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Abstract. If a non-compact complete surface M is not homeo-
morphic to a subset of the plane or of the projective plane, then
it has infinitely many simple closed geodesics [6]. In this paper,
we consider simple closed geodesics on a surface homeomorphic to
such a subset.
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2 On simple closed geodesics on surfaces with ends

1. Introduction

It is well-known that there are closed geodesics on closed manifolds
with non-trivial fundamental group. They can be obtained as minimal
loops in free homotopy classes of loops. However, in open manifolds
topological restrictions do not necessarily imply the existence of closed
geodesics. For an arbitrary manifold M , Thorbergsson [6] has con-
structed a complete Riemannian metric on R×M for which there are
no closed geodesics. But, especially in the 2-dimensional case, he also
showed (Theorem 3.2 of [6]) that if an open surface M is not home-
omorphic to a plane, a cylinder or a Möbius strip, then there exist
infinitely many closed geodesics on M , any of which is not a covering
of another one, and if M is not homeomorphic to a subset of the plane
or of the projective plane, then it is possible to choose such closed
geodesics without self-intersections. There are many results about geo-
metric conditions which ensure the existence of closed geodesics ([5],
[6], [1] are just some examples).

In this paper we consider closed geodesics without self-intersections
on a smooth surface Sn with n ends and without handles, called from
now on just surface (except when otherwise specified). It is easily seen
that a cylindrical surface S2 with 2 ends may have no closed geodesics.
As an example, we can take a surface of revolution of funnel type with
the generating curve y = 1/x (x > 0). On the other hand, on Sn with
n = 3, there always are infinitely many closed geodesics.

We shall see here, using elementary arguments, that, for n = 4,
there are infinitely many simple closed geodesics, while, for n = 3,
there might be no such geodesics at all. Also, we shall present a classi-
fication of surfaces concerning their capability of allowing simple closed
geodesics, according to the type of neighbourhoods of their ends.

We would like to express our hearty thanks to Professor Minoru
Tanaka for his kind bibliographical suggestions.

2. Surfaces with three ends

Theorem 1. There exist surfaces with 3 ends which have no simple
closed geodesics.

Proof. We define a surface S̃3 as the double of the domain

B = {(x1, x2) ∈ R2 | 1

|x1|
= x2 = 0}.

We will show that there are no simple closed geodesics on S̃3. Let b0, b1

and b2 be the three boundary curves of B such that b0 is the x1-axis,
b1(t) = (−t, 1/t) and b2(t) = (t, 1/t) for t > 0.
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Suppose that the surface S̃3 possesses a simple closed geodesic c. Let
p1, p2, · · · , pn be the consecutive points on c where c crosses b0 ∪ b1 ∪ b2

(according to the order induced by arc-length parametrization). For
any i ∈ N := {1, · · · , n}, if c crosses bk at pi, then we define the map
j : N → {0, 1, 2} by j(i) := k. Since c is a geodesic, for any i we have
j(i) 6= j(i + 1).

If there exists i ∈ N such that j(i) = j(i + 2), then S̃3 is divided
into two domains by pipi+1 ∪ pi+1pi+2 ∪ pi+2pi, and c comes to pi from
one domain D1 and leaves pi+2 towards the other domain D2. Since c
has no self-intersections, all successors {pj|j > i + 2} of pi+2 (j taken
modulo n) lie in D2 and will never reach D1 again. This contradicts
the fact that c is closed.

Hence j(i) = j(i + 3) for any i. In this case, p1p2, p2p3, . . . , p4p5

must essentially lie as in Figure 1 (where p1 ∈ b1 and p2 ∈ b2), and no
admissible position of p6 can be found, because p5 and b0 are separated

by p1p2 in B. The surface S̃3 is not smooth, but an appropriate slight

deformation of S̃3 yields a smooth example. ¤

Figure 1

3. Surfaces with more than three ends

Theorem 2. On any surface with at least 4 ends there are infinitely
many simple closed geodesics.

Proof. We choose a large compact set D ⊂ Sn such that each connected
component of Sn \D is homeomorphic to a cylinder and the boundary
∂D consists of n simple closed curves ci (i = 1, 2, . . . , n).
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Take smooth arcs α1, α2, α3, ... in D each joining a point of c1 to one
of c2 and having no self-intersections (as illustrated in Figure 2). Note
that these arcs form infinitely many homotopy classes, according to the
number of times they surround c2 and c3.

Figure 2

Let Ni be a thin tubular neighborhood of αi on Sn and c′i be the
component of ∂(D \Ni) meeting c1. Since c′i is not contractible, we get
a closed geodesic si in the homotopy class of c′i. Note that si, like c′i,
has no self-intersections. ¤

4. A classification for surfaces with two or three ends

In the previous sections, we have seen that there are infinitely many
simple closed geodesics on Sn for n = 4, and on S2 or S3 there might
be no such closed geodesics. For Sn, if D is a large compact set such
that each component Di of Sn \D is homeomorphic to a cylinder (i =
1, ..., n), we call the closure Ui of Di an endtube of Sn.

