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1 Overture

Biharmonic equation arose through a classical problem of elasticity:

”In April, 1828, Poisson read before the Paris Academy of Sciences a memoir,
destined to become famous, on the Theory of Elasticity. One of the many
things that he did in that memoir was to formulate a theory of the equilibrium
of elastic plates. If the plate is subjected to a pressure p (per unit of area)
at the point (x, y), he showed that the deflexion w (i.e. the displacement of
a point of the plate in the direction of the pressure) must satisfy the partial
differential equation which we now write d∇4w = p, where ∇4w = ∇2(∇2w),
∇2 denotes the operator ∂2/∂x2 + ∂2/∂y2, and d is a constant which we now
call the ”flexural rigidity” of the plate. It depends on the elastic quality of the
material ... and it varies as the cube of the thickness.” ([Lo])

Recently it has benefited of much attention from differential geometers, [M-O],
mostly from the point of view of real Rimannian geometry. This paper fills a gap by
dealing with the complex geometry of the biharmonic map problem.

The relation between biharmonic functions and complex bianalytic ones is the
same as the relation between harmonic and analytic (holomorphic) functions. We
shall find a way to recover this relation of biharmonicity with bianalyticity at the
most general level, for mappings between Hermitian manifolds.

Even if the case of complex bianalytic functions (from the complex plane to itself)
is already completely understood (see [B] and the references therein), we prefer to
present it ab initio for the sake of clarity.

2 A very simple example, due to Love

Let f : C −→ C, f = u+iv a holomorphic map. It is classical that the holomorphicity
condition, ∂f/∂z = 0, translates into Cauchy-Riemann equations:

∂u

∂x
− ∂v

∂y
= 0;

∂u

∂y
+

∂v

∂x
= 0.

In this context, Love, [Lo], noticed that U = yu − xv : R2 → R is a biharmonic
function. Indeed, it is easy to see that:

∆U = 4
∂u

∂y
.
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Then it is obvious that ∆2U = 0.
Taking V = xu + yv, we have:

∂U

∂x
− ∂V

∂y
= −2v;

∂U

∂y
+

∂V

∂x
= 2u

In particular, ∆V = 4
∂u

∂x
and therefore ∆2V = 0.

Note that the folowing relation holds good for F : C → C, F := U + iV :

∂

∂z

(
∂F

∂z

)
= 0 (2.1)

3 The generality of Love’s example

Definition 3.1. We call bianalytic a complex function that satisfies the condition
(2.1).

Remark first the real version of (2.1) (where F = U + iV ):
∂2U

∂x2
− ∂2U

∂y2
= 2

∂2V

∂x∂y
;

∂2V

∂x2
− ∂2V

∂y2
= −2

∂2U

∂x∂y

(3.1)

It is easy to see that any bianalytic function has the form F (z) = zA(z) + B(z),
where A, B are holomorphic functions (and obviously A = ∂F

∂z
).

Theorem 3.1. A bianalytic complex function is biharmonic. Conversely, any bihar-
monic function is (locally) the real or imaginary part of a bianalytic function.

Proof. Remark first that (3.1) implies:

∆U = 2
∂

∂y

(
∂U

∂y
+

∂V

∂x

)
; ∆V = −2

∂

∂y

(
∂U

∂x
− ∂V

∂y

)
.

But the bianaliticity assures us that ∂F
∂z

= (∂U
∂x
− ∂V

∂y
)+i(∂U

∂y
+ ∂V

∂x
) is holomorphic, so its

components are harmonic functions. Therefore we check imediately that ∆(∆U) = 0,
∆(∆V ) = 0.

For the converse it sufices to apply Almansi formula [A] for f , supposed to be
biharmonic:

∃f1,2 harmonic functions, such that f = |z|2f1 + f2.

As f1,2 are (locally) the real or imaginary part of some holomorphic functions, the
proof follows.
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4 Geometrization of Love’s example

Recall that the second covariant derivative (the generalized Hessian) of
functions defined on a Riemannian manifold (M, g) is given by:

∇df(X, Y ) := (∇Xdf) (Y ) = X(Y (f))− (∇XY ) (f),∀X, Y ∈ Γ(TM).

