of the
product on sp(n,N−1). Therefore, the pull back Φ† : sp(n,N−1) → Sym(n,N),
where Sym(n,N)∗ is identified with itself using κN , is an isomorphism of Lie-
Poisson spaces. Hence Φ†(Z) = N−1Z maps the Mischenko-Fomenko system (4.6)
on sp(n,N−1) to a Mischenko-Fomenko system on Sym(n,N). A direct computation
shows that M := N−1Z satisfies (3.8).

In the ensuing sections we provide a direct proof of integrability on Sym(n,N) for
N with distinct eigenvalues but not necessarily invertible, that is, N has at most one
zero eigenvalue. In the invertible case, we provide a different sequence of integrals
and, in addition, derive a second Hamiltonian structure for the Mischenko-Fomenko
system on sp(n,N−1).

5 Lax Pairs with Parameter

To prove that system (1.1) is integrable for any N having distinct eigenvalues, we
will compute its flow invariants. Bear it in mind that, by virtue of the isospectral
representation (1.2), we already know that the eigenvalues of X, or alternatively,
the quantities traceXk for k = 1, 2, . . . , n− 1, are invariants.

One way to compute additional invariants is to rewrite the system as a Lax pair
with a parameter. One can do this in a fashion similar to that for the generalized
rigid body equations (see Manakov [1976]).

Theorem 5.1. Let λ be a real parameter. The system (1.2) is equivalent to the
following Lax pair system

d

dt
(X + λN) =

[
X + λN,NX +XN + λN2

]
. (5.1)

Proof. The proof is a computation. The only nontrivial power of λ to check is the
first. In fact, the coefficient of λ on the right hand side of equation (5.1) is

[N,NX +XN ] + [X,N2]

= N2X +NXN −NXN −XN2 +XN2 −N2X = 0,

which proves (5.1). �

Manakov [1976] noticed that the generalized rigid body equations Ṁ = [M,Ω]
(see §4), can be written as a Lax equation with a parameter in the form

d

dt
(M + λJ2) = [M + λJ2,Ω + λJ ]. (5.2)

Note the following contrast with our setting: in the Manakov case the system
matrix M is in so(n) and the parameter J is a symmetric matrix while in our case
X is symmetric and the parameter N ∈ so(n).

For the generalized rigid body the nontrivial coefficients of λi, 0 < i < k in the
traces of the powers of M+λJ2 then yield the right number of independent integrals
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in involution to prove integrability of the flow on a generic adjoint orbit of SO(n)
(identified with the corresponding coadjoint orbit). The case i = 0 needs to be
eliminated, because these are Casimir functions.

Similarly, in our case, the nontrivial coefficients of λi, 0 ≤ i ≤ k, in

hλk(X) :=
1
k

trace(X + λN)k, k = 1, 2, . . . , n− 1 (5.3)

yield the conserved quantities. The coefficient of λr, 0 ≤ r ≤ k, in (5.3) is

trace
∑
|i|=k−r

∑
|j|=r

Xi1N j1Xi2 · · ·XisN js , r = 0, . . . , k, k = 1, . . . , n− 1,

where i = (i1, i2, . . . is), j = (j1, j2, . . . js) are multi-indices, iq, jq = 0, 1, . . . , k, and
|i| =

∑s
q=1 iq, |j| =

∑s
q=1 jq. The coefficient of λk is the constant Nk so it should

not be counted. Thus we have r < k. In addition, since the trace of a matrix equals
the trace of its transpose, X ∈ Sym(n,N), and N ∈ so(n), it follows that

traceXi1N j1Xi2 · · ·XisN js = (−1)|j| traceN jsXjs · · ·Xi2N j1Xi1 .

Therefore, if r is odd, then necessarily

trace
∑
|i|=k−r

∑
|j|=r

Xi1N j1Xi2 · · ·XisN js = 0

and only for even r we get an invariant. Thus, we are left with the invariants

hk,2r(X) := trace
∑

|i|=k−2r

∑
|j|=2r

Xi1N j1Xi2 · · ·XisN js (5.4)

for k = 1, . . . , n − 1, iq = 1, . . . , k, jq = 0, . . . , k − 1, r = 0, . . . ,
[
k−1

2

]
, where [`]

denotes the integer part of ` ∈ R.
The integrals (5.4) are thus the coefficients of λ2r, 0 < 2r < k, in the expansion

of 1
k trace(X + λN)k. For example, if k = 1 or k = 2 then we have one integral,

the coefficient of λ0. If k = 3 or k = 4, only the coefficients of λ2 and λ0 yield
non-trivial integrals. If k = 5 or k = 6 it is the coefficients of λ4, λ2, and λ0 that
give non-trivial integrals. In general, for the power k we have

[
k+1

2

]
integrals. Recall

that k = 1, . . . , n− 1. If n− 1 = 2`, we have hence

1 + 1 + 2 + 2 + · · ·+
[
n− 1 + 1

2

]
+
[
n− 1 + 1

2

]
= 1 + 1 + 2 + 2 + · · ·+ `+ `

= `(`+ 1) =
n− 1

2

(
n− 1

2
+ 1
)

=
n− 1

2
n+ 1

2

integrals. If n− 1 = 2`+ 1 then we have

1 + 1 + 2 + 2 + · · ·+
[
n− 2 + 1

2

]
+
[
n− 2 + 1

2

]
+
[
n− 1 + 1

2

]
= 1 + 1 + 2 + 2 + · · ·+ `+ `+ (`+ 1)

= `(`+ 1) + (`+ 1) = (`+ 1)2 =
(n

2

)2
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integrals. However,

[
n

2

] [
n+ 1

2

]
=


n− 1

2
n+ 1

2
, if n is odd(n

2

)2
, if n is even

Concluding, we have [
n

2

] [
n+ 1

2

]
invariants which are the coefficients of λ2r, 0 < 2r < k, in the expansion of
1
k trace(X + λN)k for k = 1, . . . , n− 1.

