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ON COMPLEX INFINITE-DIMENSIONAL GRASSMANN MANIFOLDS

DANIEL BELTIŢĂ AND JOSÉ E. GALÉ

Abstract. We investigate geometric properties of Grassmann manifolds and their complexifications
in an infinite-dimensional setting. Specific structures of quaternionic type are constructed on these

complexifications by a direct method that does not require any use of the cotangent bundles.

1. Introduction

In this paper we discuss differential geometric properties of Grassmann manifolds in a C∗-algebraic
setting. Background information for the circle of ideas centered on such manifolds here can be found in
the works [PR87], [S88], [CPR90], [W90], [MR92], [MS98], [DG01], [DG02], [G06], and [B06], [U85]. Our
approach to the subject originated in some specific questions concerning holomorphy, which in a natural
way led us to investigate complex structures as well as complexifications of these manifolds.

Let H be a complex Hilbert space. Recall that the Grassmannian Gr(H) associated with H, or,
alternatively, with the Banach algebra B(H) of bounded operators on H, is formed by all closed linear
subspaces of H and it is a complex Banach manifold (see [U85]). For more general C∗-algebras the
definition of the Grassmann manifold is a bit more involved, and not always standard. For instance, if A
is a unital C∗-algebra, the Grassmannian of A is sometimes assumed to be the set Psa(A) of selfadjoint
idempotents of A, endowed with the relative topology. This is so considered for example in [S88], where
such Grassmannians are studied in connection with Hermitian holomorphic bundles as motivated by
certain aspects of the Cowen-Douglas theory. The manifold Psa(A) is in principle real -analytic, so that
one must be careful in order to deal with holomorphy, see [S88], p. 278. In other settings it is suitable
to deal with explicit complex Grassmann manifolds, as for example in [PR87] or [DG01], [DG02]. This
is accomplished in the following way.

Recall that, for a given unital, complex, associative (C∗-) algebra A, two idempotents p, q ∈ A are said
to be equivalent if pq = q and qp = p. The equivalence class of an idempotent p is denoted here by [p],
and the quotient set formed by all the classes [p] is denoted by Gr(A) and called the Grassmannian of A.
Let GA be the group of invertible elements of A and let UA be the subgroup of GA of unitary elements.
Then, see Section 2 below, GA has a natural action on Gr(A). The isotropy subgroup of GA at [p] for such
an action is denoted by GA([p]). Then the GA-orbits in Gr(A) coincide with the quotients GA/GA([p]),
which, endowed with their respective quotient topologies, are holomorphic Banach manifolds [DG01]. In
analogy, put GA(p) := {u−1pu : u ∈ GA} and UA(p) := {u−1pu : u ∈ UA}. As above, GA/GA(p) is a
complex Banach manifold and UA/UA(p) is, for p ∈ Psa(A), a real-analytic Banach manifold, in their
respective quotient topologies. Let us remark that UA/UA(p) = UA/UA([p]) for every p ∈ Psa(A) (see
Remark 2.5) and that Psa(A) ≡

⋃
p∈Psa(A) UA/UA([p]). The complex structures of the Grassmannian

Gr(A) ≡
⋃

GA/UG([p]) and of its associated (holomorphic) Stiefel bundle have been plainly used in
[DG01] and [DG02] in order to obtain holomorphic parametrizations of framings for projections on a
fixed Banach space. It sounds sensible to analyze the relationship between the differentiable structures
of the two types of Grassmannians UA/UA(p) and GA/GA([p]) when p = p∗.

Another motivation in writing the present paper came from representation theory. To explain this,
recall the classical setting of the Bott-Borel-Weil theorem of [Bo57] involving the flag manifolds and

Date: May 15, 2008.

2000 Mathematics Subject Classification. Primary 46L05; Secondary 58B12; 53C15; 43A85; 22E65.
Key words and phrases. Grassmann manifold; homogeneous vector bundle; complexification; hypercomplex structure;

C∗-algebra.

1



2 DANIEL BELTIŢĂ AND JOSÉ E. GALÉ

realizations of representations on holomorphic sections spaces of holomorphic bundles. The notion of
complexification plays a central role in this area, inasmuch as one of the ways to describe the complex
structure of the flag manifolds is to view the latter as homogeneous spaces of complexifications of compact
Lie groups.

A similar circle of ideas can be found in infinite dimensions for a class of manifolds which play a central
role in many areas of functional analysis and operator theory. Specifically, let 1 ∈ B ⊆ A be unital C∗-
algebras such that there exists a conditional expectation E : A → B. Let ϕ be a state of A such that
ϕ ◦E = ϕ, and let πϕ denote the Gelfand-Naimark-Segal (GNS, for short) representation obtained out of
ϕ. Then it is possible to realize πϕ as acting on spaces of real-analytic sections of a certain homogeneous
Hermitian vector bundle on UA/UB . Further, in some cases involving finiteness properties of spectra and
traces of elements in A, one can prove that the homogeneous space UA/UB is a complex manifold as well
and that the realization space is formed by holomorphic sections (see Theorem 5.4 and Theorem 5.8 in
[BR07]).

Apart from the above result, the holomorphic character of the manifolds UA/UB and associated
bundles is far from being clear in general. Since the Grassmannians UA/UA(p) and tautological bundles
over UA/UA(p) are universal objects (see for example [ALRS97], [DG02] in connection with ideas here),
we search for related results of holomorphy in this special case. Using a charaterization (and labelling) of
invariant complex structures on infinite-dimensional homogeneous manifolds (Theorem 6.1 in [B06]), we
prove in Section 3 below that UA/UA(p) and GA/GA([p]) are locally biholomorphic complex manifolds.
Moreover, it is also shown that GA/GA(p) is a complexification of UA/UA(p), and then these results
are translated in terms of homogeneous vector bundles, in the spirit of Theorem 5.8 in [BR07]. (A
complementary perspective on these manifolds can be found in [BN05].) Section 4 is devoted to exhibit
how the above results look like in the (on the other hand well known) case of the algebra A = B(H) and
corresponding universal, tautological vector bundles.

Finally, GA/GA(p) being a complexification of the complex manifold UA/UA(p), we point out the
existence of quaternionic structures for the above complexifications in Section 5. The occurrence of
quaternionic structures on this level is a fairly known phenomenon in finite dimensions; see for instance
the complexifications of Hermitian symmetric spaces of compact type studied in [BG96] and [BG98].
An infinite-dimensional version of this phenomenon was discussed in [T07] in the special case of the
restricted Grassmann manifold. The latter manifold is modeled on a Hilbert space and is endowed with
a Riemannian structure which allows one to construct almost complex structures on the tangent bundle
by identifying it with the cotangent bundle.

