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1 Introduction

Harmonic maps are smooth mappings between Riemannian manifolds that are crit-
ical points for a natural functional, called the energy. Since its inception in 1964 by
Eells and Sampson [ES64], this fundamental notion situated at the border between
geometry and analysis provided a field of intensive fruitful research. Relationships
with physics, or probabilities increased the interest of the mathematical commu-
nity in this theory. Several hundreds of papers have been written on the subject,
and many excellent monographs treat the theory of harmonic maps in deep details.

In the present paper, based on the talk given at the 8th Workshop in Differential
Geometry and its Applications held in Cluj, we give a brief survey of some results
obtained in a few personal (joint or not) works. We focus mainly on the class of
pseudo-harmonic morphisms, (short PHM). Defined by the condition to pull-back
germs of holomorphic functions to germs of harmonic functions, it was introduced
in [Lou97] (following [BBdBR89]), with the aim of enlarging another remarkable
class of harmonic maps, namely the class of harmonic morphisms, [F78], [I79].
On the one hand, pseudo-harmonic morphisms generalize harmonic morphisms,
and on the other hand, the framework is more restrictive, as the target manifold
is asked to be at least Hermitian (and sometimes, even Kähler). Loubeau proved
that pseudo-harmonic morphisms are harmonic maps with an extra-property called
pseudo-horizontal weakly conformality (short PHWC). Intuitively, the latter notion
(which gives the title of my paper) is the condition of pulling-back the Hermitian
structure to a partial Hermitian structure on the horizontal distribution. Asking this
partial structure to satisfy a Kähler-type condition leads to the notion of pseudo-
horizontal homotheticity, introduced in [AAB00]. Pseudo-horizontally homothetic
submersions that are moreover harmonic, and take values in Kähler manifolds, be-
have well with respect to the geometry of the manifolds in question. We mention
here the fact that their fibres are minimal submanifolds, and more generally, inverse
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images of complex submanifolds are minimal submanifolds. This provides an ef-
fective way of constructing minimal submanifolds, see [AAB00], [AA99]. These
are all indications that pseudo-horizontal homotheticity plus harmonicity is very
closed to holomorphy, while there is a priori no complex structure on the source
manifold. Another indication is this direction is given in [A], where we proved sta-
bility of these maps, generalizing the case of holomorphic maps between Kähler
manifolds.

The theory of harmonic maps between Riemannian manifolds was extended
by Korevaar and Schoen to certain singular spaces, see [KS93]. Admissible Rie-
mannian polyhedra are prototypes of the relevant singular spaces, being harmonic,
geodesic, and Dirichlet spaces. Some basic examples are: smooth Riemannian
manifolds, Riemannian orbit spaces, normal analytic spaces, Thom spaces etc. Fol-
lowing the developing of harmonic morphism theory in the smooth case, it became
apparent that this notion should be expanded to the case of Riemannian polyhedra.
This was done by Eells and Fuglede in [EF01]. They have also recovered many of
the properties of harmonic maps from the smooth case. However, the most impor-
tant results were proved only under the assumption that the target was still a Rie-
mannian manifold. In [AB06], we continued these ideas. Our aim is to generalize
pseudo harmonic morphisms to maps from an admissible Riemannian polyhedron
into a Kähler manifold and to characterize them by geometric criteria and analytic
criteria, similarly to Loubeau’s result. This generalization hides several difficulties,
as for example, the absence of global differential calculus on singular spaces. It is
also not so easy to find a geometric condition that characterizes PHM on Rieman-
nian polyhedra, since it makes no sense to talk about horizontal vectors. Another
difficulty is in the use of germs of harmonic functions in the sense of Korevaar and
Schoen, as the analytic aspect of our construction.

We would like to make a few final comments on a possible research direction
along the lines of harmonic maps. Recall that a fundamental ingredient in the the-
ory of harmonic maps is the first variation formula that describes harmonic maps as
solutions of the Euler-Lagrange equations. Stable maps are defined by a positivity
condition of the Hessian. In the case of manifolds, stable maps are described by
the second variation formula, which relied the Hessian and the Jacobi operator. A
natural question is to know whether stability can be introduced for maps between
a Riemannian polyhedron and a Riemannian manifold. It is a natural question, as
stable maps are easier to classify. In the same direction, it would be nice to have
a second variation formula in the singular case. This would also allow to intro-
duce PHH maps on Riemannian polyhedra, and to generalize all the results quoted
above.

