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ON COMPLEX INFINITE-DIMENSIONAL GRASSMANN MANIFOLDS

DANIEL BELTITA AND JOSE E. GALE

ABSTRACT. We investigate geometric properties of Grassmann manifolds and their complexifications
in an infinite-dimensional setting. Specific structures of quaternionic type are constructed on these
complexifications by a direct method that does not require any use of the cotangent bundles.

1. INTRODUCTION

In this paper we discuss differential geometric properties of Grassmann manifolds in a C*-algebraic
setting. Background information for the circle of ideas centered on such manifolds here can be found in
the works [PR&7], [S88], [CPR90], [W90], [MR92], [MS98], [DGO01], [DG02], [G06], and [BO6], [U85]. Our
approach to the subject originated in some specific questions concerning holomorphy, which in a natural
way led us to investigate complex structures as well as complexifications of these manifolds.

Let H be a complex Hilbert space. Recall that the Grassmannian Gr(H) associated with H, or,
alternatively, with the Banach algebra B(H) of bounded operators on H, is formed by all closed linear
subspaces of H and it is a complex Banach manifold (see [U85]). For more general C*-algebras the
definition of the Grassmann manifold is a bit more involved, and not always standard. For instance, if A
is a unital C*-algebra, the Grassmannian of A is sometimes assumed to be the set Py, (A) of selfadjoint
idempotents of A, endowed with the relative topology. This is so considered for example in [S88], where
such Grassmannians are studied in connection with Hermitian holomorphic bundles as motivated by
certain aspects of the Cowen-Douglas theory. The manifold Ps,(A) is in principle real-analytic, so that
one must be careful in order to deal with holomorphy, see [S88], p. 278. In other settings it is suitable
to deal with explicit complex Grassmann manifolds, as for example in [PR87] or [DGO01], [DG02]. This
is accomplished in the following way.

Recall that, for a given unital, complex, associative (C*-) algebra A, two idempotents p,q € A are said
to be equivalent if p¢ = ¢ and gp = p. The equivalence class of an idempotent p is denoted here by [p],
and the quotient set formed by all the classes [p] is denoted by Gr(A) and called the Grassmannian of A.
Let G4 be the group of invertible elements of A and let U4 be the subgroup of G4 of unitary elements.
Then, see Section 2 below, G 4 has a natural action on Gr(A). The isotropy subgroup of G4 at [p] for such
an action is denoted by Ga([p]). Then the G 4-orbits in Gr(A) coincide with the quotients Ga/G4([p]),
which, endowed with their respective quotient topologies, are holomorphic Banach manifolds [DGO01]. In
analogy, put G4(p) :== {u"'pu : u € Ga} and Uy(p) := {u"'pu : u € Ua}. As above, G4/Ga(p) is a
complex Banach manifold and Uy /Uy4(p) is, for p € Ps,(A), a real-analytic Banach manifold, in their
respective quotient topologies. Let us remark that Uy /U4(p) = Ua/Ua([p]) for every p € Pso(A) (see
Remark 2.5) and that Psa(A4) = Uyep,,(a)Ua/Ua([p]). The complex structures of the Grassmannian
Gr(A) = UG4/Ug([p]) and of its associated (holomorphic) Stiefel bundle have been plainly used in
[DGO1] and [DGO2] in order to obtain holomorphic parametrizations of framings for projections on a
fixed Banach space. It sounds sensible to analyze the relationship between the differentiable structures
of the two types of Grassmannians U, /U4(p) and G4/Ga([p]) when p = p*.

Another motivation in writing the present paper came from representation theory. To explain this,
recall the classical setting of the Bott-Borel-Weil theorem of [Bo57] involving the flag manifolds and
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realizations of representations on holomorphic sections spaces of holomorphic bundles. The notion of
complezxification plays a central role in this area, inasmuch as one of the ways to describe the complex
structure of the flag manifolds is to view the latter as homogeneous spaces of complexifications of compact
Lie groups.

A similar circle of ideas can be found in infinite dimensions for a class of manifolds which play a central
role in many areas of functional analysis and operator theory. Specifically, let 1 € B C A be unital C*-
algebras such that there exists a conditional expectation E: A — B. Let ¢ be a state of A such that
poE = ¢, and let 7, denote the Gelfand-Naimark-Segal (GNS, for short) representation obtained out of
. Then it is possible to realize 7, as acting on spaces of real-analytic sections of a certain homogeneous
Hermitian vector bundle on U,4/Up. Further, in some cases involving finiteness properties of spectra and
traces of elements in A, one can prove that the homogeneous space U4 /Up is a complex manifold as well
and that the realization space is formed by holomorphic sections (see Theorem 5.4 and Theorem 5.8 in
[BROT]).

Apart from the above result, the holomorphic character of the manifolds Uy/Up and associated
bundles is far from being clear in general. Since the Grassmannians U,4/U4(p) and tautological bundles
over Uy /U4(p) are universal objects (see for example [ALRS97], [DG02] in connection with ideas here),
we search for related results of holomorphy in this special case. Using a charaterization (and labelling) of
invariant complex structures on infinite-dimensional homogeneous manifolds (Theorem 6.1 in [B06]), we
prove in Section 3 below that Ug/Ua(p) and Ga/Ga([p]) are locally biholomorphic complex manifolds.
Moreover, it is also shown that G4/Ga(p) is a complexification of U, /U(p), and then these results
are translated in terms of homogeneous vector bundles, in the spirit of Theorem 5.8 in [BRO7]. (A
complementary perspective on these manifolds can be found in [BN05].) Section 4 is devoted to exhibit
how the above results look like in the (on the other hand well known) case of the algebra A = B(H) and
corresponding universal, tautological vector bundles.

Finally, G4/Ga(p) being a complexification of the complex manifold U, /U4(p), we point out the
existence of quaternionic structures for the above complexifications in Section 5. The occurrence of
quaternionic structures on this level is a fairly known phenomenon in finite dimensions; see for instance
the complexifications of Hermitian symmetric spaces of compact type studied in [BG96] and [BGIS].
An infinite-dimensional version of this phenomenon was discussed in [TO07] in the special case of the
restricted Grassmann manifold. The latter manifold is modeled on a Hilbert space and is endowed with
a Riemannian structure which allows one to construct almost complex structures on the tangent bundle
by identifying it with the cotangent bundle.

