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Abstract

We prove that an (ϕ, J)−holomorphic maps from a compact cosym-
plectic manifold to a Kähler manifold is not only a harmonic map but
also an energy minimizer on its homotopy class. We also prove a
converse result.

1 Introduction

Combining both global and local aspects and borrowing both from Rieman-
nian geometry and from analysis, the theory of harmonic maps between Rie-
mannian manifolds has developed in many diverse branches. In particular,
there is now a whole battery of deep and interesting results about harmonic
maps to or from complex manifolds and Kähler spaces.

Within contact geometry, there are several classes of manifolds that can be
considered as odd-dimensional analogs of Kähler spaces, the most important
ones being Sasakian and cosymplectic spaces.

The theory of harmonic maps on smooth manifolds endowed with some
special structures has its origin in the paper of Lichnerowicz [5], in which he
considered holomorphic maps between Kähler manifolds.

In general the construction of energy minimizing maps is much more
difficult than to find harmonic ones. The main purpose of this paper is to
show that structure-preserving maps on cosymplectic manifolds minimize the
energy of maps. We prove that an (ϕ, J)−holomorphic map from a compact
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cosymplectic manifold to a Kähler manifold is not only harmonic but also a
minimizer for its energy.

We also prove a converse of the previous result, that is, a smooth energy
minimizer map from a cosymplectic manifold to a Kahler manifold, which is
homotopic with an (ϕ, J)−holomorphic one is also (ϕ, J)−holomorphic.

2 Cosymplectic manifolds

It is well-known that the odd-dimensional counterpart of Kähler manifolds
are cosymplectic manifolds. Let M be a smooth manifold of dimension 2n+1.
We recall that an almost contact structure on M is a triple (ξ, η, ϕ), where ξ
is a vector field, η is an one-form and ϕ is a tensor field of type (1, 1) which
satisfy (see [1]):

ϕ2 = −Id + η ⊗ ξ and η(ξ) = 1 (1)

where Id is the identity endomorphism on TM . Then we have ϕ(ξ) = 0 and
η ◦ ϕ = 0. Furthermore, if g is an associated Riemannian metric on M , that
is, a metric which satisfies for any X, Y ∈ X (M)

g(ϕ(X), ϕ(Y )) = g(X, Y ) − η(X)η(Y ), (2)

then we say that (ξ, η, ϕ, g) is an almost contact metric structure. A manifold
equipped with such a structure is an almost contact metric manifold. The
existence of an almost contact structure on M is equivalent to the existence
of a reduction of the structural group to U(n) × 1.

The fundamental 2-form Φ of M is defined by

Φ(X, Y ) = g(X, ϕY ), (3)

for X, Y ∈ X (M). The almost contact metric structure (ξ, η, ϕ, g) is said to
be normal if the Nijenhuis tensor Nϕ of ϕ satisfies the condition (see [1]):

Nϕ + 2dη ⊗ ξ = 0. (4)

An almost contact metric manifold M(ξ, η, ϕ, g) is called to be cosym-
plectic if it is normal and dη = 0, dΦ = 0.

The canonical example of compact cosymplectic manifold is given by the
product B2n × S1 of a compact Kähler manifold B2n(J, h) with the circle
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S1 (see [2]). Nontrivial examples are obtained by using the suspensions
technique. We explain for short this construction. Let N be a 2n-dimensional
compact Kähler manifold with the Hermitian structure (J, h). Consider an
Hermitian isometry f : N → N , that is f is a diffeomorphism and

f∗ ◦ J = J ◦ f∗, , f ∗h = h.

We define the action A of ZZ on the product manifold N × IR by

A(n, (x, z)) = (fn(z), z − n),

for all n ∈ ZZ and (x, z) ∈ N × IR. This action is free and properly discon-
tinuous. Thus, the orbit space (N × IR)/A of the ZZ− action is an (2n+1)-
dimensional compact manifold and the canonical projection p′ : N × IR → M
is a covering map. Moreover, we can define a fibration τ of M on S1 = IR/ZZ

by τ([(x, z)]) = [z], for all (x, z) ∈ N × IR. It is clear that the fibers of τ are
diffeomorphic to N .

Denote by ρ : ZZ → Diff(N) the representation of ZZ on the group of the
diffeomorphisms of N , Diff(N), given by ρ(k) = f k, for all k ∈ ZZ. Then
the manifold M is called the suspension with fibre N of the representation ρ.