We now address the issue of whether or not these integrals are the right candi-
dates to prove complete integrability of the system Ẋ = [X2, N ].

• If N is invertible, then n = 2p and hence[
n

2

] [
n+ 1

2

]
=
[

2p
2

] [
2p+ 1

2

]
= p2 =

1
2
(
2p2 + p− p

)
=

1
2
(
dim sp(2p,N−1)− rank sp(2p,N−1)

)
which is half the dimension of the generic adjoint orbit in sp(2p,N−1). There-
fore, these conserved quantities are the right candidates to prove that this
system is integrable on the generic coadjoint orbit of Sym(n,N). This will be
proved in the next sections.

• If N is non-invertible (which is equivalent to d 6= 0), then n = 2p + d and
hence [

n

2

] [
n+ 1

2

]
=
[

2p+ d

2

] [
2p+ d+ 1

2

]
=
(
p+

[
d

2

])(
p+

[
d+ 1

2

])
= p2 + p

([
d

2

]
+
[
d+ 1

2

])
+
[
d

2

] [
d+ 1

2

]
= p2 + pd+

[
d

2

] [
d+ 1

2

]
.

The right number of integrals is p(p+ d) according to Proposition 3.2, so this
calculation seems to indicate that there are additional integrals. The situation
is not so simple since there are redundancies due to the degeneracy of N . Note,
however, that if d = 1, then we do get the right number of integrals. We shall
return to the study of the degenerate case in §7.

Remark. Recall that in the special case when N is invertible, we found the sequence
of integrals given in Theorem 4.5. Note that these integrals have a different form
from the family of integrals in (5.4). This does not necessarily mean that the two
sets of functions are functionally independent.
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6 Involution

In this section we prove involution of the integrals found in the previous section for
arbitrary N ∈ so(n).

Bi-Hamiltonian Structure. We begin with the following observation.

Proposition 6.1. The system Ẋ = X2N −NX2 is Hamiltonian with respect to the
bracket {f, g}N defined in (3.1) using the Hamiltonian h2(X) := 1

2 trace(X2) and
is also Hamiltonian with respect to the compatible bracket {f, g}FN defined in (3.2)
using the Hamiltonian h3(X) := 1

3 trace(X3).

Proof. We have already implicitly checked the first statement using Euler-Poincaré
theory, but here is a direct verification. We want to show that the condition
ḟ = {f, h2}N for any f determines the equations Ẋ = X2N − NX2. First note
that d

dtf(X) = trace(∇f(X)Ẋ). Second, since ∇h2(X) = X, the right hand side
{f, h2}N becomes, by (3.1),

{f, h2}N (X) = − trace
[
X
(
∇f(X)NX −XN∇f(X)

)]
= − trace

(
∇f(X)NX2 −∇f(X)X2N

)
.

Thus, Ẋ = X2N −NX2 as required.
To show that the same system is Hamiltonian relative to the frozen Poisson

bracket, we proceed in a similar way. Noting that ∇h3(X) = X2, we get from (3.2)

{f, h3}FN (X) = − trace
(
∇fNX2 −X2N∇f

)
= − trace

(
∇fNX2 −∇fX2N

)
,

and hence Ẋ = X2N −NX2, as before. �

Involution. Next we begin the proof that the
[
n
2

] [
n+1

2

]
integrals given in (5.4),

namely
hk,2r(X) := trace

∑
|i|=k−2r

∑
|j|=2r

Xi1N j1Xi2 · · ·XisN js ,

where k = 1, . . . , n − 1, iq = 1, . . . , k, jq = 0, . . . , k − 1, r = 0, . . . ,
[
k−1

2

]
, are in

involution. It will be convenient below to write the expansion of hλk starting with
the highest power of λ, that is,

hλk(X) =
1
k

trace (X + λN)k =
k∑
r=0

λk−rhk,k−r(X) . (6.1)

As explained before, not all of these coefficients should be counted: roughly half of
them vanish and the last one, namely, hk,k, is the constant Nk. Consistently with
our notation for the Hamiltonians, we set hk = hk,0.

Firstly we require the gradients of the functions hλk .
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Lemma 6.2. The gradients ∇hλk are given by

∇hλk(X) =
1
2

(X + λN)k−1 +
1
2

(X − λN)k−1. (6.2)

Proof. We have for any Y ∈ Sym(n,N),

〈〈∇hλk(X), Y 〉〉 = dhλk(X) · Y = trace
(

(X + λN)k−1Y
)

=
1
2

trace
((

(X + λN)k−1 + (X − λN)k−1
)
Y
)
.