We can easily check that this is a symmetric 2-covariant tensor. On an
almost complex manifold we can naturally extend it to complexified tan-
gent space T CM . Recall also that, for functions on an almost Hermitian
manifold, the Laplacean and biLaplacean w.r.t. a complex unitary frame
are given by

∆f =
m∑

j=1

∇df(Zj, Zj), ∆2f = ∆(∆f).

Definition 4.1. A function f : (M, g, J) → C on an almost Hermitian manifold is
called bianalytic if

∇df(Z, W ) = 0, ∀Z,W ∈ Γ(T 1,0M). (4.1)

Remark 4.1. If J is integrable, we can (locally) translate (4.1) in complex coordi-
nates:

∂2f

∂zi∂zj

− Γk
i j

∂f

∂zk

= 0, ∀i, j = 1, ...,m. (4.2)

In particular, in this case any holomorphic function is trivially bianalytic. To have
also bianalytic conjugate coordinate functions zκ we must have Γκ

i j
= 0 (this will force

a Kähler metric on M to be flat).

In the following, we shall study the biharmonicity of such functions.

Remark 4.2. The classical result of Lichnerowicz [Li] tells us that on holomorphic
functions (solutions of the first order Cauchy-Riemann equations), the (second order)
Laplace equation reduces to a first order equation which is trivially satisfied if the
metric (coefficients) gij satisfy a first order equation (cosymplectic condition).
On bianalytic functions (solutions of second order equations (4.1)), the (fourth order)
biLaplace equation reduces to a second order equation which is trivially satisfied if the
metric (coefficients) gij satisfy a second order equation (some curvature condition).

Theorem 4.1. On a Kähler manifold, every bianalytic function is biharmonic if and
only if the metric is Ricci-flat.

Proof. Using bianalyticity of f , the biLaplacean:

∆(∆f) =
m∑

j,k,l=1

Zl

(
Z l

(
Zj(Zj(f))− Γk

jj
· Zk(f)

))
−

(
∇Zl

Z l

) (
Zj(Zj(f))− Γk

jj
· Zk(f)

)
can be puted in the following form:

Apqr · Zp

(
Zq(Zr(f))

)
+ Bpq · Zp(Zq(f)) + Cs · Zs(f).

We can check thatA vanishes identically and that the cancelation of B and C translates
in the Ricci-flat condition (N.B. Kähler assumption is crucial).

Remark 4.3. The above result is analogous to the following one: ”On a Hermitian
manifold, every holomorphic (local) function is harmonic if and only if the Hermitian
structure is cosymplectic”.
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5 A replica of Lichnerowicz’s result

Recall that the second fundamental form of a mapping ϕ : (M, g) → (N, h)
given by:

∇dϕ(X, Y ) := ∇ϕ
X (dϕ(Y ))− dϕ

(
∇M

X Y
)
,∀X, Y ∈ Γ(TM).

We can see that that ∇dϕ ∈ Γ(T ∗M ⊗ T ∗M ⊗ ϕ−1TN). For mappings
between almost Hermitian manifolds we can naturally extend it to com-
plexified tangent spaces. The tension field (analogous to the Laplacean
for functions) is τ(ϕ) = trace∇dϕ.

W.r.t. a complex unitary frame, the equation for biharmonic maps
between (almost) Hermitian manifolds is

m∑
k=1

{
∇ϕ

Zk
∇ϕ

Zk
τ(ϕ)−∇ϕ

∇M
Zk

Zk
τ(ϕ)−RN(dϕ(Zk), τ(ϕ))dϕ(Zk)

}
= 0.

(5.1)

Definition 5.1. A mapping ϕ : (M2m, g, J) → (N2n, h, JN) between almost Hermi-
tian manifolds is called bianalytic if

∇dϕ(Z, W ) ∈ ϕ−1T (0,1)N, ∀Z,W ∈ Γ(T (1,0)M). (5.2)

Remark 5.1. If J and JN are integrable, we can (locally) translate (5.2) in complex
coordinates {zi}i=1,...,m and {zα}α=1,...,n on M and N , respectively:

ϕσ
i j
− Γk

i j
ϕσ

k
+ Γ̃σ

ABϕA
i
ϕB

j
= 0, ∀i, j = 1, ...,m,∀σ = 1, ..., n. (5.3)

In particular, in this case any holomorphic map is trivially bianalytic. Notice that
bianalyticity of functions can be seen as a particular case of the above definition.

