Biharmonic and bianalytic maps

Michèle Benyounes, Eric Loubeau, Radu Slobodeanu

June 26, 2008

1 Overture

Biharmonic equation arose through a classical problem of elasticity:

"In April, 1828, Poisson read before the Paris Academy of Sciences a memoir, destined to become famous, on the Theory of Elasticity. One of the many things that he did in that memoir was to formulate a theory of the equilibrium of elastic plates. If the plate is subjected to a pressure p (per unit of area) at the point (x, y), he showed that the deflexion w (i.e. the displacement of a point of the plate in the direction of the pressure) must satisfy the partial differential equation which we now write $d\nabla^4 w = p$, where $\nabla^4 w = \nabla^2 (\nabla^2 w)$, ∇^2 denotes the operator $\partial^2 / \partial x^2 + \partial^2 / \partial y^2$, and d is a constant which we now call the "flexural rigidity" of the plate. It depends on the elastic quality of the material ... and it varies as the cube of the thickness." ([Lo])

Recently it has benefited of much attention from differential geometers, [M-O], mostly from the point of view of *real* Rimannian geometry. This paper fills a gap by dealing with the complex geometry of the biharmonic map problem.

The relation between biharmonic *functions* and complex bianalytic ones is the same as the relation between harmonic and analytic (holomorphic) functions. We shall find a way to recover this relation of biharmonicity with bianalyticity at the most general level, for *mappings* between Hermitian manifolds.

Even if the case of complex bianalytic functions (from the complex plane to itself) is already completely understood (see [B] and the references therein), we prefer to present it *ab initio* for the sake of clarity.

2 A very simple example, due to Love

Let $f : \mathbb{C} \longrightarrow \mathbb{C}$, f = u + iv a holomorphic map. It is classical that the holomorphicity condition, $\partial f / \partial \overline{z} = 0$, translates into Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0; \qquad \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0.$$

In this context, Love, [Lo], noticed that $U = yu - xv : \mathbb{R}^2 \to \mathbb{R}$ is a biharmonic function. Indeed, it is easy to see that:

$$\Delta U = 4 \frac{\partial u}{\partial y}.$$

Then it is obvious that $\Delta^2 U = 0$.

Taking V = xu + yv, we have:

$$\begin{cases} \frac{\partial U}{\partial x} - \frac{\partial V}{\partial y} = -2v;\\ \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} = 2u \end{cases}$$

In particular, $\Delta V = 4 \frac{\partial u}{\partial x}$ and therefore $\Delta^2 V = 0$. Note that the following relation holds good for $F : \mathbb{C} \to \mathbb{C}, \ F := U + iV$:

$$\frac{\partial}{\partial \overline{z}} \left(\frac{\partial F}{\partial \overline{z}} \right) = 0 \tag{2.1}$$

The generality of Love's example 3

Definition 3.1. We call **bianalytic** a complex function that satisfies the condition (2.1).

Remark first the real version of (2.1) (where F = U + iV):

$$\begin{cases}
\frac{\partial^2 U}{\partial x^2} - \frac{\partial^2 U}{\partial y^2} = 2 \frac{\partial^2 V}{\partial x \partial y}; \\
\frac{\partial^2 V}{\partial x^2} - \frac{\partial^2 V}{\partial y^2} = -2 \frac{\partial^2 U}{\partial x \partial y}
\end{cases}$$
(3.1)

It is easy to see that any bianalytic function has the form $F(z) = \overline{z}A(z) + B(z)$, where A, B are holomorphic functions (and obviously $A = \frac{\partial F}{\partial \overline{z}}$).

Theorem 3.1. A bianalytic complex function is biharmonic. Conversely, any biharmonic function is (locally) the real or imaginary part of a bianalytic function.

Proof. Remark first that (3.1) implies:

$$\Delta U = 2\frac{\partial}{\partial y} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right); \qquad \Delta V = -2\frac{\partial}{\partial y} \left(\frac{\partial U}{\partial x} - \frac{\partial V}{\partial y} \right).$$

But the bianaliticity assures us that $\frac{\partial F}{\partial \overline{z}} = \left(\frac{\partial U}{\partial x} - \frac{\partial V}{\partial y}\right) + i\left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)$ is holomorphic, so its components are harmonic functions. Therefore we check imediately that $\Delta(\Delta U) = 0$, $\Delta(\Delta V) = 0.$

For the converse it suffices to apply Almansi formula [A] for f, supposed to be biharmonic:

 $\exists f_{1,2}$ harmonic functions, such that $f = |z|^2 f_1 + f_2.$

As $f_{1,2}$ are (locally) the real or imaginary part of some holomorphic functions, the proof follows.