Nothing of this kind is available in the case of the C∗-algebraic Grassmann manifolds investigated
in the present paper. Instead, we have to construct the almost complex structures in a direct manner
inspired by some of the earliest insights into the geometry of the tangent bundles; see [H60] and [Do62].
This approach leads to almost hypercomplex structures on the complexifications of the C∗-algebraic
Grassmann manifolds provided by the tangent bundles and is related to the theory of adapted complex
structures developed in finite dimensions in papers like [LS91], [Sz04], and [Bi04].

2. Grassmann manifolds in an algebraic setting

We begin with several elementary considerations about idempotents in complex associative algebras.

Notation 2.1. We are going to use the following notation: A is a unital associative algebra over C with
unit 1 and set of idempotents P(A) = {p ∈ A | p2 = p}; for p1, p2 ∈ P(A) the notation p1 ∼ p2 means
that we have both p1p2 = p2 and p2p1 = p1. For each p ∈ P(A) we denote its equivalence class by
[p] := {q ∈ P(A) | q ∼ p}. The quotient set is denoted by Gr(A) = P(A)/ ∼ (the Grassmannian of A)
and the quotient map by π : p 7→ [p], P(A)→ Gr(A).

The group of invertible elements of A is denoted by GA, and it has a natural action on P(A) by

α : (u, q) 7→ uqu−1, GA × P(A)→ P(A).

The corresponding isotropy group at p ∈ P(A) is {u ∈ GA | α(u, p) = p} = GA ∩ {p}′ = G{p}′ =: G(p)
where we denote by {p}′ the commutant subalgebra of p in A (see page 484 in [DG02]). �
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Lemma 2.2. There exists a well-defined action of the group GA upon Gr(A) like this:

β : (u, [p]) 7→ [upu−1], GA ×Gr(A)→ Gr(A),

and the diagram
GA × P(A) α−−−−→ P(A)

idG×π
y yπ

GA ×Gr(A)
β−−−−→ Gr(A)

is commutative.

Proof. See for instance the end of Section 3 in [DG01]. �

Definition 2.3. For every idempotent p ∈ P(A) we denote by GA([p]) the isotropy group of the action
β : GA ×Gr(A)→ Gr(A) at the point [p] ∈ Gr(A), that is, GA([p]) = {u ∈ GA | [upu−1] = [p]}. �

The following statement concerns the relationship between the isotropy groups of the actions α and β
of GA upon P(A) and Gr(A), respectively.

Proposition 2.4. The following assertions hold.

(i) For every p ∈ P(A) we have GA([p]) ∩GA([1− p]) = G(p).
(ii) If U is a subgroup of GA and p ∈ P(A) is such that U ∩ GA([p]) = U ∩ GA([1 − p]), then

U ∩GA([p]) = U ∩ {p}′ =: U(p).

Proof. (i) We have

GA([p]) = {u ∈ GA | [upu−1] = [p]} and GA([1− p]) = {u ∈ GA | [u(1− p)u−1] = [1− p]},

so that clearly GA([p])∩GA([1−p]) ⊇ GA∩{p}′. For the converse inclusion let u ∈ GA([p])∩GA([1−p])
arbitrary. In particular u ∈ GA([p]), whence upu−1 ∼ p, which is equivalent to the fact that (upu−1)p = p
and p(upu−1) = upu−1. Consequently we have both

(2.1) pu−1p = u−1p

and

(2.2) pup = up.

On the other hand, since u ∈ GA([1 − p]) as well, it follows that (1 − p)u−1(1 − p) = u−1(1 − p) and
(1 − p)u(1 − p) = u(1 − p). The later equation is equivalent to u − up − pu + pup = u − up, that is,
pup = pu. Then (2.2) implies that up = pu, that is, u ∈ G(p).

(ii) This follows at once from part (i). �

Remark 2.5. For instance, Proposition 2.4(ii) can be applied if the algebra A is equipped with an
involution a 7→ a∗ such that p = p∗, and U = UA := {u ∈ GA | u−1 = u∗} is the corresponding
unitary group. In this case, it follows by (2.1) and (2.2) that up = pu whenever u ∈ UA ∩GA([p]), hence
UA ∩GA([p]) = UA ∩GA([1− p]) = UA ∩ {p}′ =: UA(p).

For q ∈ P(A), put q̂ := 1−q and Aq := {a ∈ A | q̂aq = 0}. The following result is partly a counterpart,
for algebras, of Proposition 2.4.

Proposition 2.6. Assume that A is equipped with an involution and let p ∈ P(A) such that p = p∗.
Then the following assertions hold:

(i) uApu−1 = Ap, for every u ∈ UA(p) ;
(ii) Ap ∩Ap̂ = {p}′ ;

(iii) Ap +Ap̂ = A;
(iv) (Ap)∗ = Ap̂.
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Proof. (i) This is readily seen.
(ii) Firstly, note that, for a ∈ A, we have p̂ap = pap̂ if and only if ap = pa. Moreover, if ap = pa then

p̂ap = ap− pap = ap− ap = 0 and analogously pap̂ = 0. From this, the equality of the statement follows.
(iii) For every a ∈ A and q ∈ P(A) we have qa ∈ Aq. Hence a = pa+ p̂a ∈ Ap + Ap̂, as we wanted to

show.
(iv) Take a ∈ Ap. Then pap = ap, that is, pa∗p = pa∗. Hence, p̂a∗p̂ = (a∗ − pa∗)(1 − p) =

a∗ − pa∗ − a∗p+ a∗p = a∗ − a∗p = a∗p̂. This means that a∗ ∈ Ap̂. Conversely, if a ∈ Ap̂ then, as above,
pa∗p = a∗p; that is, a = (a∗)∗ with a∗ ∈ Ap. �

3. Homogeneous complex structures and complexifications

Definition 3.1. Let X be a Banach manifold. A complexification of X is a complex Banach manifold
Y endowed with an anti-holomorphic involutive diffeomorphism y 7→ y−∗ such that the fixed point
submanifold Y0 = {y ∈ Y | y = y−∗} is diffeomorphic to X . �

Assume from now on that A is a unital C∗-algebra. Then GA is a Banach-Lie group whose Lie algebra
coincides with A. The GA-orbits in Gr(A), obtained by the action β and equipped with the topology
inherited from Gr(A), are holomorphic Banach manifolds diffeomorphic to GA/GA([p]) (endowed with its
quotient topology), see Theorem 2.2 in [DG02]. Also, the Grassmannian Gr(A) can be described as the
discrete union of these GA-orbits, see [DG01] and Theorem 2.3 in [DG02]. Moreover, UA is a Banach-Lie
subgroup of GA with the Lie algebra uA := {a ∈ A | a∗ = −a}. As it is well known, the complexification
of uA is A, via the decomposition a = {(a − a∗)/2} + i{(a + a∗)/2i}, (a ∈ A). Thus the conjugation of
A is given by a 7→ a := {(a − a∗)/2} − i{(a + a∗)/2i} = −a∗. We seek for possible topological and/or
differentiable relationships between the GA-orbits and the UA-orbits UA/UA(p) in Gr(A).