2 Preliminaries

We recall some basic facts on linear algebra used in the sequel.

3



Let (V, g) and (W,h) be two euclidean vector spaces and L : V → W a linear
map.

Definition 2.1 The adjoint operator of L is the map L∗ : W → V characterized
by

g(v, L∗(w)) = h(L(v), w), for all v ∈ V, w ∈ W.

Definition 2.2 The L-horizontal component of V is the space defined by

HL := (kerL)⊥ = ImL∗.

We denote by gHL the restriction of the inner product g to HL.

Remark 2.3 If W is endowed with a complex structure J such that:

1. h(JX, JY ) = h(X,Y ), for any X,Y ∈ W ;

2. Im L is J-invariant;

then on HL we can define a linear complex structure: JH := L−1JL and L :
(HL, JH) → (W,J) becomes a complex linear map.

Remark 2.4 For the complex linear map L : (HL, JH , gH) → (W,J, h) defined
above, by a simple computation it can be proved that:

gHL(JH−, JH−) = gHL(−,−) if and only if LL∗J = JLL∗.

3 PHWC maps on Riemannian manifolds ([Lou97], [BBdBR89]).

Let ϕ : (Mm, g) → (N2n, J, h) be a map defined on a Riemann manifold with
value in a Kähler one. For any point x ∈ M , we consider dϕ∗x : Tϕ(x)N → TxM

the adjoint of the tangent map dϕx : TxM → Tϕ(x)N and Hϕ
x := Hdϕx the

horizontal space of dϕ at x.
If Im dϕx is J-invariant, then one can define an almost complex structure JH,x

on the space Hϕ
x by

JH,x = dϕ−1
x ◦ Jϕ(x) ◦ dϕx,

see the previous discussion.
Similarly, if the spaces Im dϕx are J-invariant for all x, then we define the

almost complex structure on the horizontal distribution Hϕ, by JH = dϕ−1◦J◦dϕ.

Definition 3.1 Notation as before.

(i) The map ϕ is called PHWC (i.e. pseudo-horizontally weakly conformal) at
x if and only if Im(dϕx) is J-invariant and g|Hϕ

x
is JH,x-Hermitian.

(ii) The map ϕ is called PHWC (pseudo-horizontally weakly conformal) if and
only if it is PHWC at any point of X .
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From Remark 2.4 it follows that the PHWC condition at a point x is equivalent
to: dϕx ◦ dϕ∗x commutes with Jϕ(x).

This notion appears for the first time in [BBdBR89] in relation with stability of
minimal immersions.

3.1 PHH maps and their stability ([AAB00], [AA99], [A]).

In the joint paper [AAB00], we have introduced a class of harmonic maps, defined
on a Riemann manifold, with value in a Kähler manifold, called PHH harmonic
maps which have a behaviour somewhat similar to that of holomorphic maps.
Holomorphic maps between Kähler manifolds are typical examples of PHH har-
monic maps, but examples of different flavour have been found in [AA99].

Let (Mm, g) be a Riemannian manifold, (N2n, J, h) be a Kähler manifold, and
ϕ a smooth map from M to N . Denote∇M the Levi-Civita connection on M ,∇N

the Levi-Civita connections on N , and ∇̃ the induced connection in the bundle
ϕ−1TN .

Definition 3.2 A map ϕ : (Mm, g) → (N2n, J, h) from a Riemannian manifold to
a Kähler manifold is called PHH (i.e. pseudo-horizontally homothetic) if and only
if

1. ϕ is PHWC;

2. JH is parallel in horizontal directions (i.e. ∇M
X JH = 0 for every X ∈ Hϕ).

The above Definition 3.2 has a local version. If ϕ is PHWC at x, we say that ϕ
is PHH at x if and only if

dϕx

(
(∇M

v dϕ∗x(JY ))x

)
= Jϕ(x)dϕx

(
(∇M

v dϕ∗x(Y ))x

)

for any horizontal tangent vector v ∈ TxM , and any vector field Y , locally defined
in a neighbourhood of ϕ(x). By definition, a PHWC map is PHH if and only if

dϕ(∇M
X dϕ∗(JY )) = Jdϕ(∇M

X dϕ∗(Y )),

for any horizontal vector field X on M and any vector field Y on N , i.e. ϕ is PHH
if and only if it is PHH at any point x of M .

