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Convex polytopes passing through circles

by Tudor Zamfirescu

Introduction. Some convex bodies can pass through circles smaller than
the section of their circumscribed cylinders. This was observed already by
Zindler [3] in 1920, for a certain affine image of the cube.

Here, a cylinder will be a set in IR3 congruent to C × IR, where C is a
circle in IR2. The radius of C is called radius of the cylinder.

Let K ⊂ IR3 be a convex body, i.e., a compact convex set with interior
int K 6= ∅. We say that K passes through the circle C if some rigid motion
brings K from one side of the plane ΠC of C to the other side, without
hitting ΠC \ convC at any time. Let rp(K) be the radius of the smallest
circle through which K can pass.

We say that the cylinder Z surrounds the convex body K if K ⊂ convZ
and Z ∩ K 6= ∅. Let ΞK denote the cylinder with the z-axis as symmetry
axis, congruent to a cylinder of smallest radius surrounding K, and rc(K) its
radius.

Goal and preparations. In this note we give sufficient conditions for
the existence of circles through which the convex polytope P can pass, of
radius smaller than the radius of ΞP , i.e., for the inequality rp(P ) < rc(P )
to hold.

How many convex bodies enjoy this property? Many? Few? We proved
in [2] that all convex bodies, except those in a nowhere dense subset, enjoy
it (the space of all convex bodies being equipped with the usual Pompeiu-
Hausdorff metric). But given a single one, how can we decide whether it has
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this property or not? For example, the regular tetrahedron has it, the cube
not.

Since the polytopes in this paper are always convex, we shall omit men-
tioning it. We denote by V (P ) the vertex set of the polytope P .

Suppose that the vertical cylinder Z defined by x2 +y2 = 1 surrounds the
polytope P . Let Pξ be the intersection of P with the plane z = ξ. Consider
the horizontal lines meeting both the z-axis and V (P ) ∩ Z. There are just
finitely many of them. Call these lines and those parallel to them critical.

For every ξ, the set Pξ ∩ Z is finite. If Pξ ∩ Z 6= ∅, then every point
of Pξ ∩ Z (which must be a vertex of Pξ if the convex polygon Pξ is not
degenerate) is either a vertex of P or an interior point of an edge of P lying
entirely on Z.

Let J = {ξ : Pξ ∩ Z 6= ∅}. This set is a finite union of closed intervals,
each of which is possibly reduced to a single point.

For ξ ∈ bdJ, Pξ ∩ Z ⊂ V (P ), but the converse is in general not true.

Result. With the above preparations we can formulate our criterium.

Theorem. If (0, 0, ξ) /∈ conv(Pξ ∩Z) for every ξ ∈ intJ, then rp(P ) < 1.

Note that the condition in the Theorem is sufficient, but not necessary,
for rp(P ) < 1. To see this, it suffices to take P to be a regular tetrahedron T1

with one vertical edge and all vertices on Z. The condition of the Theorem is
not verified. However, it will be verified, if the tetrahedron P is the (larger)
regular tetrahedron T2 positioned such that Z = ΞT2 , that is, with two
opposite horizontal edges. Hence rp(T1) < rp(T2) < 1 (see also the last
Section). More precisely, rp(T1) = 0, 844...

Proof. In this proof we keep fixed the polytope P and move a unit circle
C such that C ∩ P = ∅ at all times and convC meets all points of P during
its movement; the presented path of C is equivalent to moving P through C
without even meeting ΠC \ intconvC.

Once this achieved, it is clear that P also passes through a circle concen-
tric with and slightly smaller than C.

Let us move the circle C, from a position far above P downwards, keeping
C ⊂ Z as long as Pξ ∩ Z = ∅. Stop short before (above) the largest ξ with
Pξ ∩ Z 6= ∅ would be reached.
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Choose ξ1 > ξ2 > ... > ξk such that

{ξ1, ξ2, ..., ξk} = {ξ : Pξ ∩ Z ∩ V (P ) 6= ∅}.

We stopped at C at z = ξ with ξ slightly larger than ξ1.

Let Eξ be the set of those points in Pξ ∩ Z which belong to edges lying
in Z, i.e., vertical edges. Of course, Eξ is topologically closed, but can be
empty.