Nothing of this kind is available in the case of the C*-algebraic Grassmann manifolds investigated
in the present paper. Instead, we have to construct the almost complex structures in a direct manner
inspired by some of the earliest insights into the geometry of the tangent bundles; see [H60] and [Do62].
This approach leads to almost hypercomplex structures on the complexifications of the C*-algebraic
Grassmann manifolds provided by the tangent bundles and is related to the theory of adapted complex
structures developed in finite dimensions in papers like [LS91], [Sz04], and [Bi04].

2. GRASSMANN MANIFOLDS IN AN ALGEBRAIC SETTING
We begin with several elementary considerations about idempotents in complex associative algebras.

Notation 2.1. We are going to use the following notation: A is a unital associative algebra over C with
unit 1 and set of idempotents P(A) = {p € A | p? = p}; for p1,p2 € P(A) the notation p; ~ py means
that we have both p;ps = py and pop; = p1. For each p € P(A) we denote its equivalence class by
[p] :== {q € P(A) | ¢ ~ p}. The quotient set is denoted by Gr(A) = P(A)/ ~ (the Grassmannian of A)
and the quotient map by 7: p — [p], P(A) — Gr(A4).

The group of invertible elements of A is denoted by G4, and it has a natural action on P(A) by

a: (u,q) —uqu™t, Ga xP(A) — P(A).

The corresponding isotropy group at p € P(A) is {u € Ga | a(u,p) = p} = Ga N {p} = Gy =: G(p)
where we denote by {p}’ the commutant subalgebra of p in A (see page 484 in [DG02]).
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Lemma 2.2. There ezists a well-defined action of the group G4 upon Gr(A) like this:
B (u,[p]) = [upu™'],  Ga x Gr(A) — Gr(4),

and the diagram
GaxP(A) —%— P(A)

ideﬂ'J( J/W

Ga x Gr(4d) —2— Gr(4)

1s commutative.

Proof. See for instance the end of Section 3 in [DGO1]. O

Definition 2.3. For every idempotent p € P(A) we denote by G4([p]) the isotropy group of the action
B: Ga x Gr(A) — Gr(A) at the point [p] € Gr(A), that is, Ga([p]) = {u € G4 | [upu™t] = [p]}. O

The following statement concerns the relationship between the isotropy groups of the actions o and
of G4 upon P(A) and Gr(A), respectively.
Proposition 2.4. The following assertions hold.

(i) For every p € P(A) we have Ga([p]) N Ga([1 — p]) = G(p).
(ii) If U is a subgroup of G4 and p € P(A) is such that UN Ga([p]) = UN G4([1 — p]), then
UNGa(lp]) =Un{p} = Ulp).

Proof. (i) We have
Ga(lpl) = {u € Ga | [upu™"] = [p]} and Ga([1 —p]) = {u € Ga | [u(1 —p)u~'] = [1 —pl},

so that clearly G4 ([p]) NGa([1—p]) 2 Gan{p} . For the converse inclusion let u € G4([p]) NG A([1 —p])
arbitrary. In particular u € G z([p]), whence upu~—! ~ p, which is equivalent to the fact that (upu=1)p = p
and p(upu~!) = upu~!. Consequently we have both

(2.1) pu'p=u""p
and
(2.2) pup = up.

On the other hand, since u € G4([1 — p]) as well, it follows that (1 — p)u='(1 —p) = v~ ' (1 — p) and
(1 —p)u(l —p) = u(l — p). The later equation is equivalent to u — up — pu + pup = u — up, that is,
pup = pu. Then (2.2) implies that up = pu, that is, u € G(p).

(i) This follows at once from part (i). O

Remark 2.5. For instance, Proposition 2.4(ii) can be applied if the algebra A is equipped with an
involution a + a* such that p = p*, and U = Uy := {u € G | u=! = u*} is the corresponding
unitary group. In this case, it follows by (2.1) and (2.2) that up = pu whenever u € Ua N Ga([p]), hence
UanGa(pl) =UanGa([l —p]) =Uan{p} = Ualp).

For g € P(A), put ¢ := 1—q and A? := {a € A | gag = 0}. The following result is partly a counterpart,
for algebras, of Proposition 2.4.

Proposition 2.6. Assume that A is equipped with an involution and let p € P(A) such that p = p*.
Then the following assertions hold:

(i) uAPu=t = AP, for every u € Us(p) ;

() AP (A7 = {p} ;
(i) AP 4+ AP = A;
(iv) (AP)* = AP.
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Proof. (i) This is readily seen.

(ii) Firstly, note that, for a € A, we have pap = pap if and only if ap = pa. Moreover, if ap = pa then
pap = ap — pap = ap — ap = 0 and analogously pap = 0. From this, the equality of the statement follows.

(iii) For every a € A and q € P(A) we have ga € A?. Hence a = pa + pa € AP + AP, as we wanted to
show.

(iv) Take a € AP. Then pap = ap, that is, pa*p = pa*. Hence, pa*p = (a* — pa*)(1 — p) =
a* —pa* —a*p+ a*p = a* — a*p = a*p. This means that a* € AP. Conversely, if a € AP then, as above,
pa*p = a*p; that is, a = (a*)* with a* € AP. |

3. HOMOGENEOUS COMPLEX STRUCTURES AND COMPLEXIFICATIONS

Definition 3.1. Let X be a Banach manifold. A complezification of X is a complex Banach manifold
Y endowed with an anti-holomorphic involutive diffeomorphism y +— y~* such that the fixed point
submanifold Yy = {y € Y | y = y~*} is diffeomorphic to X . O

Assume from now on that A is a unital C*-algebra. Then G 4 is a Banach-Lie group whose Lie algebra
coincides with A. The G 4-orbits in Gr(A), obtained by the action 8 and equipped with the topology
inherited from Gr(A), are holomorphic Banach manifolds diffeomorphic to G 4/G([p]) (endowed with its
quotient topology), see Theorem 2.2 in [DGO02]. Also, the Grassmannian Gr(A) can be described as the
discrete union of these G 4-orbits, see [DGO1] and Theorem 2.3 in [DGO02]. Moreover, Uy is a Banach-Lie
subgroup of G4 with the Lie algebra uy := {a € A | a* = —a}. As it is well known, the complexification
of uy is A, via the decomposition a = {(a — a*)/2} + i{(a + a*)/2i}, (a € A). Thus the conjugation of
A is given by a — @ := {(a — a*)/2} — i{(a + a*)/2i} = —a*. We seek for possible topological and/or
differentiable relationships between the G 4-orbits and the U 4-orbits U4 /U4(p) in Gr(A).