The above observations lead to the following result.

Theorem 3.2. Assume that A is a unital C∗-algebra, p = p∗ ∈ P(A) and uA(p) := uA ∩ {p}′. Let AdU

denote the adjoint representation of UA. Then the following assertions hold:

(i) AdU(u)Ap ⊂ Ap, (u ∈ UA(p)); Ap ∩Ap = uA(p) + iuA(p); Ap +Ap = A.
(ii) The manifold UA/UA(p) has a UA-invariant complex structure and is locally biholomorphic to

GA/GA([p]).
(iii) The manifold GA/GA(p) endowed with the involutive diffeomorphism aGA(p) 7→ (a∗)−1GA(p) is

a complexification of UA/UA(p).

Proof. It is clear that uA(p)+iuA(p) = {p}′. Now the first part of the statement follows by Proposition 2.6.
Also, there is a natural identification between uA/uA(p) and the tangent space T[p](UA/UA(p)). Then

assertion (ii) follows from Theorem 6.1 in [B06]. In fact, by assertion (i) it is readily seen that uA/uA(p) '
A/Ap whence we obtain that UA/UA(p) and GA/GA([p]) are locally diffeomorphic, and so UA/UA(p)
inherits the complex structure induced by G(A)/GA([p]).

For assertion (iii), it is easy to see that the mapping aGA(p) 7→ (a∗)−1GA(p) is an anti-holomorphic
diffeomorphism (which corresponds to the mapping apa−1 7→ (a∗)−1pa∗, in terms of orbits). Then
aGA(p) = (a∗)−1GA(p) if and only if (a∗a)GA(p) = GA(p), that is, (a∗a)p = p(a∗a). Using the functional
calculus for C∗-algebras, we can pick b :=

√
a∗a in A and obtain bp = pb. Since a∗a = b2 = b∗b

we have (ab−1)∗ = (b−1)∗a∗ = (b∗)−1a∗ = ba−1 = (ab−1)−1 and therefore u := ab−1 ∈ UA. Finally,
aGA(p) = ubGA(p) = uGA(p) ≡ uUA(p) ∈ UA/UA(p). �

Remark 3.3. Since GA(p) ⊂ GA([p]), there exists the canonical projection GA/GA(p) → GA/GA([p]).
It is clear that its restriction to UA/UA(p) becomes the identity map UA/UA(p)→ UA/UA([p]).

According to Proposition 2.4(i), idempotents like apa−1 ≡ aGA(p), for a ∈ GA, can be alternatively
represented as pairs (a[p]a−1, (a∗)−1[p]a∗) so that the “orbit” GA/GA(p) becomes a subset of the Carte-
sian product GA([p]) × GA([p]). In this perspective, the preceding projection and diffeomorphism are
given, respectively, by

(a[p]a−1, (a∗)−1[p]a∗) 7→ a[p]a−1 ≡ (a[p]a−1, a[p]a−1), GA/GA(p)→ GA/GA([p])
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(so (u[p]u−1, u[p]u−1) 7→ upu−1 ≡ (u[p]u−1, u[p]u−1), when u ∈ UA) and

(a[p]a−1, (a∗)−1[p]a∗) 7→ ((a∗)−1[p]a∗, a[p]a−1),

for every a ∈ GA. �

Remark 3.4. Theorem 3.2 relates to the setting of [BR07]. Namely, assume that B is a C∗-subalgebra
of A, with 1 ∈ B ⊆ A, for which there exist a conditional expectation E : A→ B and a state ϕ : A→ C
such that ϕ ◦ E = ϕ. For X ∈ {A,B}, we denote by ϕX the state ϕ restricted to X. Let HX be the
Hilbert space, and let πX : X → B(HX) be the corresponding cyclic representation obtained by the GNS
construction applied to the state ϕX : X → C. Thus, HX is the completion of X/NX with respect to the
norm ‖y +NX‖ϕ := ϕ(y∗y), where NX := {y ∈ X | ϕ(y∗y) = 0}. The representation πX is then defined
as the extension to HX of the left multiplication of X on X/NX . Let P denote the orthogonal projection
P : HA → HB .

An equivalence relation can be defined in GA×HB by setting that (g1, h1) ∼ (g2, h2) (with g1, g2 ∈ GA,
h1, h2 ∈ HB) if and only if there exists w ∈ GB such that g2 = g1w and h2 = πB(w−1)h1. The
corresponding quotient space will be denoted by GA×GB

HB , and the equivalence class in GA×GB
HB of an

element (g, h) ∈ GA×HB will be denoted by [(g, h)]. Define UA×UB
HB in an analogous fashion. Then the

mappings ΠG : [(g, h)] 7→ gGB , GA×GB
HB → GA/GB and ΠU : [(u, h)] 7→ uUB , UA×UB

HB → UA/UB

are vector bundles, ΠU being Hermitian, in fact. Moreover, ΠU admits a reproducing kernel K with the
associated Hilbert space HK , formed by continuous sections of ΠU , such that the restriction of the GNS
representation πA to UA can be realized on HK , see [BR07].

Let us apply the above theory to the case when, for a given unital C∗-algebra A, we take B := {p}′
in A, where p = p∗ ∈ P(A). Then Ep : a 7→ pap + âpâ, A → B is a conditional expectation from A
onto B. Let H be a Hilbert space such that A ↪→ B(H). Pick x0 ∈ pH such that ‖x0‖ = 1. Then
ϕ0 : A → C, given by ϕ0(a) := (ax0 | x0)H for all a ∈ A, is a state of A such that ϕ0 ◦ Ep = ϕ0. The
GNS representation of A associated with ϕ0 is as follows. Set (a1 | a2)0 := ϕ0(a∗2a1) = (a∗2a1x0 | x0)H =
(a1x0 | a2x0)H for every a1, a2 ∈ A. So ϕ0(a∗a) = ‖a(x0)‖2 for all a ∈ A, whence the null space of
(· | ·)0 is N0 := {a ∈ A : (a | a)0 = 0} = {a ∈ A : a(x0) = 0}. The norm ‖ · ‖0 induced by (· | ·)0 on
A/N0 is given by ‖h‖0 ≡ ‖a+N0‖0 := ϕ0(a∗a)1/2 = ‖a(x0)‖H = ‖h‖H for every h ∈ A(x0) ⊂ H, where
a(x0) = h ↔ a + N0. Hence HA is a closed subspace of H such that aHA ⊂ HA for every a ∈ A. Note
that HA coincides with H provided that we can choose x0 in H such that A(x0) is dense in H. This will
be of interest in Remark 4.8 below.