Since 〈〈 , 〉〉 is non-degenerate on Sym(n,N), the result follows. �

Proposition 6.3.
BX(∇hλk(X)) = CX(∇hλk+1(X)) (6.3)

Proof. Using (3.3) we get

BX(∇hλk(X)) = X∇hλk(X)N −N∇hλk(X)X

=
1
2

[
X(X + λN)k−1N +X(X − λN)k−1N

−N(X + λN)k−1X −N(X − λN)k−1X
]

=
1
2

[
(X + λN)kN − λN(X + λN)k−1N + (X − λN)kN + λN(X − λN)k−1N

−N(X + λN)k + λN(X + λN)k−1N −N(X − λN)k − λN(X − λN)k−1N
]

=
1
2

[
(X + λN)kN + (X − λN)kN −N(X + λN)k −N(X − λN)k

]
= ∇hλk+1(X)N −N∇hλk+1(X) = CX(∇hλk+1(X))

by (3.4), which proves the formula. �

Proposition 6.4. The functions hk,k−r satisfy the recursion relation

BX(∇hk,k−r(X)) = CX(∇hk+1,k−r(X)). (6.4)

Proof. Substituting (6.1) into (6.3) we obtain

k∑
r=0

λk−rBX (∇hk,k−r(X)) =
k+1∑
r=0

λk+1−rCX (∇hk+1,k+1−r(X)) .

Since ∇hk+1,k+1(X) = Nk+1, formula (3.4) implies that CX (∇hk+1,k+1(X)) = 0.
Thus on the right hand side the sum begins at r = 1. Changing the summation
index on the right hand side from r to r − 1 and identifying the coefficients of like
powers of λ yields (6.4). �
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Remark. It is worth making a few remarks about Propositions 6.3 and 6.4. Note
that unlike the similar recursion for the rigid body Manakov integrals (see e.g.
Trofimov and Fomenko [1995] and Morosi and Pizzocchero [1996]), our polynomial
recursion relation (6.3) does not have a premultiplier λ on the right-hand side and
the polynomials on the left and right hand sides appear to be of different order.
This cannot be and indeed is not so. Indeed, the highest order coefficient on the
right hand side vanishes by virtue of following result.

Corollary 6.5. The functions hk,k−1(X) are Casimirs for the frozen Poisson struc-
ture, i.e.

CX (∇hk,k−1(X)) = 0 (6.5)

for all k.

Proof. By (6.1), hk,k−1(X) = trace
(
Nk−1X

)
, so its gradient equals ∇hk,k−1(X) =

Nk−1. So (3.4) immediately gives (6.5). �

The recursion relations (6.4) for r = 0 also imply the following relation between
the Hamiltonians that can also be easily checked by hand.

Corollary 6.6.
BX (∇hk(X)) = CX (∇hk+1(X)) (6.6)

Example: An interesting nontrivial example of the recursion relation to check
is BX(dh3,2(X)) = CX(dh4,2(X)), where h3,2(X) = trace(N2X) and h4,2(X) =
trace(N2X2)+ 1

2 trace(NXNX). This example illustrates how the recursion relation
works despite the apparent inconsistency in order.

Involution follows immediately, using the recursion relations.

Proposition 6.7. The invariants hk,k−r are in involution with respect to both Pois-
son brackets {f, g}N and {f, g}FN .

Proof. The definition of the Poisson tensors BX and CX and the recursion relation
(6.4) give

{hk,k−r, hl,l−q}N = 〈〈∇hk,k−r(X), BX(∇hl,l−q(X))〉〉
= 〈〈∇hk,k−r(X), CX(∇hl+1,l−q(X))〉〉
= {hk,k−r, hl+1,l−q}FN = −{hl+1,l−q, hk,k−r}FN
= −〈〈∇hl+1,l−q(X), CX(∇hk,k−r(X))〉〉
= −〈〈∇hl+1,l−q(X), BX(∇hk−1,k−r(X))〉〉
= −{hl+1,l−q, hk−1,k−r}N = {hk−1,k−r, hl+1,l−q}N

for any k, l = 1, . . . , n − 1, r = 1, . . . , k and q = 0, . . . , l − 1. Of course, in these
relations we assume that k− r and l− q are even, for if at least one of them is odd,
the identity above has zeros on both sides. Repeated application of this relation
eventually leads to Hamiltonians hk,k−r where either k− r is a power of λ that does
not exist for k, in which case the Hamiltonian is zero, or one is led to h0,0 which is
constant. This shows that {hk,k−r, hl,l−q}N = 0 for any pair of indices.

In a similar way one shows that {hk,k−r, hl,l−q}FN = 0. �
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Bi-Hamiltonian Structure on sp(n,N−1). Using the bi-Hamiltonian property
of system (1.1) and the Poisson isomorphism in Proposition 4.2 we get the following
statement.

Theorem 6.8. The Lie-Poisson isomorphism Z ∈
(
sp(n,N−1), {·, ·}sp

)
7→ ZN ∈

(Sym(n,N), {·, ·}N ) induces a bi-Hamiltonian structure for the Mischenko-Fomenko
equations (4.6) on sp(n,N−1). The second Hamiltonian structure is

{f, g}N−1(Z) = − trace
(
N−1[∇f(Z),∇g(Z)]

)
for any f, g ∈ C∞(sp(n,N−1) and the Hamiltonian corresponding to this Poisson
structure is h(Z) = trace

(
(ZN)3

)
/3.