The above observations lead to the following result.

Theorem 3.2. Assume that A is a unital C*-algebra, p = p* € P(A) and ua(p) :=us N {p}’. Let Ady
denote the adjoint representation of U 4. Then the following assertions hold:
(i) Ady(u)AP C AP, (u € Ua(p)); AP N AP =uy(p) +iua(p); AP + AP = A.
(ii) The manifold Us/U4(p) has a Uy-invariant complex structure and is locally biholomorphic to
Ga/Gal([p])-
(iii) The manifold Ga/GA(p) endowed with the involutive diffeomorphism aG a(p) — (a*)~*Ga(p) is
a complezification of U /U a(p).

Proof. Tt is clear that ug(p)+iua(p) = {p}’. Now the first part of the statement follows by Proposition 2.6.

Also, there is a natural identification between u4/ua(p) and the tangent space T, (Ua/Ua(p)). Then
assertion (ii) follows from Theorem 6.1 in [BO6]. In fact, by assertion (i) it is readily seen that u /u,(p) ~
A/AP whence we obtain that U, /U (p) and G4/Ga([p]) are locally diffeomorphic, and so Ua/U(p)
inherits the complex structure induced by G(A)/Ga([p])-

For assertion (iii), it is easy to see that the mapping aG (p) — (a*)"1Ga(p) is an anti-holomorphic
diffeomorphism (which corresponds to the mapping apa=' + (a*)~!'pa*, in terms of orbits). Then
aGa(p) = (a*)"1Ga(p) if and only if (a*a)Ga(p) = Ga(p), that is, (a*a)p = p(a*a). Using the functional
calculus for C*-algebras, we can pick b := v/a*a in A and obtain bp = pb. Since a*a = b*> = b*b
we have (ab=1)* = (b~1)*a* = (b*)"'a* = ba~! = (ab~')~! and therefore u := ab~! € Uy. Finally,
aGa(p) = ubGa(p) = uGa(p) =uUa(p) € Ua/Ua(p). O

Remark 3.3. Since G4(p) C Ga([p]), there exists the canonical projection G4/Ga(p) — Ga/Ga([p]).
It is clear that its restriction to Ua /U (p) becomes the identity map Ua/Ua(p) — Ua/Ua([p]).

According to Proposition 2.4(i), idempotents like apa= = aG s(p), for a € G 4, can be alternatively
represented as pairs (a[pla™!, (a*)~![p]a*) so that the “orbit” G /G (p) becomes a subset of the Carte-
sian product G4([p]) x Ga([p]). In this perspective, the preceding projection and diffeomorphism are
given, respectively, by

(alpla™, (a*)*[pla*) = alpla™ = (alpla™, a[pla™), Ga/Ga(p) — Ga/Gal([p])
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1 1 —1

= (ulplu=t, ulplu™'), when u € Uy) and

(alpla™", (@*) " [pla”) = ((a*)[pla”, alpla™),

for every a € G4. ]

(so (ulplu™", ulplut) — upu~

Remark 3.4. Theorem 3.2 relates to the setting of [BR0O7]. Namely, assume that B is a C*-subalgebra
of A, with 1 € B C A, for which there exist a conditional expectation F: A — B and a state p: A — C
such that p o E = ¢. For X € {A, B}, we denote by ¢x the state ¢ restricted to X. Let Hx be the
Hilbert space, and let mx : X — B(Hx) be the corresponding cyclic representation obtained by the GNS
construction applied to the state ¢ x : X — C. Thus, Hx is the completion of X/Nx with respect to the
norm |y + Nx|, := ¢(y*y), where Nx := {y € X | ¢(y*y) = 0}. The representation 7x is then defined
as the extension to Hx of the left multiplication of X on X/Nx. Let P denote the orthogonal projection
P: HA — HB.

An equivalence relation can be defined in G 4 x H g by setting that (g1, h1) ~ (g2, ha) (with g1, g2 € G4,
hi,hy € Hp) if and only if there exists w € Gp such that go = gyw and hy = wg(w~')h;. The
corresponding quotient space will be denoted by G 4 X, H 5, and the equivalence class in G4 xg,Hp of an
element (g, h) € G xHp will be denoted by [(g, h)]. Define U 4 Xy, Hp in an analogous fashion. Then the
mappings Hgt [(g, h)] — gGB, GA XGg HB — GA/GB and HU: [(u, h)] — UUB, UA XUg HB — UA/UB
are vector bundles, Iy being Hermitian, in fact. Moreover, II;; admits a reproducing kernel K with the
associated Hilbert space H¥, formed by continuous sections of IT;, such that the restriction of the GNS
representation 74 to Uy can be realized on H% | see [BRO7].

Let us apply the above theory to the case when, for a given unital C*-algebra A, we take B := {p}’
in A, where p = p* € P(A). Then E,: a — pap + apa, A — B is a conditional expectation from A
onto B. Let H be a Hilbert space such that A — B(H). Pick zy € pH such that ||zg]] = 1. Then
wo: A — C, given by ¢o(a) := (azg | xo)n for all @ € A, is a state of A such that ¢ o E, = ¢o. The
GNS representation of A associated with g is as follows. Set (a1 | a2)o := wo(asar) = (aba1xo | o)1 =
(a170 | agwo)y for every aj,az € A. So po(a*a) = |la(xg)|? for all @ € A, whence the null space of
(] )oisNyg:={a€ A:(a]a) =0} ={ae A:alxrg) =0} The norm | -|o induced by (- | -)p on
A/Ny is given by [|hllo = [la + Nollo := @o(a*a)'/? = [la(xo)[ln = ||l for every h € A(xo) C H, where
a(xg) = h < a+ Ny. Hence Hy is a closed subspace of H such that aH 4 C Hy for every a € A. Note
that H 4 coincides with H provided that we can choose zg in H such that A(xg) is dense in H. This will
be of interest in Remark 4.8 below.