If Eξ1 6= ∅ and (0, 0, ξ1) ∈ convEξ1 then, for any ξ ∈ (ξ2, ξ1), Pξ ∩ Z 6= ∅
and (0, 0, ξ) ∈ convEξ, in contadiction with the hypotheses. Hence (0, 0, ξ1) /∈
convEξ1 if Eξ1 6= ∅.

Now choose a horizontal non-critical line L1 through (0, 0, ξ1), which – in
case Eξ1 6= ∅ – does not meet conv Eξ1 . Let Z ′ be the position of Z after a
slight rotation ρ around L1 leaving all edges with endpoints in Eξ1 inside Z ′.
An entire neighbourhood of Pξ1 in P lies inside Z ′ (note that both Z and Z ′

touch the ball of diameter L1 ∩ convZ along great circles).

Case 1. Eξ1 = ∅. In this case the moves of C are as follows. At ξ slightly
larger than ξ1 we apply to C the same rotation ρ, then translate it along Z ′

until it comes below z = ξ1 and then rotate it back (by ρ−1) around L1 to a
position on Z again. Thus C passed Pξ1 without touching P .

Then C goes downwards keeping its horizontal position until just above
ξ2.

Case 2. Eξ1 6= ∅. In this case we proceed with C as above, but perform
the rotation back around the diameter ∆ of C parallel to L1 instead of L1

itself. Thus C does not touch P , particularly the vertical edges ending in
Eξ1 .

Then C, which now crosses Z, is translated downwards until just above
ξ2 (not meeting P if ∆ was close enough to L1).

At z = ξ2, still assuming Eξ1 6= ∅, it may well happen that Pξ2 ∩ Z does
not contain only vertices of P . Or, it may happen that Pξ2 ∩ Z ⊂ V (P )
and, however, ξ2 ∈ intJ (this is the case if some point in Eξ2 is the lower
endpoint of a vertical edge and some other point in Eξ2 is the upper endpoint
of another vertical edge). Then, in both cases, (0, 0, ξ2) /∈ conv(Pξ2 ∩Z), and
we choose a horizontal non-critical line L2 3 (0, 0, ξ2) which does not meet
conv(Pξ2 ∩ Z).

The circle on Z at z = ξ2, slightly translated in horizontal direction
orthogonal to L2 toward Pξ2 ∩ Z, comes to a position C∗ disjoint from Pξ2 .
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Now we continue our movement of C: We rotate it around the z-axis
until C∗ becomes its orthogonal projection on z = ξ2. Then C moves straight
downward, and passes z = ξ2 through the position C∗ without hitting Pξ2 .

If ξ2 ∈ bdJ , then we move C following the procedure at z = ξ1 in Case
2, in reversed order. Note that the two slight rotations can be performed
around lines parallel to L1, since the line through (0, 0, ξ2), parallel to L1

does not meet V (P ) ∩ Z.

After reaching a horizontal position on Z, C continues its way downwards.

At each level ξi, one of the two Cases appears, and we proceed as described
above.

Examples. Applied to the circumscribed cylinder of a polytope P , the
Theorem offers a strong instrument to recognize whether rp(P ) < rc(P ) or
rp(P ) = rc(P ).

So, for example, all regular polyhedra except for the cube satisfy the
condition of the Theorem with respect to their circumscribed cylinders. More
precisely, it can be checked that, for all regular polyhedra except the cube,
no edge lies on the circumscribed cylinder. So the set J in the Theorem is
finite, and the hypothesis is trivially verified; thus rp < rc. For the cube of
side-length 1, rp = rc =

√
2/2. For the regular tetrahedron of side-length 1,

rp = 0, 4478... and rc = 0, 5 (see [1]).

As another example, consider a regular pyramid Pn with an n-gon as
basis. If its height is small (compared with the basis), then it has two parallel
edges on ΞPn , for even n, and just one edge and a vertex on ΞPn for odd
n, but in both cases the hypothesis of our Theorem is not satisfied, and
indeed rp(Pn) = rc(Pn). For large height, Pn has no edges on ΞPn , and so
rp(Pn) < rc(Pn) for all n.

For all right prisms, regular or not, rp = rc. For other prisms, another
story...
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