4 Geometrization of Love's example

Recall that the second covariant derivative (the generalized Hessian) of functions defined on a Riemannian manifold (M, g) is given by:

$$\nabla \mathrm{d}f(X,Y) := \left(\nabla_X \mathrm{d}f\right)(Y) = X(Y(f)) - \left(\nabla_X Y\right)(f), \forall X, Y \in \Gamma(TM).$$

We can easily check that this is a symmetric 2-covariant tensor. On an almost complex manifold we can naturally extend it to complexified tangent space $T^{\mathbb{C}}M$. Recall also that, for functions on an almost Hermitian manifold, the Laplacean and biLaplacean w.r.t. a complex unitary frame are given by

$$\Delta f = \sum_{j=1}^{m} \nabla \mathrm{d} f(\overline{Z}_j, Z_j), \qquad \Delta^2 f = \Delta(\Delta f).$$

Definition 4.1. A function $f : (M, g, J) \to \mathbb{C}$ on an almost Hermitian manifold is called **bianalytic** if

$$\nabla df(\overline{Z}, \overline{W}) = 0, \quad \forall Z, W \in \Gamma(T^{1,0}M).$$
(4.1)

Remark 4.1. If J is integrable, we can (locally) translate (4.1) in complex coordinates:

$$\frac{\partial^2 f}{\partial \overline{z}_i \partial \overline{z}_j} - \Gamma_{\overline{i}\overline{j}}^{\overline{k}} \frac{\partial f}{\partial \overline{z}_k} = 0, \quad \forall i, j = 1, ..., m.$$

$$(4.2)$$

In particular, in this case any holomorphic function is trivially bianalytic. To have also bianalytic conjugate coordinate functions \overline{z}_{κ} we must have $\Gamma_{\overline{i}\overline{j}}^{\overline{\kappa}} = 0$ (this will force a Kähler metric on M to be flat).

In the following, we shall study the biharmonicity of such functions.

Remark 4.2. The classical result of Lichnerowicz [Li] tells us that on holomorphic functions (solutions of the *first order* Cauchy-Riemann equations), the (*second order*) Laplace equation reduces to a *first order* equation which is trivially satisfied if the metric (coefficients) g_{ij} satisfy a *first order* equation (cosymplectic condition).

On bianalytic functions (solutions of second order equations (4.1)), the (fourth order) biLaplace equation reduces to a second order equation which is trivially satisfied if the metric (coefficients) g_{ij} satisfy a second order equation (some curvature condition).

Theorem 4.1. On a Kähler manifold, every bianalytic function is biharmonic if and only if the metric is Ricci-flat.

Proof. Using bianalyticity of f, the biLaplacean:

$$\Delta(\Delta f) = \sum_{j,k,l=1}^{m} Z_l \left(\overline{Z}_l \left(\overline{Z}_j(\overline{Z}_j(f)) - \Gamma_{j\overline{j}}^k \cdot Z_k(f) \right) \right) - \left(\nabla_{Z_l} \overline{Z}_l \right) \left(Z_j(\overline{Z}_j(f)) - \Gamma_{j\overline{j}}^k \cdot Z_k(f) \right)$$

can be puted in the following form:

$$\mathcal{A}_{pq\overline{r}} \cdot Z_p\left(Z_q(\overline{Z}_r(f))\right) + \mathcal{B}_{p\overline{q}} \cdot Z_p(\overline{Z}_q(f)) + \mathcal{C}_s \cdot \overline{Z}_s(f).$$

We can check that \mathcal{A} vanishes identically and that the cancelation of \mathcal{B} and \mathcal{C} translates in the Ricci-flat condition (N.B. Kähler assumption is crucial).