Analogously, we can consider the restriction of (- | -)p to B and proceed in the same way as above.
Thus we obtain that the corresponding null space is B N Ny, that the norm in B/(B N Np) is that one of
pH (so that one of H), and that Hp is a closed subspace of pH such that bHp C Hp for every b € B.
Also, Hp = pH if z¢ can be chosen in pH and such that B(xg) is dense in pH.

The representation w4: a +— 7(a), A — B(Ha) is the extension to H4 of the left multiplication
ma(a): a’+Ng+— (aa’)+ Ny, A/Ny — A/Ny. Thus it satisfies w4 (a'+ Ng) = (aa’)+ Ny = a(a’zg) = a(h),
if (a'+ Ny) < a(xo) = h. In other words, 74 is the inclusion operator (by restriction) from A into B(H ).
Also, 7 is in turn the inclusion operator from B into B(Hpg).

Since E,(Ng) C Ny, the expectation E, induces a well-defined projection P: A/Ny — B/(No N B).
On the other hand, E,(a*a) — Ey(a)*Ep(a) = pa*pap + pa*pap > 0 since p,p > 0. Hence P extends once
again as a bounded projection P: Ha — Hp. Indeed, if h = a(xg) with a € A, we have

P(h) = P(a+ No) = E(a) + (BN No) = E(a)(x0) = (pa)(zo) = p(h),
that is, P = pj3,- O

In the above setting, note that Ug = Ux(p). Let I'(U4/Ua(p),Ua Xu, () HB) be the section space of
the bundle IT;;. The reproducing kernel associated with Iy is given by Kp(u1Ua(p), uaUa(p))[(ue, f2)] :==
[(ul,puflugfg)], for every ui,up € Uy and fo € Hp. The kernel K, generates a Hilbert subspace HE»
of sections in I'(Ua/Ua(p), Ua xu ) HB)- Let 1 Ha — I'(Ua/Ua(p), Ua Xu ,(p) HB) be the mapping
defined by 7,(h)(uUa(p)) := [(u,pu='h)] for every h € Ha and u € Uy. Then v, is injective and
it intertwines the representation 74 of U4 on H4 and the natural action of Uy on H¥»: that is, the



6 DANIEL BELTITA AND JOSE E. GALE

diagram

HAL)HA

(3.1) vpl lwp

HKP M) HKP7

is commutative for all u € Uy, where p(u)F := uF(u™"! - ) for every F € (Ua/Ua(p),Ua Xu, () HB)-
In fact y(uh)(vUa(p)) == [(v,pv~tuh)] = u[(u=tv,pv~tuh)] =: u{y(h)(u"tvU4(p))} for all u,v € Ujy.
See Theorem 5.4 of [BRO7] for details in the general case. We next show that HX» in fact consists of
holomorphic sections.

Proposition 3.5. Let A be a unital C*-algebra, p = p* € P(A), and B := {p}’. Then the homogeneous
Hermitian vector bundle Iy : U Xy, He — Ua/Ua(p) is holomorphic, and the image of -y, consists
of holomorphic sections. Thus H¥%» is a Hilbert space of holomorphic sections of ;.

Proof. Let ug € Us. Then Qg = {ugg | g € Ga, |1 — g7t < 1} is open in G4 and contains ug, and
similarly with Qp := Qg N U4 in Uy,

It is readily seen that the mapping vo: [(u, f)] — (uWUa(p), Ep(u=tug )71 f), 5 (Qu) — Qu x Hp
is a diffeomorphism, with inverse map (uU4(p),h) — [(uE,(u™1), h)] (this shows the local triviality of
7). Thus every point in the manifold Ua Xy, () Hp has an open neighborhood which is diffeomorphic
to the manifold product W x Hpg, where W is an open subset of U4/U4(p). By Theorem 3.2, U4/U4(p)
is a complex homogeneous manifold and therefore the manifold Us Xy ,(,) Hp is locally complex, i.e.,
holomorphic. Also the bundle map Iy is holomorphic.

On the other hand, for fixed h € H 4, the mapping og: gGa([p]) — Ep(g_lugl)_lpg_lh, Q¢ — Hp
is holomorphic on ¢, so it defines a holomorphic function 6¢: QcGa([p]) — Hp. By Theorem 3.2
the injection j: Ua/Ua(p) — Ga/Ga([p]) is holomorphic, and so the restriction map r := &g o j is
holomorphic around ugUa(p). Since y(h) = 5" o (I, x r) around uoU4(p), it follows that ~y(h) is
(locally) holomorphic.

Finally, by applying Theorem 4.2 in [BRO7] we obtain that K, is holomorphic. 0

The starting point for the holomorphic picture given in Proposition 3.5 has been the fact that
Ua/Ua(p) enjoys a holomorphic structure induced by the one of G4/G([p]), see Theorem 3.2. Such
a picture can be made even more explicit if we have a global diffeomorphism U4 /U4 (p) ~ Ga/Ga([p])-
The prototypical example is to be found when A is the algebra of bounded operators on a complex Hilbert
space. We examine this case more closely in the next section.

4. TAUTOLOGICAL UNIVERSAL VECTOR BUNDLES

Let us recall the specific definition and some properties of the Grassmannian manifold associated with
a complex Hilbert space.

Notation 4.1. We shall use the standard notation B(H) for the C*-algebra of bounded linear operators
on the complex Hilbert space H with the involution T'+— T*. Let GL(H) be the Banach-Lie group of all
invertible elements of B(H), and U(H) its Banach-Lie subgroup of all unitary operators on H. Also,

Gr(H) := {S | S closed linear subspace of H};

T(H):={(S,z) € Gr(H) x H | z € S} C Gr(H) x H;

My: (S,z) — S, T(H) — Gr(H);

for every S € Gr(H) we denote by ps: H — S the corresponding orthogonal projection.