Let us study biharmonicity for such maps. We’ll denote d′ = d ◦ prT (1,0)N and
d′′ = d ◦ prT (0,1)N .

Lemma 5.1. A bianalytic map, ϕ, between Kähler manifolds is biharmonic if and
only if:

m∑
j,k=1

{
∇ϕ

Zk
d′ϕ(RM(Zj, Zk)Zj)− d′ϕ(RM(Zj,∇Zk

Zk)Zj)
}
−{

∇ϕ
Zk

RN(dϕ(Zj), dϕ(Zk))d
′ϕ(Zj)−RN(dϕ(Zj), dϕ(∇Zk

Zk))d
′ϕ(Zj)

}
−

RN(dϕ(Zj), τ(ϕ))d′ϕ(Zj) = 0.

(5.4)

Proof. We denote by (I) and (II) the first two terms in (5.1). We shall make repeated
use of (4.1) in the form:

∇ϕ

Z
dϕ(W ) = dϕ

(
∇ZW

)
+ εZ,W , εZ,W ∈ T (0,1)N.

in order to reduce the order of the equation (5.1). We’ll often use also the definition
of being Kähler:

∇XT (1,0)M ⊆ T (1,0)M, ∀X ∈ TM.
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(I) = ∇ϕ
Zk

[
∇ϕ

Zk
∇ϕ

Zj
dϕ(Zj)−∇ϕ

Zk
dϕ(∇Zj

Zj)
]

= ∇ϕ
Zk

[
∇ϕ

Zj
∇ϕ

Zk
dϕ(Zj) +∇ϕ

[Zk,Zj ]
dϕ(Zj) + RN(dϕ(Zk), dϕ(Zj))dϕ(Zj)− dϕ(∇Zk

∇Zj
Zj)

]
= ∇ϕ

Zk

[
∇ϕ

Zj
dϕ(∇Zk

Zj) +∇ϕ

[Zk,Zj ]
dϕ(Zj) + RN(dϕ(Zk), dϕ(Zj))dϕ(Zj)− dϕ(∇Zk

∇Zj
Zj)

]
+

+ (0, 1)− type terms.

where the second right-hand term can be rewritten:

∇ϕ

[Zk,Zj ]
dϕ(Zj) = ∇ϕ

∇Zk
Zj

dϕ(Zj)− dϕ
(
∇∇Zj

Zk
Zj

)
.

With this we’ve made optimal use of (4.1) for the term (I).
Let’s do the same for (II) (∇ will mean ∇M).

−(II) =∇ϕ

∇M
Zk

Zk
τ(ϕ) = ∇ϕ

∇Zk
Zk
∇ϕ

Zj
dϕ(Zj)−∇ϕ

∇Zk
Zk

dϕ(∇Zj
Zj)

=∇ϕ
Zj
∇ϕ

∇Zk
Zk

dϕ(Zj) +∇ϕ

[∇Zk
Zk,Zj ]

dϕ(Zj) + RN(dϕ(∇Zk
Zk), dϕ(Zj))dϕ(Zj)

− dϕ
(
∇∇Zk

Zk
∇Zj

Zj

)
=

=∇ϕ
Zj

dϕ
(
∇∇Zk

Zk
Zj

)
+∇ϕ

[∇Zk
Zk,Zj ]

dϕ(Zj) + RN(dϕ(∇Zk
Zk), dϕ(Zj))dϕ(Zj)

− dϕ
(
∇∇Zk

Zk
∇Zj

Zj

)
+

+ (0, 1)− type terms.

where again the second right-hand term can be rewritten:

∇ϕ

[∇Zk
Zk,Zj ]

dϕ(Zj) = ∇ϕ
∇∇Zk

Zk
Zj

dϕ(Zj)− dϕ
(
∇∇Zj

∇Zk
Zk

Zj

)
.