Remark 4.3. The above result is analogous to the following one: "On a Hermitian manifold, every holomorphic (local) function is harmonic if and only if the Hermitian structure is cosymplectic".

5 A replica of Lichnerowicz's result

Recall that the second fundamental form of a mapping $\varphi : (M, g) \to (N, h)$ given by:

$$\nabla \mathrm{d}\varphi(X,Y) := \nabla_X^{\varphi} \left(\mathrm{d}\varphi(Y) \right) - \mathrm{d}\varphi \left(\nabla_X^M Y \right), \forall X, Y \in \Gamma(TM).$$

We can see that that $\nabla d\varphi \in \Gamma(T^*M \otimes T^*M \otimes \varphi^{-1}TN)$. For mappings between almost Hermitian manifolds we can naturally extend it to complexified tangent spaces. The tension field (analogous to the Laplacean for functions) is $\tau(\varphi) = \text{trace}\nabla d\varphi$.

W.r.t. a complex unitary frame, the equation for **biharmonic maps** between (almost) Hermitian manifolds is

$$\sum_{k=1}^{m} \left\{ \nabla_{Z_{k}}^{\varphi} \nabla_{\overline{Z}_{k}}^{\varphi} \tau(\varphi) - \nabla_{\nabla_{Z_{k}}^{M} \overline{Z}_{k}}^{\varphi} \tau(\varphi) - R^{N} (\mathrm{d}\varphi(Z_{k}), \tau(\varphi)) \mathrm{d}\varphi(\overline{Z}_{k}) \right\} = 0.$$
(5.1)

Definition 5.1. A mapping $\varphi : (M^{2m}, g, J) \to (N^{2n}, h, J^N)$ between almost Hermitian manifolds is called **bianalytic** if

$$\nabla \mathrm{d}\varphi(\overline{Z},\overline{W}) \in \varphi^{-1}T^{(0,1)}N, \quad \forall Z, W \in \Gamma(T^{(1,0)}M).$$
(5.2)

Remark 5.1. If J and J^N are integrable, we can (locally) translate (5.2) in complex coordinates $\{z_i\}_{i=1,\dots,m}$ and $\{z_{\alpha}\}_{\alpha=1,\dots,n}$ on M and N, respectively:

$$\varphi_{\overline{i}\overline{j}}^{\sigma} - \Gamma_{\overline{i}\overline{j}}^{\overline{k}}\varphi_{\overline{k}}^{\sigma} + \widetilde{\Gamma}_{AB}^{\sigma}\varphi_{\overline{i}}^{A}\varphi_{\overline{j}}^{B} = 0, \quad \forall i, j = 1, ..., m, \forall \sigma = 1, ..., n.$$
(5.3)

In particular, in this case any holomorphic map is trivially bianalytic. Notice that bianalyticity of functions can be seen as a particular case of the above definition.

Let us study biharmonicity for such maps. We'll denote $d' = d \circ pr_{T^{(1,0)}N}$ and $d'' = d \circ pr_{T^{(0,1)}N}$.

Lemma 5.1. A bianalytic map, φ , between Kähler manifolds is biharmonic if and only if:

$$\sum_{j,k=1}^{m} \left\{ \nabla_{Z_{k}}^{\varphi} d' \varphi(R^{M}(Z_{j}, \overline{Z}_{k}) \overline{Z}_{j}) - d' \varphi(R^{M}(Z_{j}, \nabla_{Z_{k}} \overline{Z}_{k}) \overline{Z}_{j}) \right\} - \left\{ \nabla_{Z_{k}}^{\varphi} R^{N}(d\varphi(Z_{j}), d\varphi(\overline{Z}_{k})) d' \varphi(\overline{Z}_{j}) - R^{N}(d\varphi(Z_{j}), d\varphi(\nabla_{Z_{k}} \overline{Z}_{k})) d' \varphi(\overline{Z}_{j}) \right\} - R^{N}(d\varphi(Z_{j}), \tau(\varphi)) d' \varphi(\overline{Z}_{j}) = 0.$$

$$(5.4)$$

Proof. We denote by (I) and (II) the first two terms in (5.1). We shall make repeated use of (4.1) in the form:

$$\nabla_{\overline{Z}}^{\varphi} \mathrm{d}\varphi(\overline{W}) = \mathrm{d}\varphi\left(\nabla_{\overline{Z}}\overline{W}\right) + \varepsilon_{\overline{Z},\overline{W}}, \quad \varepsilon_{\overline{Z},\overline{W}} \in T^{(0,1)}N.$$

in order to reduce the order of the equation (5.1). We'll often use also the definition of being Kähler:

$$\nabla_X T^{(1,0)} M \subseteq T^{(1,0)} M, \quad \forall X \in TM.$$

$$\begin{split} (I) &= \nabla_{Z_k}^{\varphi} \left[\nabla_{\overline{Z}_k}^{\varphi} \nabla_{Z_j}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) - \nabla_{\overline{Z}_k}^{\varphi} \mathrm{d}\varphi(\nabla_{Z_j}\overline{Z}_j) \right] \\ &= \nabla_{Z_k}^{\varphi} \left[\nabla_{Z_j}^{\varphi} \nabla_{\overline{Z}_k}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + \nabla_{[\overline{Z}_k, Z_j]}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + R^N (\mathrm{d}\varphi(\overline{Z}_k), \mathrm{d}\varphi(Z_j)) \mathrm{d}\varphi(\overline{Z}_j) - \mathrm{d}\varphi(\nabla_{\overline{Z}_k} \nabla_{Z_j}\overline{Z}_j) \right] \\ &= \nabla_{Z_k}^{\varphi} \left[\nabla_{Z_j}^{\varphi} \mathrm{d}\varphi(\nabla_{\overline{Z}_k}\overline{Z}_j) + \nabla_{[\overline{Z}_k, Z_j]}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + R^N (\mathrm{d}\varphi(\overline{Z}_k), \mathrm{d}\varphi(Z_j)) \mathrm{d}\varphi(\overline{Z}_j) - \mathrm{d}\varphi(\nabla_{\overline{Z}_k} \nabla_{Z_j}\overline{Z}_j) \right] + \\ &+ (0, 1) - \text{type terms.} \end{split}$$

where the second right-hand term can be rewritten:

$$\nabla^{\varphi}_{[\overline{Z}_k, Z_j]} \mathrm{d}\varphi(\overline{Z}_j) = \nabla^{\varphi}_{\nabla_{\overline{Z}_k} Z_j} \mathrm{d}\varphi(\overline{Z}_j) - \mathrm{d}\varphi\left(\nabla_{\nabla_{Z_j} \overline{Z}_k} \overline{Z}_j\right).$$

With this we've made optimal use of (4.1) for the term (I).

Let's do the same for (II) (∇ will mean ∇^M).

$$\begin{split} -(II) = & \nabla_{\nabla_{Z_k}^M \overline{Z}_k}^{\varphi} \tau(\varphi) = \nabla_{\nabla_{Z_k} \overline{Z}_k}^{\varphi} \nabla_{Z_j}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) - \nabla_{\nabla_{Z_k} \overline{Z}_k}^{\varphi} \mathrm{d}\varphi(\nabla_{Z_j} \overline{Z}_j) \\ = & \nabla_{Z_j}^{\varphi} \nabla_{\nabla_{Z_k} \overline{Z}_k}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + \nabla_{[\nabla_{Z_k} \overline{Z}_k, Z_j]}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + R^N (\mathrm{d}\varphi(\nabla_{Z_k} \overline{Z}_k), \mathrm{d}\varphi(Z_j)) \mathrm{d}\varphi(\overline{Z}_j) \\ & - \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_k} \overline{Z}_k} \nabla_{Z_j} \overline{Z}_j \right) = \\ = & \nabla_{Z_j}^{\varphi} \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_k} \overline{Z}_k} \overline{Z}_j \right) + \nabla_{[\nabla_{Z_k} \overline{Z}_k, Z_j]}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + R^N (\mathrm{d}\varphi(\nabla_{Z_k} \overline{Z}_k), \mathrm{d}\varphi(Z_j)) \mathrm{d}\varphi(\overline{Z}_j) \\ & - \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_k} \overline{Z}_k} \nabla_{Z_j} \overline{Z}_j \right) + \\ & + (0, 1) - \mathrm{type \ terms.} \end{split}$$

where again the second right-hand term can be rewritten:

$$\nabla^{\varphi}_{[\nabla_{Z_k}\overline{Z}_k, Z_j]} \mathrm{d}\varphi(\overline{Z}_j) = \nabla^{\varphi}_{\nabla_{\nabla_{Z_k}\overline{Z}_k}Z_j} \mathrm{d}\varphi(\overline{Z}_j) - \mathrm{d}\varphi\left(\nabla_{\nabla_{Z_j}\nabla_{Z_k}\overline{Z}_k}\overline{Z}_j\right).$$

With this we've made optimal use of (4.1) for the term (II).