O

Remark 4.2. The objects introduced in Notation 4.1 have the following well known properties:

(a) Both Gr(H) and 7 (H) have structures of complex Banach manifolds, and Gr(H) carries a natural
(non-transitive) action of U(H). (See Examples 3.11 and 6.20 in [U85], or Chapter 2 in [Du66].)
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(b) For every Sg € Gr(H) the corresponding connected component of Gr(H) is the GL(H)-orbit and
is also the U(H)-orbit of Sp, that is,

Grs,(H) ={9S0 | g € GL(H)} = {uSo | v € U(H)}
= {S € Gr(H) | dimS = dim Sy and dimS* = dim S5} ~ U(H)/(U(So) x U(Sy)).

(See Proposition 23.1 in [U85] or Lemma 4.3 below, alternatively.)

(¢) The mapping Iy : T(H) — Gr(H) is a holomorphic Hermitian vector bundle, and we call it
the universal (tautological) vector bundle associated with the Hilbert space H. Set Tg,(H) :=
{(S§,2) e T(H) | § € Grs,(H)}. The vector bundle 7s,(H) — Grs,(H) obtained by restriction
of Iy to Ts,(H) will be called here the universal vector bundle at Sp. It is also Hermitian and
holomorphic.

O

Property (b) in Remark 4.2 means that Ua/Ua(ps,) =~ Ga/Ga([ps,]) for A = B(H). For the sake
of clarification we now connect Notation 2.1 and Notation 4.1 in more detail. For A = B(H) we have
Gr(A) = Gr(H), and with this identification the action § of Lemma 2.2 corresponds to the natural action
(so-called collineation action) of the group of invertible operators on H upon the set of all closed linear
subspaces of H. The following lemma gives us the collineation orbits of Gr(H) in terms of orbits of
projections, and serves in particular to explain the property stated in Remark 4.2(b).

For short, denote G = GL(H) and U = U(H).

Lemma 4.3. Let Sy € Gr(H). Then the following assertions hold.
(i) G(lps.]) =1{g € G 1 9S0 = So} and U([ps,]) = U(ps,) = {u €U | uSy = So}.
(ii) For every g € G and S = gSy we have S* = (g*)~1(S3").
(iii) We have
Grs, (M) = {9So | g € G} ~ {lgps,97'] | g € G}
= {uSo | ueU} ~ {ups,u™" | u € U}.
(iv) We have
UUps,) ~G/9(ps,]) ~ Grs,(H),
where the symbol “~ 7 means diffeomorphism between the respective differentiable structures, and
that the differentiable structure of the quotient spaces is the one associated with the corresponding
quotient topologies.
(v) G/G(ps,) =~ {(aSo,(a*)"1Sy) | @ € G} and the map (aSo, (a*)~1Sy) — ((a*) 1Sy, aSy) is an
involutive diffeomorphism on G/G(ps,). Its set of fixed points is Grs,(H) = {(uSo, uSo) | uv € U}.

Proof. (i) As shown in Proposition 2.4, an element g of G belongs to G([ps,]) if and only if ps,g~*ps, =
g~ 'ps, and ps,g ps, = g ps,- From this, it follows easily that g(Sy) C So and g~1(Sp) C Sp, that is,
9(Sp) = Sp. Conversely, if g(Sp) C Sp then (g ps,)(H) C ps,(H) whence ps,g ps, = g Ps,; similarly,
g 5(So) C Sp implies that ps,g~'ps, = g~ 'ps,- In conclusion, G([ps,]) = {9 € G | S0 = So}-

Now, the above equality and Remark 2.5 imply that U([ps,]) = U(ps,) = {v € U | uSy = So}.

(ii) Let 2 € S,y € S. Then ((g%)~'(2) | y) = (97 )" () | y) = (z [ g~ (y)) = 0,50 (¢%) " (S5) € S*.
Take now y € S*, 2 = g*(y) and 2z € Sp. Then (x| 2) = (¢*(y) | 2) = (v | 9(2)) = 0, whence z € Sg- and
therefore y = (¢*) "' (g*y) = (¢*) " (x) € (¢*)~1(Sy). In conclusion, S+ = (%)~ 1(Sg").

(iii) By (ii), we have u(S3) = u(Sp)* for u € U. Thus S = u(Sy) if and only if dim S = dim Sy and
dim S+ = dim S-. Also, if S = u(Sp) and S+ = u(Sy"), then ups, = psu, that is, ps = ups,u~!. Hence
Grs,(H) = {uSo | u € U} = {S € Gr(H) | dim S = dim Sy and dim St = dim Sy} ~ {ups,u~! | u € U}.

Suppose now that S = ¢Sy with g € G. Then dim S = dim Sp. By (ii) again, St = (¢*)~*(S5") and so
dim S+ = dim 8. Hence S € Grg, (H). Finally, the bijective correspondence between ¢Sy and g[ps,]g~*
is straightforward.

(iv) This is clearly a consequence of parts (iii) and (i) from above, and Theorem 2.2 in [DGO02].

(v) For every a € G, the pairs (aSy, (a*)"1Sp) and (a[pla™, (a*)~*[p]a*) are in a one-to-one correspon-
dence, by part (iii) from above. Hence, this part (v) is a consequence of Remark 3.3. |
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Parts (iv) and (v) of Lemma 4.3 tell us that the Grassmannian orbit Grs,(H) is a complex manifold
which in turn admits a complexification, namely the orbit G/G(ps,).

Remark 4.4. As said in Remark 4.2(b), every GL(H)-orbit (and so every U(H)-orbit) is a connected
component of Gr(H). Let us briefly discuss the connected components of Gr(A) when A is an arbitrary
unital C*-algebra. Every element g € G4 has a unique polar decomposition g = ua with u € Uy and
0 < a € G, hence there exists a continuous path ¢ — w - ((1 —¢)1 + ta) in G4 that connects u = u -1
to g = u-a. Thus every connected component of the G4-orbit of [p] € Gr(A) contains at least one
connected component of the Uy4-orbit of [p] € Gr(A) for any idempotent p € P(A). (Loosely speaking,
the U 4-orbit of [p] has more connected components than the G 4-orbit of [p].) Example 7.13 in [PR&7]
shows that the C*-algebra A of the continuous functions S3 — M (C) has the property that there indeed
exist G 4-orbits of elements [p| € P(A) which are nonconnected.