Analogously, we can consider the restriction of (· | ·)0 to B and proceed in the same way as above.
Thus we obtain that the corresponding null space is B ∩N0, that the norm in B/(B ∩N0) is that one of
pH (so that one of H), and that HB is a closed subspace of pH such that bHB ⊂ HB for every b ∈ B.
Also, HB = pH if x0 can be chosen in pH and such that B(x0) is dense in pH.

The representation πA : a 7→ π(a), A → B(HA) is the extension to HA of the left multiplication
πA(a) : a′+N0 7→ (aa′)+N0, A/N0 → A/N0. Thus it satisfies πA(a′+N0) = (aa′)+N0 ≡ a(a′x0) = a(h),
if (a′+N0)↔ a(x0) = h. In other words, πA is the inclusion operator (by restriction) from A into B(HA).
Also, πB is in turn the inclusion operator from B into B(HB).

Since Ep(N0) ⊆ N0, the expectation Ep induces a well-defined projection P : A/N0 → B/(N0 ∩ B).
On the other hand, Ep(a∗a)−Ep(a)∗Ep(a) = pa∗p̂ap+ p̂a∗pap ≥ 0 since p, p̂ ≥ 0. Hence P extends once
again as a bounded projection P : HA → HB . Indeed, if h = a(x0) with a ∈ A, we have

P (h) ≡ P (a+N0) = E(a) + (B ∩N0) = E(a)(x0) = (pa)(x0) = p(h),

that is, P = p|HA
. �

In the above setting, note that UB = UA(p). Let Γ(UA/UA(p),UA×UA(p)HB) be the section space of
the bundle ΠU . The reproducing kernel associated with ΠU is given by Kp(u1UA(p), u2UA(p))[(u2, f2)] :=
[(u1, pu

−1
1 u2f2)], for every u1, u2 ∈ UA and f2 ∈ HB . The kernel Kp generates a Hilbert subspace HKp

of sections in Γ(UA/UA(p),UA×UA(p)HB). Let γp : HA → Γ(UA/UA(p),UA×UA(p)HB) be the mapping
defined by γp(h)(uUA(p)) := [(u, pu−1h)] for every h ∈ HA and u ∈ UA. Then γp is injective and
it intertwines the representation πA of UA on HA and the natural action of UA on HKp ; that is, the
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diagram

(3.1)

HA
u−−−−→ HA

γp

y yγp

HKp
µ(u)−−−−→ HKp ,

is commutative for all u ∈ UA, where µ(u)F := uF (u−1 · ) for every F ∈ Γ(UA/UA(p),UA ×UA(p) HB).
In fact γ(uh)(vUA(p)) := [(v, pv−1uh)] = u[(u−1v, pv−1uh)] =: u{γ(h)(u−1vUA(p))} for all u, v ∈ UA.
See Theorem 5.4 of [BR07] for details in the general case. We next show that HKp in fact consists of
holomorphic sections.

Proposition 3.5. Let A be a unital C∗-algebra, p = p∗ ∈ P(A), and B := {p}′. Then the homogeneous
Hermitian vector bundle ΠU : UA ×UA(p) HB → UA/UA(p) is holomorphic, and the image of γp consists
of holomorphic sections. Thus HKp is a Hilbert space of holomorphic sections of ΠU .

Proof. Let u0 ∈ UA. Then ΩG := {u0g | g ∈ GA, ‖1 − g−1‖ < 1} is open in GA and contains u0, and
similarly with ΩU := ΩG ∩UA in UA.

It is readily seen that the mapping ψ0 : [(u, f)] 7→ (uUA(p), Ep(u−1u−1
0 )−1f), Π−1

U (ΩU )→ ΩU ×HB
is a diffeomorphism, with inverse map (uUA(p), h) 7→ [(uEp(u−1), h)] (this shows the local triviality of
ΠU ). Thus every point in the manifold UA ×UA(p)HB has an open neighborhood which is diffeomorphic
to the manifold product W ×HB , where W is an open subset of UA/UA(p). By Theorem 3.2, UA/UA(p)
is a complex homogeneous manifold and therefore the manifold UA ×UA(p) HB is locally complex, i.e.,
holomorphic. Also the bundle map ΠU is holomorphic.

On the other hand, for fixed h ∈ HA, the mapping σ0 : gGA([p]) 7→ Ep(g−1u−1
0 )−1pg−1h, ΩG → HB

is holomorphic on ΩG, so it defines a holomorphic function σ̃0 : ΩGGA([p]) → HB . By Theorem 3.2
the injection j : UA/UA(p) ↪→ GA/GA([p]) is holomorphic, and so the restriction map r := σ̃0 ◦ j is
holomorphic around u0UA(p). Since γ(h) = ψ−1

0 ◦ (IΩU
× r) around u0UA(p), it follows that γ(h) is

(locally) holomorphic.
Finally, by applying Theorem 4.2 in [BR07] we obtain that Kp is holomorphic. �

The starting point for the holomorphic picture given in Proposition 3.5 has been the fact that
UA/UA(p) enjoys a holomorphic structure induced by the one of GA/G([p]), see Theorem 3.2. Such
a picture can be made even more explicit if we have a global diffeomorphism UA/UA(p) ' GA/GA([p]).
The prototypical example is to be found when A is the algebra of bounded operators on a complex Hilbert
space. We examine this case more closely in the next section.

4. Tautological universal vector bundles

Let us recall the specific definition and some properties of the Grassmannian manifold associated with
a complex Hilbert space.

Notation 4.1. We shall use the standard notation B(H) for the C∗-algebra of bounded linear operators
on the complex Hilbert space H with the involution T 7→ T ∗. Let GL(H) be the Banach-Lie group of all
invertible elements of B(H), and U(H) its Banach-Lie subgroup of all unitary operators on H. Also,

• Gr(H) := {S | S closed linear subspace of H};
• T (H) := {(S, x) ∈ Gr(H)×H | x ∈ S} ⊆ Gr(H)×H;
• ΠH : (S, x) 7→ S, T (H)→ Gr(H);
• for every S ∈ Gr(H) we denote by pS : H → S the corresponding orthogonal projection.