7 Independence

To complete the proof of integrability we need to show that the integrals hk,2r are
independent. We will demonstrate this first in the generic case when N is invertible
with distinct eigenvalues.

By (5.4), the gradients of the integrals hk,2r have the form

∇hk,2r(X) :=
∑

|i|=k−2r−1

∑
|j|=2r

Xi1N j1Xi2 · · ·XisN js (7.1)

where k = 1, . . . , n− 1, iq = 1, . . . , k, jq = 0, . . . , k − 1, r = 0, . . . ,
[
k−1

2

]
.

The Generic Case. We consider the case N invertible with distinct eigenvalues.
Therefore d = 0 and n = 2p. In this case we show that the integrals hk,2r given in
(5.4) are independent, and hence the system (1.1) is integrable.

Theorem 7.1. For N invertible with distinct eigenvalues, the integrals hk,2r given
by equation (5.4) are independent.

Proof. We are concerned with the linear independence (in a generic sense) of (7.1)
where k = 1, . . . , n− 1, iq = 1, . . . , k, jq = 0, . . . , k − 1 and r = 0, . . . [1

2(k − 1)]. We
recall that N is invertible with distinct eigenvalues and, without loss of generality,
assume that X is diagonal,

X = diagµ.

This reduces the statement of the theorem to a problem about the independence
of polynomials in single matrix variable.

Now, we aim to prove a stronger statement: the terms

vi,j = Xi1N j1Xi2 · · ·XisN js

are independent for all multi-indices i and j in the above range. Note however
that each vi,j is a q-degree polynomial in µ1, µ2, . . . , µn, where q = k − 2r − 1 ∈
{0, . . . , n− 2}. Let

Hq = {vi,j | |i| = q, |j| even}.
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Clearly, in a generic sense, if linear dependence exists, it must exist within the set
Hq. In other words, if we can prove that there is no linear dependence within each
Hq, we are done. (Note that since k ≤ n − 1 in the expression (7.1) there is no
dependence of powers of X on lower powers through the characteristic polynomial.)

There is nothing to prove for q = 0. For q = 1 we have

H1 = {XN j | j even} ∪ {N jX | j even}.

Suppose that there exists linear dependence in H1. Then there necessarily exist
ρ0, ρ2, . . . , ρn−2 and κ0, κ2, . . . , κn−2, not all zero, such that

X
(∑

ρ2jN
2j
)

+
(∑

κ2jN
2j
)
X = 0 = XR(N) +K(N)X = 0.

Therefore,
µa[R(N)]a,b + [K(N)]a,bµb = 0, a, b = 1, . . . , n.

Generically (i.e., for all µ except for a set of measure zero) this can hold only if
R(N),K(N) = 0. But degR,degK ≤ n − 1 and, since the eigenvalues of N are
distinct, the degree of the minimal polynomial of N is n. Therefore K,R ≡ 0, a
contradiction. Hence there is no linear dependence.

We continue to q = 2. Now

H2 = {Xi1N j1Xi2N j2Xi3 : i1 + i2 + i3 = 2, j1 + j2 even}.

Assume that there exist ρi,j , not all zero, such that∑
i,j

ρi,jX
i1N j1Xi2N j2Xi3 = 0.

Therefore ∑
i,j

ρi,j
∑
b

µi1a µ
i2
b µ

i3
c (N j1)a,b(N j2)b,c = 0, a, c = 1, . . . , n.

Note that we want the above to hold for all real µk, but this is possible only if

0 =
∑
i,j

ρi,j
∑
b

(N j1)a,b(N j2)b,c =
∑
i,j

ρi,j(N j1+j2)a,c, a, c = 1, . . . , n,

thus ∑
i.j

ρi,jN
j1+j2 = 0.

We again obtain a polynomial in N2 of degree < n/2, which cannot be zero: a
contradiction.

We can continue for higher s in an identical manner. �

Hence, since we have involution and independence, we have proved the following.

Theorem 7.2. For N invertible with distinct eigenvalues the system (1.1) is com-
pletely integrable.
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Corollary 7.3. For N odd dimensional with distinct eigenvalues and nullity one,
the system (1.1) is completely integrable.

Proof. In this case we have d = 1 and n = 2p+ 1. All eigenvalues are distinct with
one of them being zero. The above proof of independence still holds, the only change
being that the characteristic (and minimal) polynomial of N is of form Nw(N2),
where w is a polynomial of degree (n− 1)/2. �

Remark. Independently Li and Tomei [2006] have shown the integrability of the
same system in precisely the two cases discussed in this paper employing different
techniques; they use the loop group approach suggested by the Lax equation with
parameter (5.1) and give the solution in terms of factorization and the Riemann-
Hilbert problem.