If the unitary group Uy is connected (so that the invertible group G4 is connected), then all the U 4-
orbits and the G 4-orbits in Gr(A) are connected since continuous images of connected sets are always
connected. On the other hand, as said formerly, the Grassmannian Gr(A) is the discrete union of these
G a-orbits. Thus if the unitary group Uy, is connected, then the connected components of Gr(A) are
precisely the G 4-orbits in Gr(A). One important case of connected unitary group U, is when A is a
W+-algebra (since every u € Uy can be written as u = exp(ia) for some a = a* € A by the Borel
functional calculus, hence the continuous path ¢ — exp(ita) connects 1 to w in Ua). For W*-algebras
such that Gr(A) is the discrete union of U 4-orbits, it is then clear that the G 4-orbits and the U 4-orbits
coincide. This is the case if A is the algebra of bounded operators on a complex Hilbert space, as we
have seen before. ]

The universal bundle 7g,(H) — Grs,(H) can be expressed as a vector bundle obtained from the so-
called (principal) Stiefel bundle associated to ps, < Sp, see [DG02]. A similar result holds, by replacing
the Stiefel bundle with certain, suitable, of its sub-bundles. To see this, let us now introduce several
mappings.

Put p := ps,. We consider G Xg(jp)) So and U Xy So as in Remark 3.4. Note that g1So = 9280
and g1(h1) = g2(h2) (91,92 € G, h1,ha € So) if and only if (g1, h1) ~ (go, ha), via w = g7 g2 € G([p]),
in G x Sp. Hence, the mapping vg: G x Sg — 7Ts,(H) defined by vg((g,h)) = (9So,g(h)) for every
(g,h) € G x Sp, induces the usual (canonical) quotient map vg: G Xg([p)) So — Ts,(H). We denote by vy
the restriction map of vg on G x Sp. As above, the quotient mapping Uy : U Xy(p) So — Ts,(H) is well
defined.

Since U(p) = UNG([p]), the inclusion mapping j: U Xyy(p) So — G Xg([p]) So is well defined. Note that
j = (0g)~" o Ty.

Finally, let Pg: G xg((p)) So — G/G([p]) and Py : U xyy() So — U/U(p) denote the vector bundles built
in the standard way from the Stiefel sub-bundles g — gG([p]) ~ g(So), ¢ — G/G([p]) ~ Grs,(H) and
w — uld(p) ~ u(Sp), U — U/U(p) ~ Grs,(H) respectively.

Proposition 4.5. The following diagram is commutative in both sides, and the horizontal arrows are
biholomorphic diffeomorphisms between the corresponding holomorphic structures

Ts,(H) By Xu(p) So g Xg([p]) So

ol In I
Grs,(H) —— UU(p) —— G/G([p))

Proof. By construction, the mapping ¥y, is clearly one-to-one. Now we show that it is onto. Let (S, h) €
7s,(H). This means that h € S and that S = uS, for some u € Y. Then f :=u"1(h) € Sp and h = u(f),
whence Oy ([(u, f)]) = (S, h), where [(u, f)] is the equivalence class of (u, f) in U Xy So. Hence Oy is a
bijective map.

Analogously, we have that 0g is bijective from G xg((,)) So onto 7s,(H) as well. As a consequence,
j = (0g) ! o1y is also bijective. It is straightforward to check that all the maps involved in the diagram
above are smooth. |
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Example 4.6. By Proposition 4.5 one can show that the universal, tautological bundle Iy : 7s,(H) —
Grs, (H) enters, as a canonical example, the framework outlined in Theorem 5.4 and Theorem 5.8 of
[BROT]. To see this in terms of the bundle Il itself, first note that the commutant algebra {ps,}’ of
ps, coincides with the Banach subalgebra B of A formed by the operators T such that T(Sy) C So,
T(Sy) C Sy (It is straightforward to check directly on B that it is stable under the adjoint operation,
so that B is a C*-subalgebra of A, as it had to be.) Put p = ps,. From Lemma 4.3, u € U([p]) if and
only if uSy = Sy. Hence u € U(p) = U([p]) NU([1 — p]) if and only if uSy = Sy and uSg- = Sg-, that is,
U(p) =UsN B =Ug.

Similarly to what has been done in Remark 3.4, let E,: A — B denote the canonical expectation
associated to the tautological bundle at Sp; that is, E,(T') := pT'p + pTp for every T € A. Also, for a
fixed zg € Sp such that ||zg]| = 1, let ¢: A — C be the state of A given by o(T) := (T'zo | £9)x. Then
o o E, = ¢g. Since the mappings T +— T'(z¢), B(H) — H and T + T(x¢), B — Sy are surjective,
we obtain that H4 = H and Hp = Sp in the GNS construction associated with A = B(H), B and .
Moreover, in this case, m4 coincides with the identity operator and the extension P: H4 — Hp of E, is
P = p. Denote by p1,pa2: Gr(H) x Gr(H) — Gr(H) the natural projections and define

Qn: Gr(H) x Gr(H) — Hom (p5(Ix), p7(Il))
by
QH(S1,82) = (ps,)|s,: S2 — S1

whenever 81,8y € Gr(H). This mapping Qy is called the universal reproducing kernel associated with
the Hilbert space H. In fact, for S1,...,S, € Gr(H) and z; € S; (j =1,...,n),

n

> (@u(SL Sz [a)n =Y (s, lw)w =D (xj |z)r =i | > @) >0
j=1 =1

jl=1 dl=1 Gl=1
so Qy is certainly a reproducing kernel in the sense of [BRO7]. |
Using Proposition 4.5 and Example 4.6 we get the following special case of Theorem 5.8 in [BRO7].