�

Remark 4.2. The objects introduced in Notation 4.1 have the following well known properties:
(a) Both Gr(H) and T (H) have structures of complex Banach manifolds, and Gr(H) carries a natural

(non-transitive) action of U(H). (See Examples 3.11 and 6.20 in [U85], or Chapter 2 in [Du66].)
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(b) For every S0 ∈ Gr(H) the corresponding connected component of Gr(H) is the GL(H)-orbit and
is also the U(H)-orbit of S0, that is,

GrS0(H) = {gS0 | g ∈ GL(H)} = {uS0 | u ∈ U(H)}

= {S ∈ Gr(H) | dimS = dimS0 and dimS⊥ = dimS⊥0 } ' U(H)/(U(S0)×U(S⊥0 )).

(See Proposition 23.1 in [U85] or Lemma 4.3 below, alternatively.)
(c) The mapping ΠH : T (H) → Gr(H) is a holomorphic Hermitian vector bundle, and we call it

the universal (tautological) vector bundle associated with the Hilbert space H. Set TS0(H) :=
{(S, x) ∈ T (H) | S ∈ GrS0(H)}. The vector bundle TS0(H) → GrS0(H) obtained by restriction
of ΠH to TS0(H) will be called here the universal vector bundle at S0. It is also Hermitian and
holomorphic.

�

Property (b) in Remark 4.2 means that UA/UA(pS0) ' GA/GA([pS0 ]) for A = B(H). For the sake
of clarification we now connect Notation 2.1 and Notation 4.1 in more detail. For A = B(H) we have
Gr(A) = Gr(H), and with this identification the action β of Lemma 2.2 corresponds to the natural action
(so-called collineation action) of the group of invertible operators on H upon the set of all closed linear
subspaces of H. The following lemma gives us the collineation orbits of Gr(H) in terms of orbits of
projections, and serves in particular to explain the property stated in Remark 4.2(b).

For short, denote G = GL(H) and U = U(H).

Lemma 4.3. Let S0 ∈ Gr(H). Then the following assertions hold.
(i) G([pS0 ]) = {g ∈ G | gS0 = S0} and U([pS0 ]) = U(pS0) = {u ∈ U | uS0 = S0}.
(ii) For every g ∈ G and S = gS0 we have S⊥ = (g∗)−1(S⊥0 ).

(iii) We have
GrS0(H) = {gS0 | g ∈ G} ' {[gpS0g−1] | g ∈ G}

= {uS0 | u ∈ U} ' {upS0u−1 | u ∈ U}.
(iv) We have

U/U(pS0) ' G/G([pS0 ]) ' GrS0(H),
where the symbol “ ' ” means diffeomorphism between the respective differentiable structures, and
that the differentiable structure of the quotient spaces is the one associated with the corresponding
quotient topologies.

(v) G/G(pS0) ' {(aS0, (a∗)−1S0) | a ∈ G} and the map (aS0, (a∗)−1S0) 7→ ((a∗)−1S0, aS0) is an
involutive diffeomorphism on G/G(pS0). Its set of fixed points is GrS0(H) ≡ {(uS0, uS0) | u ∈ U}.

Proof. (i) As shown in Proposition 2.4, an element g of G belongs to G([pS0 ]) if and only if pS0g
−1pS0 =

g−1pS0 and pS0g pS0 = g pS0 . From this, it follows easily that g(S0) ⊂ S0 and g−1(S0) ⊂ S0, that is,
g(S0) = S0. Conversely, if g(S0) ⊂ S0 then (g pS0)(H) ⊂ pS0(H) whence pS0g pS0 = g pS0 ; similarly,
g−1(S0) ⊂ S0 implies that pS0g

−1pS0 = g−1pS0 . In conclusion, G([pS0 ]) = {g ∈ G | gS0 = S0}.
Now, the above equality and Remark 2.5 imply that U([pS0 ]) = U(pS0) = {u ∈ U | uS0 = S0}.
(ii) Let x ∈ S⊥0 , y ∈ S. Then ((g∗)−1(x) | y) = ((g−1)∗(x) | y) = (x | g−1(y)) = 0, so (g∗)−1(S⊥0 ) ⊂ S⊥.

Take now y ∈ S⊥, x = g∗(y) and z ∈ S0. Then (x | z) = (g∗(y) | z) = (y | g(z)) = 0, whence x ∈ S⊥0 and
therefore y = (g∗)−1(g∗y) = (g∗)−1(x) ∈ (g∗)−1(S⊥0 ). In conclusion, S⊥ = (g∗)−1(S⊥0 ).

(iii) By (ii), we have u(S⊥0 ) = u(S0)⊥ for u ∈ U . Thus S = u(S0) if and only if dimS = dimS0 and
dimS⊥ = dimS⊥0 . Also, if S = u(S0) and S⊥ = u(S⊥0 ), then upS0 = pSu, that is, pS = upS0u

−1. Hence
GrS0(H) = {uS0 | u ∈ U} = {S ∈ Gr(H) | dimS = dimS0 and dimS⊥ = dimS⊥0 } ' {upS0u−1 | u ∈ U}.

Suppose now that S = gS0 with g ∈ G. Then dimS = dimS0. By (ii) again, S⊥ = (g∗)−1(S⊥0 ) and so
dimS⊥ = dimS⊥0 . Hence S ∈ GrS0(H). Finally, the bijective correspondence between gS0 and g[pS0 ]g−1

is straightforward.
(iv) This is clearly a consequence of parts (iii) and (i) from above, and Theorem 2.2 in [DG02].
(v) For every a ∈ G, the pairs (aS0, (a∗)−1S0) and (a[p]a−1, (a∗)−1[p]a∗) are in a one-to-one correspon-

dence, by part (iii) from above. Hence, this part (v) is a consequence of Remark 3.3. �
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Parts (iv) and (v) of Lemma 4.3 tell us that the Grassmannian orbit GrS0(H) is a complex manifold
which in turn admits a complexification, namely the orbit G/G(pS0).