Several non-trivial examples of PHH harmonic submersions can be found in
[AA99], [AAB00] and a general recipe for producing harmonic PHH maps is to
solve suitable algebraic systems, see [AA99].

An important property we discuss here is the stability of harmonic submer-
sive maps ϕ : (Mm, g) → (N2n, J, h) from a compact Riemannian manifold to
a Kähler manifold. Recall that this property is controlled by a condition on the
Hessian of the energy-functional, [Urk93], p. 155:

H(E)ϕ(V, V ) ≥ 0,
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for any section V of the bundle ϕ−1TN .

Let R be the curvature tensor field on N , {ε1, ..., εm} be an orthogonal vector
frame on M , and V be a section in ϕ−1TN . Denote by

Rϕ :=
m∑

i=1

1
||εi||2 R(V, dϕ(εi))dϕ(εi),

by

∆̄ϕ := −
m∑

i=1

1
||εi||2

(
∇̃εi∇̃εi − ∇̃∇εiεi

)

the second-order elliptic differential operator called the rough Laplacian of ϕ, (cf.
[Urk93], pp. 155), and by

Jϕ := ∆̄ϕ −Rϕ.

One of the useful properties of the rough Laplacian is the following, cf. [Urk93],
pp. 156.

Proposition 3.3 The rough Laplacian ∆̄ϕ satisfies
∫

M

h(∆̄ϕV, W )vM =
∫

M

h(∇̃V, ∇̃W )vM =
∫

M

h(V, ∆̄ϕW )vM ,

where V and W are sections on ϕ−1TN , and

h(∇̃V, ∇̃W ) =
m∑

i=1

1
||εi||2 h(∇̃εiV, ∇̃εiW ).

We have then the following result.

Theorem 3.4 Let (Mm, g) be a compact Riemann manifold, (N2n, J, h) be a
Kähler manifold, and ϕ : M → N be a harmonic PHH submersion. Then ϕ
is (weakly) stable.

4 PHWC maps on polyhedra.

4.1 Riemannian polyhedron ([EF01]).

A polyhedron X is a connected locally compact separable Hausdorff space X for
which there exists a simplicial complex K and a homeomorphism θ : K → X .
Any such pair (K, θ) is called a triangulation of X .

The complex K is necessarily countable and locally finite (see [S66] page 120)
and the space X is path connected and locally contractible.

The dimension of X is by definition the dimension of K and it is independent
of the triangulation.
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If X is a polyhedron with specified triangulation (K, θ), we shall speak of
vertices, simplexes, i-skeletons, stars, space of links or tangent cones of X as the
image under θ of vertices, simplexes, i-skeletons, stars, space of links or tangent
cones of K.

A polyhedron X will be called admissible, (see [EF01]), if in some (hence in
any) triangulation:

1. X is dimensionally homogeneous (i.e. all maximal simplexes have the same
dimension n = dim (X),

2. X is locally (n − 1)−chainable (i.e. for every connected open set U ⊂ X ,
the open set U \X(n−2) is connected).

Replacing ”homeomorphism” by ”Lip homeomorphism” throughout the pre-
ceding definitions leads us to the notion of a Lip polyhedron.

A null set in a Lip polyhedron X is a set Z ⊂ X such that Z meets every
maximal simplex ∆, relative to a triangulation (K, θ) (hence any) in a set whose
pre-image under θ has n-dimensional Lebesgue measure 0, n = dim (∆). Note
that ”almost everywhere” (a.e.) means everywhere except in some null set.