Corollary 4.7. For a complex Hilbert space H, the action of U on H can be realized as the natural
action of U on a Hilbert space of holomorphic sections from Grs,(H) into H, such a realization being
implemented by y(uh) = u y(h)u™!, for every h € H, u € U.

Proof. If S € Grg,(H), there exists u € U such that uSy = S and then ps = ups,u~!. Thus for all
ur,ug € U and x1, 29 € Sy we have Qp(u1Sp, u2So)(u22) = Pu,s, (U2xa) = ulpgo(ul_lung). This
formula shows that for every connected component Grg,(H) the restriction of Q@ to Grs,(H) x Grs,(H)
is indeed a special case of the reproducing kernels considered in Remark 3.4. For every h € H, the
mapping 7y, (h): Grs,(H) — 7s,(H) which corresponds to @ can be identified to the holomorphic
map uSy — upu~th, Grs,(H) — H. Then the conclusion follows by using the diffeomorphism U /U(p) ~
G/G([p]) ~ Grs,(H) of Lemma 4.3, together with Proposition 4.5.

Remark 4.8. Assume again the situation where A and B are arbitrary C*-algebras, B is a C*-subalgebra
of A, with unit 1 € B C A, E: A — B is a conditional expectation, and ¢: A — C is a state such that
po E = . With the same notations as in Remark 3.4, take 29 := 14+ N € B/Np C A/N4. It is well
known that zg is a cyclic vector of mx, for X € {A4; B}: let h € Hx such that 0 = (w(c)xg | b))y, =
(c+ Nx | h)yy for all ¢ € X; since X/Ny is dense in Hy we get 0 = (h | h)y, = ||h||?, that is, h = 0.
Thus 7x (X)zo is dense in Hx.

Inspired by [AS94], we now consider the C*-subalgebra 2 of B(H 4) generated by 74 (A) and p, where
p is the orthogonal projection from H4 onto Hp. Set B := AN {p}’. Clearly, the GNS procedure is
applicable to B C A C B(Ha4), for the expectation E,: A — B and state ¢ defined by xo, as we have
done in Remark 3.4. Then m4(A)(zo) C (o) C Ha and ma(B)(xo) C B(xo) C Hp, whence, by the
choice of x, we obtain that A(xzg) = Ha and B(z¢) = Hp. Thus we have that Ho = Ha and He = Hp.
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According to former discussions there are two (composed) commutative diagrams, namely

TA X ixI
Ga Xap Hp 25 Ga X Hp —— Ga Xaa(p) HB —— G Xg(p) Hp

(4.1) ncl lﬂc&,l l lHHB

Ga/Gp —2 Gu/Galp) —— Gu/Ga(l) —— G/G(p))
and

TAX i x I ~
UA XUg HB A—XI> Ug[ XUg(p) HB L U Xu(p) HB _— THB(HA)

(4.2) e | [0 [ [ s

Ua/Up  ——  Uy/Ualp) —— UU[p) —— Gry,(Ha)

(where the meaning of the arrows is clear). We suggest to call IIg: G4 Xg, Hp — Ga/Gp and
My: Us xuy Hep — Ua/Up the GNS vector bundle and the unitary GNS vector bundle, respectively,
for data E: A — B and ¢: A — C. Following the terminology used in [AS94], [ALRS97] for the
maps Ga/Gp — Go/Ga(p), Ua/Up — Ug/Ugy(p), we could refer to the left sub-diagrams of (4.1)
and (4.2) as the basic vector bundle representations of IIg and IIy, respectively. Since Hg = Ha and
‘Hss = Hp, the process to construct such “basic” objects, of Grassmannian type, is stationary. Also, since
there is another way to associate Grassmannians to the GNS and unitary GNS bundles, which is that
one of considering the tautological bundle of H4 (see the right diagrams in (4.1), (4.2)), we might call
Ga X Gy (p)HB — Ga/Ga([p]) the minimal Grassmannian vector bundle, and call T3, (Ha) — Gy, (Ha)
the universal Grassmannian vector bundle, associated with data E': A — B and ¢p: A — C. In the unitary
case, we should add the adjective “unitary” to both bundles.

Note that the vector bundles G xg () Hp — G/G([p]) and Ty, (Ha) — Gry,(Ha) are isomorphic.
In this sense, both diagrams (4.1) and (4.2) “converge” towards the tautological bundle for H4. Let us
remark that (4.1) is holomorphic, and everything in (4.2) is holomorphic with the only possible exception
of the bundle II;. On the other hand, we have that Gy /Gy(p) and G/G(p) are complexifications of
Ug/Ug(p) and U/U(p) respectively, on account of Remark 3.3 and Lemma 4.3. Note in passing that
the fact that G4/Gp is such a complexification implies interesting properties of metric nature in the
differential geometry of Uy /Up, see [ALRS97].

The above considerations strongly suggest to investigate the relationships between (4.1) and (4.2) in
terms of holomorphy and geometric realizations. In this respect, note that the commutativity of (4.2)
corresponds, on the level of reproducing kernels, with the equality

(maxI)o K(u1Up, u2Up)Qup (ma(u)U(p), ma(u2)U (p)) o (max1)
for all uy,us € Ug (where the holomorphy supplied by @, appears explicitly). From this, a first
candidate to reproducing kernel on G4/Gp, in order to obtain a geometric realization of w4 on G4,
would be defined by

K(91G,92GB)(92, )] := [(g1, p(malgr Nmwalg2)f))]

for every g1,92 € G4 and f € Hp. Nevertheless, since the elements g1, gs are not necessarily unitary,
it is readily seen that the kernel K so defined need not be definite-positive in general. There is also the
problem of the existence of a suitable structure of Hermitian type in Ilg.

It would be interesting to have a theory of bundles G4 Xg, Hp — Ga/Gp and kernels K taking into
account natural involutive diffeomorphisms in G 4/Gpg, which would allow to incorporate those bundles
to a framework containing as a special case the one established in [BR07]. This will be the subject of a
forthcoming paper by the authors. (]
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5. ALMOST HYPERCOMPLEX STRUCTURES ASSOCIATED WITH GRASSMANN MANIFOLDS

The following definition provides the infinite-dimensional version of the terminology of quaternionic
structures on finite-dimensonal manifolds; see for instance subsection 2.5 in [AM96].