8 Linearization of the Flow

We have demonstrated integrability of the system (1.1) for appropriateN by showing
involution and independence of a sufficient number of integrals. The purpose of this
section is to analyze the linearization of this system on the Jacobi variety of the
curve

det(zI − λN −X) = 0

using the theory discussed in Adler, van Moerbeke, and Vanhaecke [2004] and Grif-
fiths [1985], for example (see also Krichever [1977], Krichever and Novikov [1980],
Dubrovin, Novikov, and Krichever [1989], Adams, Harnad, and Hurturbise [1993]).

Linearization on the Jacobian for N Invertible and Generic. Let us denote
X(λ) := X + λN and Y (λ) := NX + XN + λN2. For N invertible with distinct
eigenvalues (n := 2p), choose an orthonormal basis of R2p in which N is written as

N =
[

0 V
−V 0

]
,

where V is a real diagonal matrix whose entries are v1, . . . , vp.
Denote by xk,l the entries of the matrix X and put it in the form

X =
[
U C
CT R

]
,

where U ∈ Sym(p), R ∈ Sym(p), and C ∈ Mp×p. Then the matrix Y (λ) can be
written as

Y (λ) =
[
−λV 2 + V CT − CV V R+ UV
−V U −RV −λV 2 + CTV − V C

]
.

The plane algebraic curve (called a spectral curve), associated to each X(λ),
namely,

ΓX(λ) := {(λ, z) ∈ C× C | det(zI −X(λ)) = 0},
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is preserved by the flow of (5.1); the functions which are defined by the coefficients
of the characteristic polynomial Q(λ, z) of X(λ) are constants of motion of (5.1).
Similarly, for each X(λ) the isospectral variety of matrices AX(λ) defined by

AX(λ) := {X ′(λ) | X(λ) and X ′(λ) have the same characteristic polynomial}

is preserved by the flow of (5.1). Notice that the spectral curve and the isospectral
variety depend on the values of the constants of motion only (i.e., on the vector
c = (qkl), where qkl is the coefficient of λkzl in Q(λ, z)). Sometimes one writes Γc

and Ac instead of ΓX(λ) and AX(λ). Notice that the spectral curve Γc is non-singular
for generic values of c. Let Γc be the compactification in the projective plane P2

C
of Γc. For generic values of c the projective curve Γc is also non-singular. Let
us compute the points at infinity of the spectral curve. The equation of the affine
spectral curve is:

z2p + v2
1v

2
2...v

2
pλ

2p +Q1(λ, z) = 0, (8.1)

where the polynomial Q1(λ, z) has degree strictly less than 2p. Put λ = ν/z0 and
z = ζ/z0. Now, set z0 = 0 in the equation

z2p
0 Q(ν/z0, ζ/z0) = 0

of the projective spectral curve Γc. We get the points at infinity

{P1, . . . , P2p} := Γc \ Γc,

with Pk+1 = (1, βk+1, 0), k = 0, 1, . . . , 2p− 1, where

βk+1 := v1/p exp
(
i
(2k + 1)π

2p

)
and v := |v1v2 · · · vp|.

At each of these points the meromorphic functions λ and z on Γc have a pole of order
1. Note also that the genus of the plane curve Γc is g := (p−1)(2p−1) (the genus of
a non-singular plane curve is given by the well-known formula g = (n− 1)(n− 2)/2,
where n is the degree of the homogeneous polynomial equation of the curve; see also
Griffiths [1985]).

Take now a generic value of the vector c such that Γc is non-singular and
note that for generic (λ, z) ∈ Γc, the eigenspace of X(λ) with eigenvalue z is one-
dimensional. If we denote by ∆kl(z,X(λ)) the cofactor of the matrix zI2p −X(λ)
corresponding to the (k, l)-th entry then, the unique eigenvector of X(λ) with eigen-
value z, normalized by ξ1 = 1, is

ξ(z,X(λ)) := (ξ1, . . . , ξ2p)T ,

where
ξk = ∆1k(z,X(λ))/∆11(z,X(λ)).

By Adler, van Moerbeke, and Vanhaecke [2004], p. 187, whenX(λ, t) flows according
to (5.1), the corresponding eigenvector ξ(t) := ξ(z,X(λ, t)) satisfies the autonomous
equation

ξ̇ + Y ξ = ρξ,
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where Y := Y (λ,X(λ, t)) and ρ is the scalar function

ρ := ρ(λ, z,X(λ, t)) =
2p∑
l=1

Y (λ,X(λ, t))1l∆1l(z,X(λ, t))/∆11(z,X(λ, t)).

The role of the eigenvector ξ is to define the divisor map

ic : Ac → Divd(Γc), X(λ) 7→ DX(λ),

where DX(λ) is the minimal effective divisor on Γc such that

(ξk)Γc ≥ −DX(λ), k = 1, . . . , 2p.

Here, d := deg(DX(λ)) is independent of X(λ) ∈ Ac (for generic c we can assume
Ac connected) and so, DX(λ) defines an effective divisor of degree d in Γc.