A Riemannian polyhedron, (see [EF01]), X = (X, g) is defined as a Lip poly-
hedron X with a specified triangulation (K, θ), endowed with a covariant bounded
measurable Riemannian metric tensor g∆ on each maximal simplex ∆ satisfying
the ellipticity condition below. In fact, suppose that X has homogeneous dimen-
sion n and choose a measurable Riemannian metric g∆ on the open euclidean n-
simplex θ−1(∆o) of K. In terms of euclidean coordinates {x1, ..., xn} of points
x = θ−1(p), g∆ thus assigns to almost every point p ∈ ∆o (or x) an n × n sym-
metric positive definite matrix g∆ = (g∆

ij (x))i,j=1,...,n with measurable real entries;
and there is a constant Λ∆ > 0 such that (ellipticity condition):

Λ−2
∆

n∑

i=0

(ξi)2 ≤
∑

i,j

g∆
ij (x)ξiξj ≤ Λ2

∆

n∑

i=0

(ξi)2

for a.e. x ∈ θ−1(∆o) and every ξ = (ξ1, ..., ξn) ∈ Rn. This condition amounts to
the components of g∆ being bounded and it is independent not only of the choice
of the euclidean frame on θ−1(∆o) but also of the chosen triangulation.

For simplicity of statements we shall sometimes require that, relative to a fixed
triangulation (K, θ) of a Riemannian polyhedron X (uniform ellipticity condition),

Λ := sup {Λ∆ : ∆ is simplex of X} < ∞.

4.2 Energy of maps [EF01].

The concept of energy of maps from Riemannian domains into arbitrary metric
spaces Y was defined and investigated by Korevaar and Schoen [KS93]. Later on,
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Eells and Fuglede [EF01] extended this concept to the case of maps from an ad-
missible Riemannian polyhedron X with simplexwise smooth Riemannian metric.
Thus, the energy E(ϕ) of a map ϕ from X to the space Y is defined as the limit of
suitable approximate energy expressed in terms of the distance function dY of Y .

It is proved in [EF01] that the maps ϕ : X → Y of finite energy are precisely
those quasicontinuous (i.e. has a continuous restriction to closed sets, whose com-
plements have arbitrarily small capacity, (see [EF01] page 153)) whose restriction
to each top dimensional simplex of X has finite energy; E(ϕ) is the sum of the
energies of these restrictions.

Let (X, g) be an admissible m-dimensional Riemannian polyhedron with sim-
plexwise smooth Riemannian metric. It is not required that g is continuous across
lower dimensional simplexes. The target (Y, dY ) is an arbitrary metric space.

Denote L2
loc(X,Y ) the space of all µg-measurable (µg the volume measure of

g) maps ϕ : X → Y having separable essential range and for which the map
dY (ϕ(.), q) ∈ L2

loc(X, µg) (i.e. locally µg-squared integrable) for some point q
(hence by triangle inequality for any point). For ϕ,ψ ∈ L2

loc(X, Y ) define their
distance D(ϕ, ψ) by:

D2(ϕ,ψ) =
∫

X

d2
Y (ϕ(x), ψ(y))dµg(x).

Two maps ϕ,ψ ∈ L2
loc(X, Y ) are said to be equivalent if D(ϕ,ψ) = 0 (i.e.

ϕ(x) = ψ(x) µg-a.e.). If the space X is compact then D(ϕ,ψ) < ∞ and D is a
metric on L2

loc(X, Y ) = L2(X, Y ) which is complete if the space Y is complete
[KS93].

The approximate energy density of the map ϕ ∈ L2
loc(X, Y ) is defined for

ε > 0 by:

eε(ϕ)(x) =
∫

BX(x,ε)

d2
Y (ϕ(x), ϕ(x′))

εm+2
dµg(x′).

The function eε(ϕ) ≥ 0 is locally µg-integrable.

The energy E(ϕ) of a map ϕ of class L2
loc(X,Y ) is:

E(ϕ) = sup
f∈Cc(X,[0,1])


lim sup

ε→0

∫

X

feε(ϕ)dµg


 ,

where Cc(X, [0, 1]) denotes the space of continuous functions from X to the inter-
val [0, 1] with compact support.

A map ϕ : X → Y is said to be locally of finite energy, and we write ϕ ∈
W 1,2

loc (X, Y ), if E(ϕ|U ) < ∞ for every relatively compact domain U ⊂ X , or
equivalently if X can be covered by domains U ⊂ X such that E(ϕ|U ) < ∞.
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For example (see [EF01] Lemma 4.4), every Lip continuous map ϕ : X → Y
is of class W 1,2

loc (X, Y ). In the case when X is compact, W 1,2
loc (X,Y ) is denoted

by W 1,2(X, Y ), the space of all maps of finite energy.