Let us organize all the terms after the order of derivatives upon φ :

* terms with 3^{rd} -order derivatives := \mathfrak{A} ,

* terms with 2^{nd} -order derivatives := \mathfrak{B} ,

* terms with 1^{st} -order derivatives := \mathfrak{C} . We have:

$$\mathfrak{A} = \nabla_{Z_k}^{\varphi} \nabla_{Z_j}^{\varphi} \mathrm{d}\varphi(\nabla_{\overline{Z}_k} \overline{Z}_j) + \nabla_{Z_k}^{\varphi} \nabla_{\nabla_{\overline{Z}_k} Z_j}^{\varphi} \mathrm{d}\varphi(\overline{Z}_j) + \text{ all terms in } R^N.$$

$$\begin{split} \mathfrak{B} &= -\nabla_{Z_k}^{\varphi} \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_j} \overline{Z}_k} \overline{Z}_j \right) - \nabla_{Z_k}^{\varphi} \mathrm{d}\varphi (\nabla_{\overline{Z}_k} \nabla_{Z_j} \overline{Z}_j) - \nabla_{Z_j}^{\varphi} \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_k} \overline{Z}_k} \overline{Z}_j \right) - \nabla_{\nabla_{\nabla_{Z_k} \overline{Z}_k} Z_j}^{\varphi} \mathrm{d}\varphi (\overline{Z}_j) \\ &= (\text{not.}) \ \mathfrak{B}_1 + \mathfrak{B}_2 + \mathfrak{B}_3 + \mathfrak{B}_4. \end{split}$$

$$\mathfrak{C} = \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_k} \overline{Z}_k} \nabla_{Z_j} \overline{Z}_j \right) + \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_j} \nabla_{Z_k} \overline{Z}_k} \overline{Z}_j \right).$$

We can rewrite:

$$\begin{split} \mathfrak{A} = & \nabla_{Z_k}^{\varphi} \left[\nabla \mathrm{d}\varphi(Z_j, \nabla_{\overline{Z}_k} \overline{Z}_j) + \nabla \mathrm{d}\varphi(\nabla_{\overline{Z}_k} Z_j, \overline{Z}_j) \right] + \nabla_{Z_k}^{\varphi} \mathrm{d}\varphi(\nabla_{Z_j} \nabla_{\overline{Z}_k} \overline{Z}_j) + \nabla_{Z_k}^{\varphi} \mathrm{d}\varphi(\nabla_{\nabla_{\overline{Z}_k} Z_j} \overline{Z}_j) \\ & + \text{all terms in } R^N. \end{split}$$

But the first right-hand side term (which is a sum after j,k) is zero. Indeed:

$$\begin{split} &\sum_{j,k} \nabla_{Z_k}^{\varphi} \left[\nabla \mathrm{d}\varphi(Z_j, \nabla_{\overline{Z}_k} \overline{Z}_j) + \nabla \mathrm{d}\varphi(\nabla_{\overline{Z}_k} Z_j, \overline{Z}_j) \right] = \sum_{j,k,l} \nabla_{Z_k}^{\varphi} \left[\Gamma_{\overline{kj}}^{\overline{l}} \nabla \mathrm{d}\varphi(Z_j, \overline{Z}_l) + \Gamma_{\overline{k}j}^{l} \nabla \mathrm{d}\varphi(Z_l, \overline{Z}_j) \right] \\ &\sum_{j,k,l} \nabla_{Z_k}^{\varphi} \left[\Gamma_{\overline{kj}}^{\overline{l}} + \Gamma_{\overline{k}l}^{j} \right] \nabla \mathrm{d}\varphi(Z_j, \overline{Z}_l) = 0, \end{split}$$

where we have re-indexed the second sum in j, l.