Now choose and fix a divisor D0 ∈ Divd(Γc), a basis (ω1, . . . , ωg) of holomorphic
differentials on Γc, and consider the vector ω := (ω1, . . . , ωg)T . One defines the
linearizing map by

jc : Ac → Jac(Γc), X 7→
∫ DX

D0

ω,

where Jac(Γc) denotes the Jacobian of the curve Γc.
The role of the function ρ is to linearize the isospectral flow of (5.1) on Ac, that

is, to be able to write∫ DX(t)

DX(0)

ω = t

2p∑
k=1

ResPk
(ρ(λ, z,X(λ, 0))ω), DX(0) = D0,

if it is possible. The Linearization Criterion in Adler, van Moerbeke, and Vanhaecke
[2004] p.195 says that this happens if and only if for each X ∈ Ac there exists a
meromorphic function ΦX on Γc with

(ΦX)Γc
≥ −

2p∑
k=1

Pk,

such that for all Pk,

(Laurent tail of dρ(λ, z,X)/dt at Pk) = (Laurent tail of ΦX at Pk);

see also Griffiths [1985].
Now we shall apply the linearization criterion to our case. Firstly, we have:

∆11(z,X(λ)) = z2p−1 + v2
2...v

2
pzλ

2p−2 +Q11(z, λ),

where the polynomial Q11(z, λ) has degree strictly less than 2p−1. Then we compute

∆12(z,X(λ)) = M12(z, λ) +Q12(z, λ),
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where the polynomial Q12(z, λ) has degree strictly less than 2p − 2 and the homo-
geneous polynomial

M12(z, λ) = −x1,2z
2p−2 + ...+ xp+1,p+2v1v2v

2
3...v

2
pλ

2p−2

has degree 2p− 2. Similarly, we get for l = 3, . . . , 2p, l 6= p+ 1,

∆1l(z,X(λ)) = M1l(z, λ) +Q1l(z, λ),

where the polynomial Q1l(z, λ) has degree strictly less than 2p − 2 and the homo-
geneous polynomial M1l(z, λ) has degree 2p− 2. For l = p+ 1, we get

∆1,p+1(z,X(λ)) = M1,p+1(z, λ) +Q1,p+1(z, λ),

where the polynomial Q1,p+1(z, λ) has degree strictly less than 2p − 1 and the ho-
mogeneous polynomial M1,p+1(z, λ) has degree 2p− 1.

Let zk be a local parameter around the point at infinity Pk, k = 1, . . . , 2p. The
Laurent tail of z at Pk is βk/zk and the Laurent tail of λ at Pk is 1/zk. By using
the formulas above we conclude that the Laurent tail of

∆1l(z,X(λ))/∆11(z,X(λ)), l = 2, . . . , 2p

at Pk is zero, since this meromorphic function is holomorphic at Pk. Moreover, this
function has a zero at Pk for each k = 1, . . . , 2p, and l 6= p + 1 (note that on the
denominator the constant term β2p−1

k + βkv
2
2...v

2
p is non-zero for generic c).

Now we compute the Laurent tail of dρ(λ, z,X)/dt at Pk. We emphasize that ρ
only depends on t through X(λ). Firstly, we see that the Laurent tail of

d

dt
(∆1l(z,X(λ))/∆11(z,X(λ))), l = 2, . . . , 2p

at each Pk is zero, because this meromorphic function is holomorphic at Pk, k =
1, . . . , 2p. Since

Y11 = −λv2
1, Y1l = v1xl,p+1 − vlx1,p+l for l = 2, . . . , p,

and
Y1,p+l = vlx1,l + v1xp+1,p+l for l = 1, . . . , p,

we conclude that the Laurent tail of

d

dt
ρ(λ, z,X) =

2p∑
l=2

d

dt
Y (λ,X(λ, t))1l

∆1l(z,X(λ, t))
∆11(z,X(λ, t))

+
2p∑
l=2

Y (λ,X(λ, t))1l
d

dt

∆1l(z,X(λ, t))
∆11(z,X(λ, t))

,

at each Pk is zero for all k = 1, . . . , 2p. Thus, the linearization criterion applies with
ΦX = 0. We have proved the following.

Theorem 8.1. For N invertible with distinct eigenvalues the map jc linearizes the
isospectral flow of the system (5.1) on the Jacobian Jac(Γc).
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Linearization on the Prym Variety for N Invertible and Generic. Since
(X + λN)T = X − λN , we have

Q(−λ, z) = Q(λ, z).

Thus there is an involution τ : Γc → Γc of the spectral curve defined by

τ(λ, z) = (−λ, z).

In homogeneous coordinates λ = ν/z0, z = ζ/z0 this involution is given by

τ(ν, ζ, z0) = (−ν, ζ, z0).

Notice that the involution τ has no fixed points at infinity (z0 = 0 and ν = 0 would
imply ζ = 0 from the homogeneous equation of the curve). Thus, the fixed points
are obtained from the equation

Q(0, z) = 0,

which is the characteristic polynomial of the symmetric matrix X. Generically,
we obtain 2p distinct points Z1, . . . , Z2p as its fixed (ramification) points, where
Zk = (0, zk, 1), k = 1, . . . , 2p, with zk the (real) eigenvalues of the symmetric matrix
X. By the Riemann-Hurwitz formula, the quotient (smooth) curve C1 := Γc/τ has
genus g1 := (p− 1)2.

Associated to the double covering

Γc → C1

is the Prym variety Prym(Γc/C1), with the property that Jac(Γc) is isogenous to

Jac(C1)× Prym(Γc/C1).

It follows that
dim

(
Prym(Γc/C1)

)
= g − g1 = p2 − p.