W 1,2
c (X, Y ) denotes the linear subspace of W 1,2(X, Y ) consisting of all maps

of finite energy of compact support in X .
One can show (see [EF01] Theorem 9.1) that a real function ϕ ∈ L2

loc(X) is
locally of finite energy if and only if there is a function e(ϕ) ∈ L1

loc(X), named
energy density of ϕ, such that (weak convergence):

lim
ε→0

∫

X

feε(ϕ)dµg =
∫

X

fe(ϕ)dµg, for each f ∈ Cc(X).

4.3 Harmonic maps [EF01].

Let (X, g) be an arbitrary admissible Riemannian polyhedron (g just bounded mea-
surable with local elliptic bounds), dim (X) = m and (Y, dY ) a metric space .

A continuous map ϕ : X → Y of class W 1,2
loc (X, Y ) is said to be harmonic if it

is bi-locally E-minimizing, i.e. X can be covered by relatively compact subdomains
U for which there is an open set V ⊃ ϕ(U) in Y such that

E(ϕ|U ) ≤ E(ψ|U )

for every continuous map ψ ∈ W 1,2
loc (X, Y ), with ψ(U) ⊂ V and ψ = ϕ in X\U .

We replace now the metric space (Y, dY ) by a smooth Riemannian manifold
(N,h) without boundary and dim R N = n. By Γk

αβ we denote the Christoffel
symbols on N .

A weakly harmonic map ϕ : X → N is a quasicontinuous map (a map which
is continuous on the complement of open sets of arbitrarily small capacity; in the
case of the Riemannian polyhedron X it is just the complement of open subsets
of the (m − 2)-skeleton of X) of class W 1,2

loc (X,N) with the following property:
for any chart η : V → Rn on N and any quasiopen set U ⊂ ϕ−1(V ) of compact
closure in X , the equation

∫

U

〈∇λ,∇ϕk〉dµg =
∫

U

λ(Γk
αβ ◦ ϕ)〈∇ϕα,∇ϕβ〉dµg,

holds for every k = 1, ..., n and every bounded function λ ∈ W 1,2
0 (U).

Ishihara characterization on Riemannian manifolds extends to polyhedra.

Theorem 4.1 [EF01] For a continuous map ϕ ∈ W 1,2
loc (X, N) the following are

equivalent:
(a) ϕ is harmonic,
(b) ϕ is weakly harmonic,
(c) ϕ pulls convex functions on open sets V ⊂ N back to subharmonic func-

tions on ϕ−1(V ).
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4.4 Horizontally weakly conformal maps [EF01].

Considering maps from a Riemannian polyhedron with values into a Riemannian
manifold we recover, as in the smooth case, the notion of horizontally weak con-
formality.

Let (N, gN ) denote an n-Riemannian manifold without boundary and suppose
that the polyhedron X is admissible. A continuous map ϕ : X → N of class
W 1,2

loc (X, N) is called horizontally weakly conformal (see [EF01]) if there exist a
scalar λ, defined a.e. in X , such that:

〈∇(v ◦ ϕ),∇(w ◦ ϕ)〉 = λ[gN (∇Nv,∇Nw) ◦ ϕ] a.e. in X

for every pair of functions v, w ∈ C1(N). Henceforth ∇N denote the gradient
operator on N and∇ the gradient operator defined a.e. on the domain space (X, g).

The property of horizontally weak conformality is a local one, thus it reads in
terms of local coordinates (yα) in N ,

〈∇ϕα,∇ϕβ〉 = λ(gαβ
N ◦ ϕ) a.e. in X

for α, β = 1, ..., n. Taking α = β, λ is uniquely determined and λ ≥ 0 a.e. in X .

4.5 PHWC maps [EF01].

Replacing the Riemannian manifold with an admissible Riemannian polyhedron
but keeping as target a Kähler manifold, also in the polyhedra case the class of
harmonic maps can be enlarged. For this, the notion of pseudo-horizontally weakly
conformal maps was extended to Riemannian polyhedra, see [AB06]. (The termi-
nology used in [AB06] is similar to the one used in [Lou97].)