Remark 4.4. As said in Remark 4.2(b), every GL(H)-orbit (and so every U(H)-orbit) is a connected
component of Gr(H). Let us briefly discuss the connected components of Gr(A) when A is an arbitrary
unital C∗-algebra. Every element g ∈ GA has a unique polar decomposition g = ua with u ∈ UA and
0 ≤ a ∈ GA, hence there exists a continuous path t 7→ u · ((1 − t)1 + ta) in GA that connects u = u · 1
to g = u · a. Thus every connected component of the GA-orbit of [p] ∈ Gr(A) contains at least one
connected component of the UA-orbit of [p] ∈ Gr(A) for any idempotent p ∈ P(A). (Loosely speaking,
the UA-orbit of [p] has more connected components than the GA-orbit of [p].) Example 7.13 in [PR87]
shows that the C∗-algebra A of the continuous functions S3 →M2(C) has the property that there indeed
exist GA-orbits of elements [p] ∈ P(A) which are nonconnected.

If the unitary group UA is connected (so that the invertible group GA is connected), then all the UA-
orbits and the GA-orbits in Gr(A) are connected since continuous images of connected sets are always
connected. On the other hand, as said formerly, the Grassmannian Gr(A) is the discrete union of these
GA-orbits. Thus if the unitary group UA is connected, then the connected components of Gr(A) are
precisely the GA-orbits in Gr(A). One important case of connected unitary group UA is when A is a
W ∗-algebra (since every u ∈ UA can be written as u = exp(ia) for some a = a∗ ∈ A by the Borel
functional calculus, hence the continuous path t 7→ exp(ita) connects 1 to u in UA). For W ∗-algebras
such that Gr(A) is the discrete union of UA-orbits, it is then clear that the GA-orbits and the UA-orbits
coincide. This is the case if A is the algebra of bounded operators on a complex Hilbert space, as we
have seen before. �

The universal bundle TS0(H) → GrS0(H) can be expressed as a vector bundle obtained from the so-
called (principal) Stiefel bundle associated to pS0 ↔ S0, see [DG02]. A similar result holds, by replacing
the Stiefel bundle with certain, suitable, of its sub-bundles. To see this, let us now introduce several
mappings.

Put p := pS0 . We consider G ×G([p]) S0 and U ×U(p) S0 as in Remark 3.4. Note that g1S0 = g2S0

and g1(h1) = g2(h2) (g1, g2 ∈ G, h1, h2 ∈ S0) if and only if (g1, h1) ∼ (g2, h2), via w = g−1
1 g2 ∈ G([p]),

in G × S0. Hence, the mapping υG : G × S0 → TS0(H) defined by υG((g, h)) = (gS0, g(h)) for every
(g, h) ∈ G ×S0, induces the usual (canonical) quotient map υ̃G : G ×G([p]) S0 → TS0(H). We denote by υU
the restriction map of υG on G × S0. As above, the quotient mapping υ̃U : U ×U(p) S0 → TS0(H) is well
defined.

Since U(p) = U ∩G([p]), the inclusion mapping j : U ×U(p) S0 → G ×G([p]) S0 is well defined. Note that
j = (υ̃G)−1 ◦ υ̃U .

Finally, let PG : G ×G([p]) S0 → G/G([p]) and PU : U ×U(p) S0 → U/U(p) denote the vector bundles built
in the standard way from the Stiefel sub-bundles g 7→ gG([p]) ' g(S0), G → G/G([p]) ' GrS0(H) and
u 7→ uU(p) ' u(S0), U → U/U(p) ' GrS0(H) respectively.

Proposition 4.5. The following diagram is commutative in both sides, and the horizontal arrows are
biholomorphic diffeomorphisms between the corresponding holomorphic structures

TS0(H)
(υ̃U )−1

−−−−→ U ×U(p) S0
j−−−−→ G ×G([p]) S0

ΠH

y yPU yPG
GrS0(H) '−−−−→ U/U(p) '−−−−→ G/G([p])

Proof. By construction, the mapping υ̃U is clearly one-to-one. Now we show that it is onto. Let (S, h) ∈
TS0(H). This means that h ∈ S and that S = uS0 for some u ∈ U . Then f := u−1(h) ∈ S0 and h = u(f),
whence υ̃U ([(u, f)]) = (S, h), where [(u, f)] is the equivalence class of (u, f) in U ×U(p) S0. Hence υ̃U is a
bijective map.

Analogously, we have that υ̃G is bijective from G ×G([p]) S0 onto TS0(H) as well. As a consequence,
j = (υ̃G)−1 ◦ υ̃U is also bijective. It is straightforward to check that all the maps involved in the diagram
above are smooth. �
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Example 4.6. By Proposition 4.5 one can show that the universal, tautological bundle ΠH : TS0(H)→
GrS0(H) enters, as a canonical example, the framework outlined in Theorem 5.4 and Theorem 5.8 of
[BR07]. To see this in terms of the bundle ΠH itself, first note that the commutant algebra {pS0}′ of
pS0 coincides with the Banach subalgebra B of A formed by the operators T such that T (S0) ⊂ S0,
T (S⊥0 ) ⊂ S⊥0 . (It is straightforward to check directly on B that it is stable under the adjoint operation,
so that B is a C∗-subalgebra of A, as it had to be.) Put p = pS0 . From Lemma 4.3, u ∈ U([p]) if and
only if uS0 = S0. Hence u ∈ U(p) = U([p]) ∩ U([1 − p]) if and only if uS0 = S0 and uS⊥0 = S⊥0 , that is,
U(p) = UA ∩B = UB .

Similarly to what has been done in Remark 3.4, let Ep : A → B denote the canonical expectation
associated to the tautological bundle at S0; that is, Ep(T ) := pTp + p̂T p̂ for every T ∈ A. Also, for a
fixed x0 ∈ S0 such that ‖x0‖ = 1, let ϕ : A→ C be the state of A given by ϕ0(T ) := (Tx0 | x0)H. Then
ϕ0 ◦ Ep = ϕ0. Since the mappings T 7→ T (x0), B(H) → H and T 7→ T (x0), B → S0 are surjective,
we obtain that HA = H and HB = S0 in the GNS construction associated with A = B(H), B and ϕ0.
Moreover, in this case, πA coincides with the identity operator and the extension P : HA → HB of Ep is
P = p. Denote by p1, p2 : Gr(H)×Gr(H)→ Gr(H) the natural projections and define

QH : Gr(H)×Gr(H)→ Hom (p∗2(ΠH), p∗1(ΠH))

by

QH(S1,S2) = (pS1)|S2 : S2 → S1

whenever S1,S2 ∈ Gr(H). This mapping QH is called the universal reproducing kernel associated with
the Hilbert space H. In fact, for S1, . . . ,Sn ∈ Gr(H) and xj ∈ Sj (j = 1, . . . , n),

n∑
j,l=1

(QH(Sl,Sj)xj | xl)H =
n∑

j,l=1

(pSl
xj | xl)H =

n∑
j,l=1

(xj | xl)H = (
n∑
j=1

xj |
n∑
l=1

xl)H ≥ 0,

so QH is certainly a reproducing kernel in the sense of [BR07]. �

Using Proposition 4.5 and Example 4.6 we get the following special case of Theorem 5.8 in [BR07].