With this we’ve made optimal use of (4.1) for the term (II).

Let us organize all the terms after the order of derivatives upon ϕ:
* terms with 3rd-order derivatives := A,
* terms with 2nd-order derivatives := B,
* terms with 1st-order derivatives := C.
We have:

A = ∇ϕ
Zk
∇ϕ

Zj
dϕ(∇Zk

Zj) +∇ϕ
Zk
∇ϕ
∇Zk

Zj
dϕ(Zj) + all terms in RN .

B = −∇ϕ
Zk

dϕ
(
∇∇Zj

Zk
Zj

)
−∇ϕ

Zk
dϕ(∇Zk

∇Zj
Zj)−∇ϕ

Zj
dϕ

(
∇∇Zk

Zk
Zj

)
−∇ϕ

∇∇Zk
Zk

Zj
dϕ(Zj)

= (not.) B1 + B2 + B3 + B4.

C = dϕ
(
∇∇Zk

Zk
∇Zj

Zj

)
+ dϕ

(
∇∇Zj

∇Zk
Zk

Zj

)
.

We can rewrite:

A =∇ϕ
Zk

[
∇dϕ(Zj,∇Zk

Zj) +∇dϕ(∇Zk
Zj, Zj)

]
+∇ϕ

Zk
dϕ(∇Zj

∇Zk
Zj) +∇ϕ

Zk
dϕ(∇∇Zk

Zj
Zj)

+ all terms in RN .
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But the first right-hand side term (which is a sum after j,k) is zero. Indeed:∑
j,k

∇ϕ
Zk

[
∇dϕ(Zj,∇Zk

Zj) +∇dϕ(∇Zk
Zj, Zj)

]
=

∑
j,k,l

∇ϕ
Zk

[
Γl

kj
∇dϕ(Zj, Z l) + Γl

kj
∇dϕ(Zl, Zj)

]
∑
j,k,l

∇ϕ
Zk

[
Γl

kj
+ Γj

kl

]
∇dϕ(Zj, Z l) = 0,

where we have re-indexed the second sum in j, l.
Therefore we have a simpler version of the formula for A:

A =∇ϕ
Zk

dϕ(∇Zj
∇Zk

Zj) +∇ϕ
Zk

dϕ(∇∇Zk
Zj

Zj) + all terms in RN .

Remark now that the first two terms combine perfectly with B1 and B2 to give
us:

A + B1 + B2 =∇ϕ
Zk

dϕ
(
RM(Zj, Zk)Zj

)
+ all terms in RN . (5.5)

The remaining terms in B can be rewritten:

B3 + B4 =−∇ϕ
Zj

dϕ
(
∇∇Zk

Zk
Zj

)
−∇ϕ

∇∇Zk
Zk

Zj
dϕ(Zj)

=−∇dϕ
(
Zj,∇∇Zk

Zk
Zj

)
−∇dϕ

(
∇∇Zk

Zk
Zj, Zj

)
− dϕ

(
∇Zj

∇∇Zk
Zk

Zj

)
− dϕ

(
∇∇∇Zk

Zk
Zj

Zj

)
.

Again the first two right-hand side terms (which are sums after j,k) are zero.
Indeed:

−
∑
j,k

∇dϕ
(
Zj,∇∇Zk

Zk
Zj

)
+∇dϕ

(
∇∇Zk

Zk
Zj, Zj

)
= −

∑
j,k,p,q

Γp

kk
Γq

pj
∇dϕ

(
Zj, Zq

)
+ Γp

kk
Γq

pj∇dϕ
(
Zq, Zj

)
= −

∑
j,k,p,q

Γp

kk
(Γq

pj
+ Γj

pq)∇dϕ
(
Zj, Zq

)
= 0,

where we have re-indexed the second sum in j and q.
Taking the above fact into account, we observe that:

B3 + B4 + C =− dϕ
(
∇Zj

∇∇Zk
Zk

Zj

)
− dϕ

(
∇∇∇Zk

Zk
Zj

Zj

)
+ dϕ

(
∇∇Zk

Zk
∇Zj

Zj

)
+ dϕ

(
∇∇Zj

∇Zk
Zk

Zj

)
=− dϕ

(
RM

(
Zj,∇Zk

Zk

)
Zj

)
.