Let (X, g) be an n-dimensional admissible Riemannian polyhedron and (N, JN , gN )
a Hermitian manifold of dim RN = 2n, without boundary.

We denote by Holom(N) = {f : N → C, f local holomorphic function}. In
what follows, the gradient operator and the inner product in (X, g) are well defined
a.e. in X and will be denoted by ∇ and 〈, 〉 respectively.

Definition 4.2 [AB06] Let ϕ : X → N be a continuous map of class W 1,2
loc (X, N).

ϕ is called pseudo-horizontally weakly conformal (shortening PHWC), if for any
pair of local holomorphic functions v, w ∈ Holom(N), such that v = v1 + iv2,
w = w1 + iw2, we have:

{ 〈∇(w1 ◦ ϕ),∇(v1 ◦ ϕ)〉 − 〈∇(w2 ◦ ϕ),∇(v2 ◦ ϕ)〉 = 0 a.e. in X
〈∇(w2 ◦ ϕ),∇(v1 ◦ ϕ)〉+ 〈∇(w1 ◦ ϕ),∇(v2 ◦ ϕ)〉 = 0 a.e. in X

(1)

Since the above definition is a local one, it is sufficient to check the identities
(1) in local complex coordinates (z1, z2, ..., zn) in N . Taking zA = xA+iyA, ∀A =
1, ..., n, the relations (1), ∀A,B = 1, ..., n, read:




〈∇ϕB

1 ,∇ϕA
1 〉 − 〈∇ϕB

2 ,∇ϕA
2 〉 = 0 a.e. in X

〈∇ϕB
2 ,∇ϕA

1 〉+ 〈∇ϕB
1 ,∇ϕA

2 〉 = 0 a.e. in X
(2)
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where 



ϕA
1 := xA ◦ ϕ, ϕA

2 := yA ◦ ϕ, ∀A = 1, ..., n,

ϕB
1 := xB ◦ ϕ, ϕB

2 := yB ◦ ϕ, ∀B = 1, ..., n.

If the source manifold is a smooth Riemannian one, without boundary, we
obtain from the above definition exactly the definition of PHWC maps gave in
[Lou97] or [BW03], [AAB00].

The next proposition justifies the use of the term ’horizontally weakly confor-
mal’. When the dimension of the target is one, we obtain, as in the smooth case,
an equivalence between horizontally weak conformality and pseudo-horizontally
weak conformality.

Proposition 4.3 [AB06] Let ϕ : X → N be a horizontally weakly conformal map
(see subsection 4.4) from a Riemannian admissible polyhedron (X, g) into a Her-
mitian manifold (N, JN , gN ). Then ϕ is pseudo-horizontally weakly conformal. If
the complex dimension of N is equal to one, then the two conditions are equivalent.

PHWC maps on Riemannian polyhedra can be characterised using germs of
holomorphic functions on the target Hermitian manifolds as follows:

Proposition 4.4 [AB06] Let ϕ : X → N be a continuous map of class W 1,2
loc (X, N).

Then ϕ is pseudo-horizontally weakly conformal if and only if for any local holo-
morphic function ψ : N → C, ψ◦ϕ is also pseudo-horizontally weakly conformal.

The next proposition makes clear the relation between PHWC maps on Rie-
mannian polyhedra and holomorphic maps on target Hermitian manifolds.

Proposition 4.5 [AB06] Let ϕ : X → N be a continuous map of class W 1,2
loc (X, N)

and (P, JP , gP ) another Hermitian manifold of dim RP = 2p. Then ϕ is pseudo-
horizontally weakly conformal if and only if for every local holomorphic map
ψ : N → P , ψ ◦ ϕ is also pseudo-horizontally weakly conformal.

Remark 4.6 It would be interesting to know what means stability in the polyhedra
case. In the smooth case the stability condition is controlled by the Hessian of the
energy (cf. the second variation formula [Urk93], pg.155). For maps defined on
Riemannian polyhedra with values in Riemannian manifolds an equivalent formula
for the first variation of the energy functional is given in [EF01], pg.224. A natural
question arises: is it possible to find an equivalent ”second variation formula” in
the polyhedra case and to find a class of maps defined on Riemannian polyhedra
with values in Riemannian manifolds such that this maps are ”stable”?
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