Therefore we have a simpler version of the formula for \mathfrak{A} :

$$\mathfrak{A} = \nabla_{Z_k}^{\varphi} \mathrm{d}\varphi(\nabla_{Z_j} \nabla_{\overline{Z}_k} \overline{Z}_j) + \nabla_{Z_k}^{\varphi} \mathrm{d}\varphi(\nabla_{\nabla_{\overline{Z}_k} Z_j} \overline{Z}_j) + \text{all terms in } R^N.$$

Remark now that the first two terms combine perfectly with \mathfrak{B}_1 and \mathfrak{B}_2 to give us:

$$\mathfrak{A} + \mathfrak{B}_{1} + \mathfrak{B}_{2} = \nabla_{Z_{k}}^{\varphi} \mathrm{d}\varphi \left(R^{M}(Z_{j}, \overline{Z}_{k}) \overline{Z}_{j} \right) + \text{all terms in } R^{N}.$$
(5.5)

The remaining terms in \mathfrak{B} can be rewritten:

$$\mathfrak{B}_{3} + \mathfrak{B}_{4} = -\nabla_{Z_{j}}^{\varphi} \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} \overline{Z}_{j} \right) - \nabla_{\nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} Z_{j}}^{\varphi} \mathrm{d}\varphi (\overline{Z}_{j})$$

$$= -\nabla \mathrm{d}\varphi \left(Z_{j}, \nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} \overline{Z}_{j} \right) - \nabla \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} Z_{j}, \overline{Z}_{j} \right)$$

$$- \mathrm{d}\varphi \left(\nabla_{Z_{j}} \nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} \overline{Z}_{j} \right) - \mathrm{d}\varphi \left(\nabla_{\nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} Z_{j}} \overline{Z}_{j} \right).$$

Again the first two right-hand side terms (which are sums after j,k) are zero. Indeed:

$$-\sum_{j,k} \nabla \mathrm{d}\varphi \left(Z_j, \nabla_{\nabla_{Z_k} \overline{Z}_k} \overline{Z}_j \right) + \nabla \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_k} \overline{Z}_k} Z_j, \overline{Z}_j \right)$$
$$= -\sum_{j,k,p,q} \Gamma_{k\overline{k}}^{\overline{p}} \Gamma_{\overline{p}\overline{j}}^{\overline{q}} \nabla \mathrm{d}\varphi \left(Z_j, \overline{Z}_q \right) + \Gamma_{k\overline{k}}^{\overline{p}} \Gamma_{\overline{p}j}^{\overline{q}} \nabla \mathrm{d}\varphi \left(Z_q, \overline{Z}_j \right)$$
$$= -\sum_{j,k,p,q} \Gamma_{k\overline{k}}^{\overline{p}} (\Gamma_{\overline{p}\overline{j}}^{\overline{q}} + \Gamma_{\overline{p}q}^{j}) \nabla \mathrm{d}\varphi \left(Z_j, \overline{Z}_q \right) = 0,$$

where we have re-indexed the second sum in j and q.

Taking the above fact into account, we observe that:

$$\mathfrak{B}_{3} + \mathfrak{B}_{4} + \mathfrak{C} = - \mathrm{d}\varphi \left(\nabla_{Z_{j}} \nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} \overline{Z}_{j} \right) - \mathrm{d}\varphi \left(\nabla_{\nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} Z_{j}} \overline{Z}_{j} \right) + \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_{k}} \overline{Z}_{k}} \nabla_{Z_{j}} \overline{Z}_{j} \right) + \mathrm{d}\varphi \left(\nabla_{\nabla_{Z_{j}} \nabla_{Z_{k}} \overline{Z}_{k}} \overline{Z}_{j} \right)$$
$$= - \mathrm{d}\varphi \left(R^{M} \left(Z_{j}, \nabla_{Z_{k}} \overline{Z}_{k} \right) \overline{Z}_{j} \right).$$
(5.6)

Now (5.5) and (5.6) give us the desired formula (5.4).