In this section we define three types of endtubes, and relate them to
the existence of simple closed geodesics on S2 or S3.

For an arc or a closed curve c, we shall denote by λ(c) its length.
The following definitions are inspired by and similar to those of Cohn-

Vossen [3] (see also Busemann [2]).

Definition 1. The endtube U is called:
- contracting if it contains no closed curve freely homotopic to ∂U ,

of relative minimal length, i.e., minimal in some neighbourhood in U ,
- expanding if it includes no contracting subtube and all its closed

curves freely homotopic to ∂U , of relative minimal length, meet ∂U .
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- bulging if it does not include any contracting or expanding subtube.

We note that every endtube includes a subendtube of one of the
above three types, and a subendtube of a contracting (expanding) end-
tube is contracting (expanding).

The following lemma is essentially proven in [3], where it is shown
that a “ Schaft” has a simple closed geodesic or a “ hohles Eineck”, i.e.,
a geodesic loop with the angle toward the end less than π. The conclu-
sion is slightly different because the definitions are modified compared
with Cohn-Vossen’s.

Lemma 1. If Sn has a contracting endtube U , then U \ ∂U contains
a geodesic loop at some point x, homotopic to ∂U , with the angle at x
toward the end of U less than π.

For the next lemma, see Bangert [1], p. 93.

Lemma 2. If S2 has two disjoint locally convex endtubes, then it has
a simple closed geodesic.

Theorem 3. Let Sn be a surface with n ends (n = 2, 3). Then one of
the following situations occurs:

(1) If Sn contains a bulging endtube, then it has a simple closed
geodesic.

(2) If S3 contains an expanding endtube, then it has a simple closed
geodesic.

(3) If S3 contains three pairwise disjoint contracting endtubes, it
may not contain any simple closed geodesic.

(4) If S2 has two disjoint contracting endtubes or two disjoint ex-
panding endtubes, then it has a simple closed geodesic.

(5) If S2 has both a contracting endtube and an expanding endtube,
it may not contain any simple closed geodesic.

Proof. (1) It is clear that a bulging endtube U contains a curve of
relative minimal length freely homotopic to ∂U , which does not meet
∂U , and is therefore of minimal length in Sn, thus providing a simple
closed geodesic.

(2) Assume U1 is an expanding endtube of S3.
Let c∗ be a shortest curve in U1 homotopic to ∂U1 and meeting ∂U1.

Take a ∈ c∗ ∩ ∂U1.
If there is a curve c̃ ⊂ D1 = U1 \ ∂U1 of length less than λ(c∗),

homotopic to ∂U1, then either there exists such a curve of minimal
relative length in D1 or there is no such curve of minimal relative length
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in the whole U1, both contradicting the definition of an expanding
endtube.

If there is a curve c̃ ⊂ D1 of length λ(c∗), but not less, homotopic to
∂U1, then c̃ itself has minimal relative length, again in contradiction to
the definition.

Hence every curve in D1 homotopic to ∂U1 has length exceeding
λ(c∗).

Let γi be a geodesic ray starting at a, such that γi ∩ Ui contains a
geodesic ray (i = 1, 2). We parametrize γ = γ1 ∪ γ2 by arc length, with
γ(0) = a, γ(t) = γ1(−t) for t < 0, and γ(t) = γ2(t) for t > 0. For any
number t, consider a curve ct of minimal length in S3, passing through
γ(t) and homotopic to ∂U1.

If t → ∞, then λ(ct) → ∞, because ct keeps meeting ∂U2.
Clearly, λ(c0) ≤ λ(c∗).
For t ≤ −λ(c∗), either ct meets ∂U1 and

λ(ct) > |t| ≥ λ(c∗),

or ct does not meet ∂U1 and we showed that in this case λ(ct) > λ(c∗).
Thus λ(ct) attains a relative minimum for some t0 ≥ −λ(c∗), and

ct0 has a relative minimal length among all curves homotopic to ∂U1.
Hence ct0 is a simple closed geodesic.

(3) We have seen in Theorem 1 that there exists such a surface with
no simple closed geodesics.

(4) Assume S2 has two contracting endtubes. If U is anyone of
them, it has, by Lemma 1, a geodesic loop at some point x, homotopic
to ∂U , with the angle at x toward the end of U less than π. Now, the
conclusion follows from Lemma 2.

If S2 has two expanding tubes, we follow the same reasoning as for
(2). The difference is that now both halves γ1 and γ2 of γ are treated
in the same way, namely similar to γ1 in the proof of (2).

(5) A surface of revolution of funnel type has no simple closed geo-
desics. ¤

5. Two examples

In this section we give two examples of surfaces with four ends.
The first surface has infinitely many closed geodesics without self-
intersections illustrating Theorem 2, while the second is not a smooth
surface, has four vertices of negative singular curvature, and on it all
closed geodesics except for four do have self-intersections.
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Figure 3

Example 1. Let E be the double of the domain

B =

{
(x1, x2) ∈ R2

∣∣∣∣ − 1

|x1|
≤ x2 ≤

1

|x1|

}
.