Next we shall obtain a cosymplectic structure on M . We consider on
N × IR the cosymplectic structure (ϕ, η, ξ, g) given by

ϕ = J ◦ (pr1)∗, ξ =
∂

∂t
, η = pr∗2(dt), g = pr∗1(h) + pr∗2(dt2),

where pr1 : N × IR → N , and pr2 : N × IR → IR are the canonical projections
onto the first and the second factor, respectively and t is the usual coordinate
on IR. Since f is an Hermitian isometry, we deduce that the cosymplectic
structure (ϕ, η, ξ, g) is invariant under the action A of ZZ on N×IR. Therefore,
it induces a cosymplectic structure (ξ, η, ϕ, g) on M . For more detailes see
[6]. For a generalisation of this construction see [4].

3 Lichnerowicz type invariant on almost con-

tact metric manifolds

Let M(ϕ, η, ξ, g) be an almost contact metric manifold. TM c denotes the
complexification of the tangent bundle TM of M . The complex-linear ex-
tension of ϕ on TM c has eigenvalues ±

√
−1 and 0, with corresponding

eigenspaces
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T±M = {−1
2
ϕ2X ∓ 1

2

√
−1ϕX, X ∈ TM}, T 0M = {X + ϕ2X, X ∈ TM}.

The complexification TM c splits into eigenbundles: TM c = T+M ⊕
T 0M ⊕ T−M, in which the decomposition is orthogonal with respect to the
Hermitian metric 〈X, Y 〉 = g0(X, Y ), (where g0 denotes the C-bilinear ex-
tension on TM c of the given metric on M). Now let N(J, h) be an almost
Hermitian manifolds, and f : M → N be a smooth map from M to N . Then
the decompositions of TM c and TN c induce the corresponding splitting of
the differential of f , and hence we can define the following three maps

d+f : T+M → T+N

d−f : T−M → T+N

d+
0 f : T 0M → T+N.

The energy density e(f) of f is defined by e(f)(p) = ‖dfp‖2/2 for p ∈ M ,
where ‖dfp‖2 is the norm of the differential dfp ∈ T ∗

p M ⊗ Tf(p)N at p ∈ M .
We set

e+(f) = ‖d+f‖2, e−(f) = ‖d−f‖2, e+
0 (f) = ‖d+

0 f‖2

which are called the partial energy densities of f . These partial energy den-
sities are useful to give us precise information about how the differential df
of f acts on each eigenspace.

Lemma 1 Let M be an almost contact metric manifold and N be an almost
Hermitian manifold. Let f a smooth map from M to N . Then we have the
following decomposition for the energy density e(f) of f :

e(f) = e+(f) + e−(f) + e+
0 (f).

Proof: Let {ek, ϕek, ξ}k=1,n be an orthonormal basis (with respect to g) on

TM . Then Zk = 1√
2
(ek −

√
−1ϕek) is an orthonormal basis on TM+ (with

respect to < ·, · >).
Then we have

e+(f) =
n∑

k=1

h0(d
+f(Zk), d+f(Zk)).

e−(f) =
n∑

k=1

h0(d
−f(Zk), d−f(Zk)).
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and

e+
0 (f) = h0(d

+
0 f(ξ), d+

0 f(ξ)).

If we make the notations Xk = df(ek), Yk = df(ϕek) and Z = df(ξ), a
direct computation gives:

e+(f) =
1

4

n∑

k=1

{h(Xk, Xk) + h(Yk, Yk)} +
1

2

n∑

k=1

h(JXk, Yk), (5)

e−(f) =
1

4

n∑

k=1

{h(Xk, Xk) + h(Yk, Yk)} −
1

2

n∑

k=1

h(JXk, Yk), (6)

and

e+
0 (f) =

1

2
h(Z, Z). (7)

Finally we add the above three relations to abtain the decomposition in
Lemma.

Now let Ω and ω be the fundamental 2-forms of the almost contact me-
tric manifold M and almost Hermitian manifold N respectively. That is
Ω(X, Y ) = g(X, ϕY ), X, Y ∈ X (M) and ω(V, W ) = h(V, JW ), V, W ∈
X (N). We have the folowing Lemma:

Lemma 2 Let M be almost contact metric manifold, N be an almost contact
Hermitian manifold and f a smooth map from M to N . Then it holds that

e+(f) − e−(f) = (f ∗ω, Ω) ,

where the right side above means the inner product of 2-forms on M induced
by g.