Remark 5.2. Recall that is the Ricci operator Ric is defined by:

$$\operatorname{Ricci}(Z, \overline{W}) = g(\mathfrak{Ric}Z, \overline{W}).$$

Therefore (5.4) can be read as

$$\operatorname{trace} \nabla(\mathrm{d}\varphi \circ \mathfrak{Ric}^{M}) - \operatorname{trace} \nabla(\mathfrak{Ric}^{\varphi^{-1}TN} \circ \mathrm{d}\varphi) = \mathfrak{Ric}^{\varphi^{-1}TN}(\tau(\varphi)) \mod T^{(0,1)}N.$$
(5.7)

In particular, we can state the following

Theorem 5.1. A bianalytic map from a Ricci-flat Kähler manifold to a a flat one is biharmonic.

Remark 5.3. Consider *normal* coordinates at $p \in M$ and $\varphi(p) \in N$. Then (5.4) translates as:

$$\begin{split} \tau_{2}(\varphi)^{\sigma}\Big|_{p} &= -\varphi_{i\bar{\jmath}}^{\sigma} \cdot Ric_{\bar{\imath}j} - \varphi_{\bar{\imath}}^{\sigma} \cdot (Ric_{i\bar{\jmath}})_{j} + \\ &+ \varphi_{k}^{C} \varphi_{\bar{\jmath}}^{\gamma} \left(\varphi_{\bar{k}}^{\overline{\alpha}} \varphi_{j}^{\beta} - \varphi_{\bar{k}}^{\beta} \varphi_{\bar{\jmath}}^{\overline{\alpha}}\right) \cdot \left(\tilde{\Gamma}_{\beta\gamma}^{\sigma}\right)_{\overline{\alpha}C} + \\ &+ 2 \left[\varphi_{j\bar{\jmath}}^{\overline{\alpha}} \varphi_{k}^{\beta} \varphi_{\bar{k}}^{\gamma} \cdot \left(\tilde{\Gamma}_{\beta\gamma}^{\sigma}\right)_{\overline{\alpha}} - \varphi_{j\bar{\jmath}}^{\alpha} \varphi_{\bar{k}}^{\overline{\beta}} \varphi_{\bar{k}}^{\gamma} \cdot \left(\tilde{\Gamma}_{\alpha\gamma}^{\sigma}\right)_{\overline{\beta}}\right] + \\ &+ \varphi_{j\bar{k}}^{\gamma} \varphi_{\bar{\jmath}}^{\overline{\beta}} \varphi_{k}^{\alpha} \cdot \left(\tilde{\Gamma}_{\alpha\gamma}^{\sigma}\right)_{\overline{\beta}} - \varphi_{j\bar{k}}^{\gamma} \varphi_{\bar{\jmath}}^{\beta} \varphi_{\bar{k}}^{\overline{\alpha}} \cdot \left(\tilde{\Gamma}_{\beta\gamma}^{\sigma}\right)_{\overline{\alpha}} + \\ &+ \varphi_{jk}^{\alpha} \varphi_{\bar{\jmath}}^{\overline{\beta}} \varphi_{\bar{k}}^{\gamma} \cdot \left(\tilde{\Gamma}_{\alpha\gamma}^{\sigma}\right)_{\overline{\beta}} = 0. \end{split}$$

6 Appendix

The following proposition interprets the standard classes of almost Hermitian manifolds (M^{2m}, J, g) in terms of the "Christoffel symbols" Γ^A_{BC} with respect to a unitary frame of the form: $\{Z_{\alpha} = \frac{1}{\sqrt{2}}(e_{\alpha} - iJe_{\alpha}), Z_{\overline{\alpha}} = \frac{1}{\sqrt{2}}(e_{\alpha} + iJe_{\alpha})\}_{\alpha \in \overline{1,m}}$, where $g(e_{\alpha}, e_{\beta}) = \delta_{\alpha\beta}$.