Definition 5.1. Let Y be a Banach manifold. An almost hypercomplex structure on Y is a pair of almost
complex structures Jy, Jo: TY — TY satisfying J1Jo = —JoJ;. U

Remark 5.2. Let H = R+ Ri; 4+ Ris + Rig be the quaternion field with the imaginary units i1, 2,73 € H
satsfying (i1)2 = (i2)2 = (i3)2 = —1, ilig = —izil = i3, i2i3 = —i3i2 = il, and igil = —ilig = ig. In the
setting of Definition 5.1, it is easy to see that the hypercomplex structure of Y gives rise to a fiberwise
linear action of H on TY by 47 -v = Jyv, i3 -v = Jov and i3 -v = J1Jov for every v € TY. Thus for every
y € Y the tangent space TyY has a natual structure of quaternionic vector space. O

In the following statement we need the notion of spray on Banach manifolds in the sense of [LO1].
Theorem 5.3. Assume that X is an almost complex Banach manifold. Then the following assertions

hold:

(i) There exists a natural correspondence from the sprays on X to the almost hypercomplex structures
onTX.

(ii) If there exist a unital C*-algebra A and a projection p = p?> = p* € A such that X = U4/Ua(p),
then the almost hypercomplex structure associated with the natural spray on X induces an almost
hypercomplex structure on the complexification Ga/Ga(p).

Proof. (i) Denote Y = TX and m: TX — X the natural projection, and consider the commutative
diagram
m™(TX) —— TX

ﬂ*(w)l ln

y —/— X
where the left-hand vertical arrow is the pull-back of the right-hand vertical arrow by 7: ¥ — X. Assume
that we have got the covariant derivative associated with some spray on X. It then follows by the tensorial
splitting theorem (Theorem 4.3 in Chapter X of [LO01]) that there exists an isomorphism

(5.1) TY ~ 7" (TX) &rx 7" (TX)
of vector bundles over TX. Note that the fiber of 7*(T'X) over any y € Y is
(T (TX))y = {(y,2) €Y x TX | m(y) = m(2)} = 7" (n(y))
hence the fiber of the Whitney sum 7*(TX) @rx 7*(TX) over y € Y =TX is
(T (TX) @rx 7 (TX))y{(y1,42) € TX X TX [ m(y1) = 7(y2) = 7(y)} = Tr(y) X X Ty X,

By taking into account the isomorphism (5.1) we can now define two almost complex structures on Y by

(52) (y17y2) — (7y27y1)7 TY i) TY7
and
(5.3) (y1,92) = (y1, —iya), TY Loy

Note that for every pair (y1,y2) € 7*(TX) &rx 7*(TX) ~ TY we have J;J2(y1,y2) = J1(iy1, —iy2) =
(iya,iy1) and JoJ1(y1,y2) = Jo(—y2,y1) = (—iye, —iy1). Hence J;Jo = —JaJ1, and thus the pair of almost
complex structures Ji, Jo defines an almost hypercomplex structure on ¥ = T'X.

(ii) Now assume that X = Uy /Ux(p) as in the statement. This is a complex homogeneous space by
Theorem 3.2. The natural connection on this Grassmann manifold is the connection associated with the
conditional expectation

E:A— B, E(a)=pap+(1-p)a(l—p),
where B = {a € A | ap = pa}. Recall that this conditional expectation induces a connection in
the principal bundle Uy — Us/Ua(p) (see [ALRS97] and [G06]). On the other hand, if we denote
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p={a€KerE|a* = —a}, then Uy(p) acts upon p by means of the adjoint action and it is well known
that there exists an isomorphism of vector bundles Ua X, () p =~ T'X over U4 /Ua(p) = X. In particular
the tangent bundle of X is a vector bundle associated with the principal bundle Uy — U4/Ua(p). Thus
we get a linear connection on the vector bundle TX — X which is associated with a connection map
(or connector) TTX — TX, and the latter map gives rise to a spray on X by means of the Christoffel
symbols. (See [LO01] and subsections 37.24-27 in [KM97] for more details.) Now assertion (i) shows that
there exists an almost hypercomplex structure on T'X associated with the spray we got.

To complete the proof we have to show that there exists a projection m: G4/Ga(p) — X making
G.a/Ga(p) into a vector bundle which is isomorphic to the tangent bundle TX — X. Recall from the
above reasonings that TX ~ Uy Xy, (p) p as vector bundles over Ua/U(p). Now define the mapping
(u,a) — uexp(ia)Ga(p), Ua x p — Ga/Ga(p). It is straightforward to check that this induces an
injective mapping Ua Xy, (p) P — Ga/Ga(p), which is actually a diffeomorphism as a consequence of
Theorem 8 in [PR94]. This makes G4/Ga(p) into a vector bundle isomorphic to TX over X, and the
proof ends. O

Remark 5.4. The corespondence between affine connections on finite dimensional manifolds and almost
(hyper)complex structures goes back to [H60] and [Do62]. See [BG96], [BGI8], and [Bi03] for more recent
advances. ]

Remark 5.5. Let us note another general way to construct almost hypercomplex structures associated
with the infinite-dimensional complex Grassmann manifolds. Quite generally, assume that X is an almost
complex Banach manifold. If we denote by X the complex-conjugate manifold of X, then the direct
product X x X is a complexification of X and has a natural almost hypercomplex structure.

This fact was noted in the paper [D81] in the case of finite-dimensional manifolds and can be proved
in the general case as follows. Let I: TX — TX be the almost complex structure of M. Then X is just
the underlying real analytic manifold of X thought of as an almost complex manifold with respect to the
almost complex structure —I: TX — TX. Let us denote by §: X — X the identity mapping, which is
an anti-holomorphic mapping. Also denote Z = X x X. Now consider the direct product almost complex

structure of Z,
I 0
J1 = TZ —-TZ

0 —-I
and define

0 To
It is straightforward to check that (J1)? = (J)? = —idrz and J;Jo = —JoJ;, where the latter equality
follows by the fact that 0 is antiholomorphic. O
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