Take four simple closed curves c1, c2, c3 and c4 on E defined by x1 = 2,
x2 = −2, x1 = −2 and x2 = 2.
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Consider smooth arcs α1, α2, α3, ... in D each joining a point of c1 to
one of c2 and having no self-intersections (as illustrated in Figure 3).
Note that these arcs form infinitely many homotopy classes. Take Ni

like in the proof of Theorem 2, then c′i, and eventually find the closed
geodesics si illustrated in Figure 3.

The coordinates of the points where s2 passes from one face of E to
the other are (±1,±1), (±a,∓1/a), (±1/a,∓a), where

a = −1 +
√

3 +

√
2 −

√
3.

If the arcs α1, α2, ... had joined c1 and c3 instead of c1 and c2, we
should have obtained another set of simple closed geodesics. But also
note that, if α1, α2, ... joined c3 to c4, we should again obtain s1, s2, ....

The surface E is not smooth, but an appropriate slight deformation
of E yields a smooth example.

Example 2. Let ξ be positive, let

B0 = {(x1, x2) ∈ R2 | − e−x2
1/5 ≤ x2 ≤ e−x2

1/5},

and let a0 = (0,−1), a′
0 = (0, 1), b0 = (−ξ,−e−ξ2/5), b

′
0 = (−ξ, e−ξ2/5),

b0 = (ξ,−e−ξ2/5), b′0 = (ξ, e−ξ2/5).
We construct the non-smooth surface S with four ends from six pieces

B1, B2, . . . , B6, each isometric to B0, by identifying their boundaries as
follows.

First determine points ai, bi, bi, a′
i, b′i, b

′
i on Bi (i = 1, ..., 6) corre-

sponding to a0, b0, b0, a′
0, b′0, b

′
0 (which are shown on Figure 4, left) via

the mentioned isometries. Then place B1 as shown on Figure 4, right.
Then place analogously the other pieces B2, ..., B6 between all other
pairs of cycles ck, cl. Thereby we glue one of the arcs aibi, a′

ib
′
i, aibi,

a′
ib

′
i, to one of the arcs ajbj, a′

jb
′
j, ajbj, a′

jb
′
j, for any pair of neighbouring

pieces Bi, Bj, and let ξ → ∞.
Then S has four singular points of negative singular curvature, in

the sense of [4], all corresponding to a0 or a′
0.

We now prove that S has exactly three simple closed geodesics, one
of which is illustrated in Figure 4; thus, this example shows that the
smoothness condition in Theorem 2 is essential.

Let trqr′t′ be a piece of a geodesic in the double of B0, as shown on
Figure 5.

Suppose a simple closed geodesic γ surrounding c1 and c2 does not
pass through a1 or a′

1 (see Figure 4). Then γ either
1) consists of two broken lines isometric to trqr′t′ (see Figure 5), or
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2) includes two consecutive arcs isometric to the line-segment pp′ ⊂
B0, where p, p′ lie on the arcs a0b0, a′

0b
′
0, respectively.

Case 1). Let v ∈ ∂B0, and mv be the (oriented) angle between the
tangent at v to ∂B0 and the positive x1-axis.

Putting f(x) = e−x2/5, we find that, on [0,∞[, f ′′(x) = 0 for x =√
5/
√

2, where f ′ reaches its minimal value −
√

2/
√

5e. Since
√

2/
√

5e <√
2/
√

10 < 1/
√

3, the absolute value of the slope of ∂B0 is everywhere
less than 1/

√
3. Hence |mv| < π/6 for all v.

Let α (α′) be the (oriented) angle between tr (respectively t′r′) and
the positive x1-axis.

The reflection law implies that the angles β, β′ between rq, respec-
tively r′q, and the positive x1-axis are β = 2mr − α, β′ = 2mr′ − α′.

Again the reflection law (at q) implies π + 2mq − β = β′, whence

α + α′ = 2(mr + mr′ − mq) − π < 0.

This means that ν > ν ′ (see Figure 4, right), because ν = (π/2)− α
and ν ′ = (π/2)+α′. And this cannot happen for both pieces composing
the closed geodesic γ.

Case 2). Let p∗ be the intersection point of pp′ with a0a
′
0.

The normal line through the point of a′
0b

′
0 of abscise x1 > 0 cuts the

x2-axis at a point of ordinate

x2 = e−x2
1/5 − 5

2
ex2

1/5.

Since e−x2
1/5 < 1 and ex2

1/5 > 1 for all positive x1, we have x2 < −3/2.
Since p∗ has ordinate at least −1, the halfline p′p and the arc p′b′0 make
an obtuse angle δ, see Figure 4, right. But this cannot happen for both
consecutive pieces of γ isometric to pp′.

On S we have a closed geodesic formed by four arcs analogous to
a1a

′
1, surrounding c1 and c2, passing through a1 (and the other three

singular points), and of length 8. As we saw above, there are no further
closed geodesics surrounding c1 and c2.

Hence every simple closed geodesic is composed by four arcs isometric
to a0a

′
0 and passes through all four singular points of negative singular

curvature. There are only three such geodesics.
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