Let us denote by ΩΓc
the sheaf of holomorphic 1-forms on Γc. Recall that

Jac(Γc) ∼= H0(Γc,ΩΓc
)∗/H1(Γc,Z).

The involution τ acts on the vector space H0(Γc,ΩΓc
) and on the free group

H1(Γc,Z) having eigenvalues ±1. The Prym variety Prym(Γc/C1) can be equiva-
lently described as the quotient

H0(Γc,ΩΓc
)−∗/H1(Γc,Z)−,

where the upper ± index on a vector space denotes the ±1 eigenspaces.
Note that

ρ := ρ(λ, z,X(λ, t)) =
2p∑
l=1

Y (λ,X(λ, t))1l∆1l(z,X(λ, t))/∆11(z,X(λ, t))
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= −λv2
1 + ρ1(λ, z,X(λ, t)),

where the meromorphic function ρ1(λ, z,X(λ, t)) has residue zero at each Pk; see
the computation above. By Griffiths [1985], or by direct computation, we have

ResPk
(τρ(λ, z,X(λ, 0))) = −ResPk

(ρ(λ, z,X(λ, 0))).

It follows that the flow is actually linearized on Prym(Γc/C1). Thus we have proved:

Corollary 8.2. For N invertible with distinct eigenvalues the map jc linearizes the
isospectral flow of the system (5.1) on the Prym variety Prym(Γc/C1).

The Case of N Maximal Rank and Nullity One. Let us consider now the
case of n odd and N having distinct eigenvalues and nullity one, i.e., n = 2p+1 and
rankN = 2p. Choose an orthonormal basis of R2p+1 in which N is written as

N =

 0 V 0
−V 0 0
0 0 0

 ,
where V is a real diagonal matrix whose entries are v1, . . . , vp. The equation of the
affine spectral curve is:

z2p+1 + v2
1v

2
2...v

2
pλ

2pz +Q0
1(λ, z) = 0, (8.2)

where the polynomial Q0
1(λ, z) has degree strictly less than 2p + 1. Put λ = ν/z0

and z = ζ/z0. Now set z0 = 0 in the equation

z2p+1
0 Q(ν/z0, ζ/z0) = 0

of the projective spectral curve Γc. We get the points at infinity

{P0, P1, . . . , P2p} := Γc \ Γc,

with P0 = (1, 0, 0) and Pk+1 = (1, βk+1, 0), k = 0, 1, . . . , 2p− 1, where

βk+1 := v1/p exp
(
i
(2k + 1)π

2p

)
and v := |v1v2 · · · vp|.

Note that at each of these points, with the exception of P0, the meromorphic func-
tions λ and z on Γc have a pole of order 1. At P0, the function λ has a pole of order
1 and z has a zero of order 1.

We shall analyze below in detail the particular case p = 2 (that is, n = 5). A
direct computation shows that

∆11 = (z4 + v2
2z

2λ2) +Q0
11(z, λ), degQ0

11 < 4

∆12 = (v1v2x34zλ
2 − x12z

3) +Q0
12(z, λ), degQ0

12 < 3,

∆13 = (−v1v
2
2zλ

3 − v1z
3λ) +Q0

13(z, λ), degQ0
13 < 4,

∆14 = (v2x12z
2λ+ v1x34z

2λ− x14z
3 − v1v2x23zλ

2) +Q0
14(z, λ), degQ0

14 < 3,

∆15 = (−v1v
2
2x35λ

3 + v2
2x15zλ

2 − v1x35z
2λ+ x15z

3) +Q0
15(z, λ), degQ0

15 < 3.
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Let zk be a local parameter around the point at infinity Pk, k = 1, . . . , 4. The
Laurent tail of z at Pk is βk/zk and the Laurent tail of λ at Pk is 1/zk. By using
the formulas above we conclude that the Laurent tail of

∆1l(z,X(λ))/∆11(z,X(λ)), l = 2, . . . , 5

at Pk is zero, since this meromorphic function is holomorphic at Pk.
For P0 the computation changes. Let u be a local parameter around the point

P0. The Laurent tail of z at P0 is zero (z has a simple zero at P0) and the Laurent
tail of λ at P0 is 1/u. We shall emphasize the leading term for the Laurent tail of

∆11 = v2
2(x33x55 − x2

35)/u2 + . . . ,

∆12 = v1v2(x35x45 − x34x55)/u2 + . . . ,

∆13 = v1v
2
2x55/u

3 + . . . ,

∆14 = v1v2(x23x55 − x25x35)/u2 + . . . ,

∆15 = −v1v
2
2x35/u

3 + . . . ,

and we get

∆13/∆11 =
(

v1x55

x33x55 − x2
35

)
1
u

+ . . . ,

∆15/∆11 =
(

−v1x35

x33x55 − x2
35

)
1
u

+ . . . ,

the other two quotients ∆12/∆11 and ∆14/∆11 being holomorphic around P0.
As in the case of n even, we have

ρ(λ, z,X) = −v2
1λ+ (v1x23 − v2x14)

∆12

∆11

+ v1(x11 + x33)
∆13

∆11
+ (v2x12 + v1x34)

∆14

∆11
+ v1x35

∆15

∆11

and hence

ResP0 ρ = v2
1

(
−1 +

(x11 + x33)x55 − x2
35

x33x55 − x2
35

)
.