(5.6)

Now (5.5) and (5.6) give us the desired formula (5.4).

Remark 5.2. Recall that is the Ricci operator Ric is defined by:

Ricci(Z,W ) = g(RicZ,W ).

Therefore (5.4) can be read as

trace∇(dϕ ◦RicM)− trace∇(Ricϕ−1TN ◦ dϕ) = Ricϕ−1TN(τ(ϕ)) mod T (0,1)N. (5.7)
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In particular, we can state the following

Theorem 5.1. A bianalytic map from a Ricci-flat Kähler manifold to a a flat one is
biharmonic.

Remark 5.3. Consider normal coordinates at p ∈ M and ϕ(p) ∈ N . Then (5.4)
translates as:

τ2(ϕ)σ
∣∣∣
p

= −ϕσ
i  ·Ricıj − ϕσ

ı · (Rici)j+

+ ϕC
k ϕγ



(
ϕα

k
ϕβ

j − ϕβ

k
ϕα

j

)
·
(
Γ̃σ

βγ

)
αC

+

+ 2

[
ϕα

j ϕβ
k ϕγ

k
·
(
Γ̃σ

βγ

)
α
− ϕα

j ϕβ
kϕγ

k
·
(
Γ̃σ

αγ

)
β

]
+

+ ϕγ

jk
ϕβ

 ϕα
k ·

(
Γ̃σ

αγ

)
β
− ϕγ

jk
ϕβ

 ϕα
k ·

(
Γ̃σ

βγ

)
α

+

+ ϕα
jk ϕβ

 ϕγ

k
·
(
Γ̃σ

αγ

)
β

= 0.

6 Appendix

The following proposition interprets the standard classes of almost Hermitian man-
ifolds (M2m, J, g) in terms of the ”Christoffel symbols” ΓA

BC with respect to a uni-
tary frame of the form: {Zα = 1√

2
(eα − iJeα), Zα = 1√

2
(eα + iJeα)}α∈1,m, where

g(eα, eβ) = δαβ.
As usual we denote ΓC

AB = g(∇ZA
ZB, ZC), where A = α, α (α = 1, ..., n) and so

does B and C. We have the decomposition:

∇ZA
ZB = Γγ

ABZγ + Γγ
ABZγ.

It is easy to check that:

ΓC
AB = ΓC

AB
; ΓC

AB = −ΓB
AC

.

We can prove by direct check:

Proposition 6.1. An almost Hermitian manifold (M, J, g) is

(i) integrable if and only if: Γα
βγ = 0, ∀α, β, γ ∈ 1, m.

(ii) (1, 2)-symplectic if and only if: Γα
βγ

= 0, ∀α, β, γ ∈ 1, m.

(iii) Kähler if and only if: Γα
βγ = Γα

βγ
= 0, ∀α, β, γ ∈ 1, m.

(iv) cosymplectic if and only if:
∑

β
Γα

ββ
= 0, ∀α ∈ 1, m.

Proof. (i) It is known that J is integrable if and only if:

(∇JXJ) Y = J (∇XJ) Y, ∀X, Y ∈ TM.

This translates in complex terms as:

∇ZT (1,0)M ⊆ T (1,0)M, ∀Z ∈ T (1,0)M.
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(ii) Direct consequence of the definition of being (1,2)-symplectic:

∇ZT (1,0)M ⊆ T (1,0)M, ∀Z ∈ T (1,0)M.

(iii) Direct consequence of the definition of being Kähler:

∇XT (1,0)M ⊆ T (1,0)M, ∀X ∈ TM,

in particular Γα
Bγ = 0,∀B.

(iv) Direct consequence of the definition of being cosymplectic:

n∑
β=1

∇Zβ
Zβ ∈ T (1,0)M.

So in the Kähler case, the only possibly non-zero ”Christoffel symbols” are Γα
βγ,

Γα
βγ

and Γα
βγ, Γα

βγ
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