Corollary 4.7. For a complex Hilbert space H, the action of U on H can be realized as the natural
action of U on a Hilbert space of holomorphic sections from GrS0(H) into H, such a realization being
implemented by γ(uh) = u γ(h)u−1, for every h ∈ H, u ∈ U .

Proof. If S ∈ GrS0(H), there exists u ∈ U such that uS0 = S and then pS = upS0u
−1. Thus for all

u1, u2 ∈ U and x1, x2 ∈ S0 we have QH(u1S0, u2S0)(u2x2) = pu1S0(u2x2) = u1pS0(u−1
1 u2x2). This

formula shows that for every connected component GrS0(H) the restriction of QH to GrS0(H)×GrS0(H)
is indeed a special case of the reproducing kernels considered in Remark 3.4. For every h ∈ H, the
mapping γpS0 (h) : GrS0(H) → TS0(H) which corresponds to QH can be identified to the holomorphic
map uS0 7→ upu−1h, GrS0(H)→ H. Then the conclusion follows by using the diffeomorphism U/U(p) '
G/G([p]) ' GrS0(H) of Lemma 4.3, together with Proposition 4.5. �

Remark 4.8. Assume again the situation where A and B are arbitrary C∗-algebras, B is a C∗-subalgebra
of A, with unit 1 ∈ B ⊆ A, E : A → B is a conditional expectation, and ϕ : A → C is a state such that
ϕ ◦ E = ϕ. With the same notations as in Remark 3.4, take x0 := 1 + NB ∈ B/NB ⊂ A/NA. It is well
known that x0 is a cyclic vector of πX , for X ∈ {A;B}: let h ∈ HX such that 0 = (π(c)x0 | h)HX

≡
(c + NX | h)HX

for all c ∈ X; since X/NX is dense in HX we get 0 = (h | h)HX
= ‖h‖2, that is, h = 0.

Thus πX(X)x0 is dense in HX .
Inspired by [AS94], we now consider the C∗-subalgebra A of B(HA) generated by πA(A) and p, where

p is the orthogonal projection from HA onto HB . Set B := A ∩ {p}′. Clearly, the GNS procedure is
applicable to B ⊂ A ⊂ B(HA), for the expectation Ep : A → B and state ϕ0 defined by x0, as we have
done in Remark 3.4. Then πA(A)(x0) ⊂ A(x0) ⊂ HA and πA(B)(x0) ⊂ B(x0) ⊂ HB , whence, by the
choice of x0, we obtain that A(x0) = HA and B(x0) = HB . Thus we have that HA = HA and HB = HB .
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According to former discussions there are two (composed) commutative diagrams, namely

(4.1)

GA ×GB
HB

πA×̃I−−−−→ GA ×GA(p) HB −−−−→ GA ×GA([p]) HB
j×̃I−−−−→ G ×G([p]) HB

ΠG

y yΠGA

y yΠHB

GA/GB
π̃A−−−−→ GA/GA(p) −−−−→ GA/GA([p])

j̃−−−−→ G/G([p])
and

(4.2)

UA ×UB
HB

πA×̃I−−−−→ UA ×UA(p) HB
j×̃I−−−−→ U ×U(p) HB

'−−−−→ THB
(HA)

ΠU

y yΠUA

yΠU

yΠHB

UA/UB
π̃A−−−−→ UA/UA(p)

j̃−−−−→ U/U(p) '−−−−→ GrHB
(HA)

(where the meaning of the arrows is clear). We suggest to call ΠG : GA ×GB
HB → GA/GB and

ΠU : UA ×UB
HB → UA/UB the GNS vector bundle and the unitary GNS vector bundle, respectively,

for data E : A → B and ϕ : A → C. Following the terminology used in [AS94], [ALRS97] for the
maps GA/GB → GA/GA(p), UA/UB → UA/UA(p), we could refer to the left sub-diagrams of (4.1)
and (4.2) as the basic vector bundle representations of ΠG and ΠU , respectively. Since HA = HA and
HB = HB , the process to construct such “basic” objects, of Grassmannian type, is stationary. Also, since
there is another way to associate Grassmannians to the GNS and unitary GNS bundles, which is that
one of considering the tautological bundle of HA (see the right diagrams in (4.1), (4.2)), we might call
GA×GA(p)HB → GA/GA([p]) the minimal Grassmannian vector bundle, and call THB

(HA)→ GrHB
(HA)

the universal Grassmannian vector bundle, associated with data E : A→ B and ϕ : A→ C. In the unitary
case, we should add the adjective “unitary” to both bundles.

Note that the vector bundles G ×G([p]) HB → G/G([p]) and THB
(HA) → GrHB

(HA) are isomorphic.
In this sense, both diagrams (4.1) and (4.2) “converge” towards the tautological bundle for HA. Let us
remark that (4.1) is holomorphic, and everything in (4.2) is holomorphic with the only possible exception
of the bundle ΠU . On the other hand, we have that GA/GA(p) and G/G(p) are complexifications of
UA/UA(p) and U/U(p) respectively, on account of Remark 3.3 and Lemma 4.3. Note in passing that
the fact that GA/GB is such a complexification implies interesting properties of metric nature in the
differential geometry of UA/UB , see [ALRS97].

The above considerations strongly suggest to investigate the relationships between (4.1) and (4.2) in
terms of holomorphy and geometric realizations. In this respect, note that the commutativity of (4.2)
corresponds, on the level of reproducing kernels, with the equality

(πA×̃I) ◦K(u1UB , u2UB)QHB
(πA(u1)U(p), πA(u2)U(p)) ◦ (πA×̃I)

for all u1, u2 ∈ UA (where the holomorphy supplied by QHB
appears explicitly). From this, a first

candidate to reproducing kernel on GA/GB , in order to obtain a geometric realization of πA on GA,
would be defined by

K(g1GB , g2GB)[(g2, f)] := [(g1, p(πA(g−1
1 )πA(g2)f))]

for every g1, g2 ∈ GA and f ∈ HB . Nevertheless, since the elements g1, g2 are not necessarily unitary,
it is readily seen that the kernel K so defined need not be definite-positive in general. There is also the
problem of the existence of a suitable structure of Hermitian type in ΠG.