As usual we denote $\Gamma_{AB}^C = g(\nabla_{Z_A} Z_B, Z_{\overline{C}})$, where $A = \alpha, \overline{\alpha} \ (\alpha = 1, ..., n)$ and so does B and C. We have the decomposition:

$$\nabla_{Z_A} Z_B = \Gamma^{\gamma}_{AB} Z_{\gamma} + \Gamma^{\overline{\gamma}}_{AB} Z_{\overline{\gamma}}.$$

It is easy to check that:

$$\overline{\Gamma^{C}_{AB}} = \Gamma^{\overline{C}}_{\overline{AB}}; \qquad \Gamma^{C}_{AB} = -\Gamma^{\overline{B}}_{A\overline{C}}.$$

We can prove by direct check:

Proposition 6.1. An almost Hermitian manifold (M, J, g) is

- (i) *integrable* if and only if: $\Gamma^{\overline{\alpha}}_{\beta\gamma} = 0, \ \forall \alpha, \beta, \gamma \in \overline{1, m}$.
- (*ii*) (1,2)-symplectic if and only if: $\Gamma^{\overline{\alpha}}_{\overline{\beta}\gamma} = 0, \ \forall \alpha, \beta, \gamma \in \overline{1,m}.$
- (iii) **Kähler** if and only if: $\Gamma^{\overline{\alpha}}_{\beta\gamma} = \Gamma^{\overline{\alpha}}_{\overline{\beta\gamma}} = 0, \ \forall \alpha, \beta, \gamma \in \overline{1, m}.$
- (iv) cosymplectic if and only if: $\sum_{\beta} \Gamma^{\overline{\alpha}}_{\overline{\beta}\beta} = 0, \ \forall \alpha \in \overline{1, m}.$

Proof. (i) It is known that J is integrable if and only if:

$$(\nabla_{JX}J)Y = J(\nabla_XJ)Y, \quad \forall X, Y \in TM.$$

This translates in complex terms as:

$$\nabla_Z T^{(1,0)} M \subseteq T^{(1,0)} M, \quad \forall Z \in T^{(1,0)} M.$$

(ii) Direct consequence of the definition of being (1,2)-symplectic:

$$\nabla_{\overline{z}} T^{(1,0)} M \subseteq T^{(1,0)} M, \quad \forall Z \in T^{(1,0)} M.$$

(*iii*) Direct consequence of the definition of being Kähler:

$$\nabla_X T^{(1,0)} M \subseteq T^{(1,0)} M, \quad \forall X \in TM,$$

in particular $\Gamma^{\overline{\alpha}}_{B\gamma} = 0, \forall B.$

(iv) Direct consequence of the definition of being cosymplectic:

$$\sum_{\beta=1}^{n} \nabla_{Z_{\overline{\beta}}} Z_{\beta} \in T^{(1,0)} M.$$

So in the Kähler case, the only possibly non-zero "Christoffel symbols" are $\Gamma^{\alpha}_{\beta\gamma}$, $\Gamma^{\overline{\alpha}}_{\overline{\beta\gamma}}$ and $\Gamma^{\overline{\alpha}}_{\overline{\beta\gamma}}$, $\Gamma^{\alpha}_{\overline{\beta\gamma}}$

Acknowledgements. I gratefully acknowledge the support by the CEx grant no. 2-CEx 06-11-22/25.07.2006.

References

- [A] ALMANSI, E., Sull integrazione dellequazione differenziale $\Delta^{2n}u = 0$, Ann. Mat. Pura Appl., Suppl. 3, **2** (1898), 1–51.
- [B] BALK, M. B., Polyanalytic functions and their generalizations, in Complex analysis, I, 195-253, Encyclopaedia Math. Sci., 85, Springer, Berlin, 1997.
- [Li] LICHNEROWICZ, A., Applications Harmoniques et Variétés Kähleriennes, Sympos. Math. III (1970), 341–402.
- [Lo] LOVE, A.E.H., Biharmonic analysis, especially in a rectangle, and its applications to the theory of elasticity, Journal of the London Mathematical Society, s1-3(2) (1928), 144–156.
- [M-O] MONTALDO, S., ONICIUC, C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22.

M. Benyounes Département de Mathématiques,

Université de Bretagne Occidentale 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France. Email: Michele.Benyounes@univ-brest.fr

E. Loubeau Département de Mathématiques,
Université de Bretagne Occidentale
6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France.
Email: loubeau@univ-brest.fr

R. Slobodeanu Faculty of Physics, Bucharest University, 405 Atomiştilor Str., CP Mg-11, RO - 077125 Bucharest, Romania. Email: radualexandru.slobodeanu@g.unibuc.ro