¿From the system (1.2) we get

x11 + x33 = C1 and x55 = C2,

where C1, C2 are constants of the motion. Then a direct computation shows that

ResP0

dρ

dt
=

2v2
1C2x35ẋ35(C1 − x33)

(C2x33 − x2
35)2

,

which is non-zero generically. By applying Lemma 5.11 in Adler, van Moerbeke,
and Vanhaecke [2004] and the linearization criterion, we get the following result.
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Proposition 8.3. For N ∈ so(5) having distinct eigenvalues and nullity one, gener-
ically the map jc does not linearize the isospectral flow of the system (5.1) on the
Jacobian Jac(Γc).

An easier computation gives the same result in the case n = 3. We carried out the
case n = 5 as more representative of the general case; for n = 3, there are various
non-typical simplifications of the computations leading to the non-linearizability
result due to the low size of the matrices involved. As will be shown below, however,
this system linearizes on the generalized Jacobian.

Linearization on the Generalized Jacobian. Let us consider now the case in
which N has distinct eigenvalues. In this case either n = 2p and N is invertible or,
n = 2p+ 1, rankN = 2p and N has nullity one.

We shall follow Gavrilov [1999] and Beauville [1990] (see also, Adler and van
Moerbeke [1980] and Deift, Li, and Tomei [1989]). Let X(λ) = λN + X, where X
is a symmetric real matrix and let Q(λ, z) = det(zIn −X(λ)) be its characteristic
polynomial. Let MN be the affine space of all complex matrix polynomials

X ′(λ) = λN +X ′ , X ′ ∈ gln(C),

with N as above and fixed. To stress the dependence on N and Q, we denote now
the isospectral variety by MN

Q , i.e.

MN
Q := {X ′(λ) ∈MN | det(zIn −X ′(λ)) = Q(λ, z)}.

The subgroup G := PGLn(C;N) of the projective group PGLn(C) formed by ma-
trices which commute with N is a symmetry group of the system (5.1). Moreover,
the system (5.1) is equivalent to the following Lax pair system

d

dt
(X + λN) =

[
X2/λ,X + λN

]
. (8.3)

The Lax pair system (8.3) was studied, for example, in Beauville [1990], Gavrilov
[1999]. Let V be the affine space of polynomials

Q(λ, z) = zn + s1(λ)zn−1 + ...+ sn(λ),

where si(λ) are polynomials in λ of degree deg si ≤ i for all i = 1, ..., n. Consider
the map

h : MN → V,

which sends a matrix of MN to its characteristic polynomial (the components of the
map h are the coefficients of the characteristic polynomial). We shall use the follow-
ing definitions (compare to Adler, van Moerbeke, and Vanhaecke [2004], Gavrilov
[1999], Beauville [1990]):

Definition 8.4. Let h :M→ V be a (complex) completely integrable system, where
the Poisson manifold M is a non-singular affine variety, V is an affine space and
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h = (h1, ..., hs) is given by regular algebraic functions. We say that the system h :
M→ V is an algebraic completely integrable system (a.c.i. system) if each generic
fiber of h is a Zariski open subset of an Abelian variety, on which the Hamiltonian
vector fields generated by hi are translation invariant.

Definition 8.5. Let h :M→ V be a (complex) completely integrable system, where
the Poisson manifoldM is a non-singular affine variety, V is an affine space and h =
(h1, ..., hs) is given by regular algebraic functions. We say that the system h :M→
V is a generalized algebraic completely integrable system (generalized a.c.i. system)
if each generic fiber of h is a Zariski open subset of a commutative algebraic group,
on which the Hamiltonian vector fields generated by hi are translation invariant.

Since G acts freely and properly on the isospectral variety MN
Q , it follows that

MN
Q can be considered as the total space of a holomorphic principal fiber bundle

with base space MN
Q /G, structural group G, and natural projection map

MN
Q →MN

Q /G.

Generically, the spectral curve Γc (where c is the vector of the coefficients of the
polynomial Q) is smooth. Then, the manifold MN

Q /G is bi-holomorphic to a Zariski
open subset of the usual Jacobian Jac(Γc); see Beauville [1990]. By Theorem 2.1
in Gavrilov [1999], the isospectral variety MN

Q is smooth and bi-holomorphic to a
Zariski open subset of the generalized Jacobian variety Jac(Γ′c), where Γ′c is the
singular curve obtained from Γc by identifying its infinite points {P1, . . . , Pn} with
a single point ∞ (for details, see Serre [1959]).

The generalized Jacobian Jac(Γ′c) is a non-compact commutative algebraic group
given by a non-trivial extension of the usual Jacobian Jac(Γc) by the algebraic group
G ∼= (C∗)n−1

0→ G→ Jac(Γ′c)→ Jac(Γc)→ 0.

The generalized Jacobian Jac(Γ′c) can also be considered as total space of a holo-
morphic principal fiber bundle with base space Jac(Γc) and structure group G and
has dimension g + n− 1, where g is the genus of Γc.

Thus we have arrived at the following (see Beauville [1990] and Gavrilov [1999]):

Proposition 8.6. For N having distinct eigenvalues, the system h : MN → V is a
generalized algebraic completely integrable system.
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