It would be interesting to have a theory of bundles GA ×GB
HB → GA/GB and kernels K taking into

account natural involutive diffeomorphisms in GA/GB , which would allow to incorporate those bundles
to a framework containing as a special case the one established in [BR07]. This will be the subject of a
forthcoming paper by the authors. �
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5. Almost hypercomplex structures associated with Grassmann manifolds

The following definition provides the infinite-dimensional version of the terminology of quaternionic
structures on finite-dimensonal manifolds; see for instance subsection 2.5 in [AM96].

Definition 5.1. Let Y be a Banach manifold. An almost hypercomplex structure on Y is a pair of almost
complex structures J1, J2 : TY → TY satisfying J1J2 = −J2J1. �

Remark 5.2. Let H = R+Ri1 +Ri2 +Ri3 be the quaternion field with the imaginary units i1, i2, i3 ∈ H
satsfying (i1)2 = (i2)2 = (i3)2 = −1, i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, and i3i1 = −i1i3 = i2. In the
setting of Definition 5.1, it is easy to see that the hypercomplex structure of Y gives rise to a fiberwise
linear action of H on TY by i1 · v = J1v, i2 · v = J2v and i3 · v = J1J2v for every v ∈ TY . Thus for every
y ∈ Y the tangent space TyY has a natual structure of quaternionic vector space. �

In the following statement we need the notion of spray on Banach manifolds in the sense of [L01].

Theorem 5.3. Assume that X is an almost complex Banach manifold. Then the following assertions
hold:

(i) There exists a natural correspondence from the sprays on X to the almost hypercomplex structures
on TX.

(ii) If there exist a unital C∗-algebra A and a projection p = p2 = p∗ ∈ A such that X = UA/UA(p),
then the almost hypercomplex structure associated with the natural spray on X induces an almost
hypercomplex structure on the complexification GA/GA(p).

Proof. (i) Denote Y = TX and π : TX → X the natural projection, and consider the commutative
diagram

π∗(TX) −−−−→ TX

π∗(π)

y yπ
Y

π−−−−→ X
where the left-hand vertical arrow is the pull-back of the right-hand vertical arrow by π : Y → X. Assume
that we have got the covariant derivative associated with some spray on X. It then follows by the tensorial
splitting theorem (Theorem 4.3 in Chapter X of [L01]) that there exists an isomorphism

(5.1) TY ' π∗(TX)⊕TX π∗(TX)

of vector bundles over TX. Note that the fiber of π∗(TX) over any y ∈ Y is

(π∗(TX))y = {(y, z) ∈ Y × TX | π(y) = π(z)} ' π−1(π(y))

hence the fiber of the Whitney sum π∗(TX)⊕TX π∗(TX) over y ∈ Y = TX is

(π∗(TX)⊕TX π∗(TX))y{(y1, y2) ∈ TX × TX | π(y1) = π(y2) = π(y)} ' Tπ(y)X × Tπ(y)X.

By taking into account the isomorphism (5.1) we can now define two almost complex structures on Y by

(5.2) (y1, y2) 7→ (−y2, y1), TY
J1−→ TY,

and

(5.3) (y1, y2) 7→ (iy1,−iy2), TY
J2−→ TY.

Note that for every pair (y1, y2) ∈ π∗(TX) ⊕TX π∗(TX) ' TY we have J1J2(y1, y2) = J1(iy1,−iy2) =
(iy2, iy1) and J2J1(y1, y2) = J2(−y2, y1) = (−iy2,−iy1). Hence J1J2 = −J2J1, and thus the pair of almost
complex structures J1, J2 defines an almost hypercomplex structure on Y = TX.

(ii) Now assume that X = UA/UA(p) as in the statement. This is a complex homogeneous space by
Theorem 3.2. The natural connection on this Grassmann manifold is the connection associated with the
conditional expectation

E : A→ B, E(a) = pap+ (1− p)a(1− p),
where B = {a ∈ A | ap = pa}. Recall that this conditional expectation induces a connection in
the principal bundle UA → UA/UA(p) (see [ALRS97] and [G06]). On the other hand, if we denote
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p = {a ∈ KerE | a∗ = −a}, then UA(p) acts upon p by means of the adjoint action and it is well known
that there exists an isomorphism of vector bundles UA×UA(p) p ' TX over UA/UA(p) = X. In particular
the tangent bundle of X is a vector bundle associated with the principal bundle UA → UA/UA(p). Thus
we get a linear connection on the vector bundle TX → X which is associated with a connection map
(or connector) TTX → TX, and the latter map gives rise to a spray on X by means of the Christoffel
symbols. (See [L01] and subsections 37.24–27 in [KM97] for more details.) Now assertion (i) shows that
there exists an almost hypercomplex structure on TX associated with the spray we got.

To complete the proof we have to show that there exists a projection π : GA/GA(p) → X making
GA/GA(p) into a vector bundle which is isomorphic to the tangent bundle TX → X. Recall from the
above reasonings that TX ' UA ×UA(p) p as vector bundles over UA/UA(p). Now define the mapping
(u, a) 7→ u exp(ia)GA(p), UA × p → GA/GA(p). It is straightforward to check that this induces an
injective mapping UA ×UA(p) p → GA/GA(p), which is actually a diffeomorphism as a consequence of
Theorem 8 in [PR94]. This makes GA/GA(p) into a vector bundle isomorphic to TX over X, and the
proof ends. �

Remark 5.4. The corespondence between affine connections on finite dimensional manifolds and almost
(hyper)complex structures goes back to [H60] and [Do62]. See [BG96], [BG98], and [Bi03] for more recent
advances. �

Remark 5.5. Let us note another general way to construct almost hypercomplex structures associated
with the infinite-dimensional complex Grassmann manifolds. Quite generally, assume that X is an almost
complex Banach manifold. If we denote by X the complex-conjugate manifold of X, then the direct
product X ×X is a complexification of X and has a natural almost hypercomplex structure.

This fact was noted in the paper [D81] in the case of finite-dimensional manifolds and can be proved
in the general case as follows. Let I : TX → TX be the almost complex structure of M . Then X is just
the underlying real analytic manifold of X thought of as an almost complex manifold with respect to the
almost complex structure −I : TX → TX. Let us denote by θ : X → X the identity mapping, which is
an anti-holomorphic mapping. Also denote Z = X×X. Now consider the direct product almost complex
structure of Z,

J1 =
(
I 0
0 −I

)
: TZ → TZ

and define

J2 =
(

0 Tθ
−(Tθ)−1 0

)
: TZ → TZ.

It is straightforward to check that (J1)2 = (J2)2 = −idTZ and J1J2 = −J2J1, where the latter equality
follows by the fact that θ is antiholomorphic. �
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