Proof: From the relations 5 and 6 we obtain

e+(f) − e−(f) =
n∑

k=1

h(Jdf(ek), df(ϕek)).

On the other hand

(f ∗ω, Ω) =
∑

p<q

f ∗ω(Vp, Vq)Ω(Vp, Wq),
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for any orthonormal frame {Vp}2n+1
p=1 on M . If we choose the frame {ek, ϕek, ξ}

for k = 1, n, we obtain the formula.

We recall here the homotopy lemma given in [7]:

Lemma 3 Let ft : M → N be a smooth family of maps between smooth
manifolds M and N parametrized by the real number t, ω a closed two-form
on N and δft/δt the variation field of ft. Then

∂
∂t

(f ∗
t ω) = d

(
f ∗

t i
(

δft

δt

)
ω
)
,

where i(X) is the interior product with respect to a vector field X on N .

In the complex case, Lichnerowicz defined a smooth invariant associated
with a smooth map [5]. Let ϑg denotes the volume measure on M associated
to the metric g. Assuming M being compact, we can define a similar one for
the case when the source manifold is endowed with an almost contact metric
structure (see also ([8]):

K(f) = E+(f) − E−(f),

where E+(f) denotes the partial energy of f defined by integrating e+(f) on
M for ϑg. Likewise, E−(f) and E+

0 (f) are also defined:

E±(f) =
∫
M e±(f)ϑg, E+

0 (f) =
∫
M e+

0 (f)ϑg.

We are now able to prove the following theorem:

Theorem 1 Let f : (M, ϕ, g) → (N, J, h) be a smooth map between an al-
most contact metric manifold and an almost Hermitian manifold. Suppose
that M is compact, ω closed and Ω coclosed. Then K(f) is a smooth invari-
ant.

Proof: By Lemma 2 we have

K(f) =
∫
M (f ∗ω, Ω)ϑg.

Let ft be a smooth variation of f . Then, it follows from Lemma 3 that

d

dt
K(ft) =

∫

M

(
∂

∂t
(f ∗

t ω), Ω

)
ϑg

=
∫

M

(
d

(
f ∗

t i

(
δft

δt

)
ω

)
, Ω

)
ϑg =

∫

M

(
f ∗

t i

(
δft

δt

)
ω, δΩ

)
ϑg = 0,
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proving the Theorem 1.

4 Harmonic maps on cosymplectic manifolds

Let M and N be Riemannian manifolds with Riemannian metrics g and h
respectively. Suppose that M is compact. A smooth map f : M → N is said
to be harmonic if it is a critical point of the energy functional

E(f) =
∫
M e(f)ϑg .

The Euler-Lagrange equation of this variational problem is Tr g∇′df = 0
where ∇′ is the connection on T ?M ⊗ f−1TN induced by the Levi-Civita
connection ∇M of M and the f -pullback ∇̃ of ∇N . We denote the left side
of the last equation by τ(f). This is the section of f−1TN called the tension
field of f . For more information concerning harmonic maps see [7].

Let M(η, ξ, ϕ, g) be an almost contact metric manifold and and N(J, h)
an almost Hermitian manifold. A smooth map f : M → N is called to be
(ϕ, J)-holomorphic if its differential intertwines the structures: df ◦ϕ = J◦df.
We know (see [3]) that the tension field τ(f) of an (ϕ, J)-holomorphic map
f satisfies the equation

J(τ(f)) = df(divϕ) − Tr gβ ,

where β(X, Y ) = (∇̃XJ)dfY for X, Y ∈ Γ(TM). If M is a cosymplectic
manifold then divϕ = 0, and N being Kählerian implies β = 0. Hence any
(ϕ, J)-holomorphic map from a cosymplectic manifold to a Kähler manifold
is harmonic. A natural question to ask is whether such a map is also an
absolute minimum of its energy functional or not. With the invariant K(f)
on hand we are able to answer the question as follows:

Theorem 2 Let (M, ϕ, g) be a compact cosymplectic manifold and (N, J, h)
a Kähler manifold. Then any (ϕ, J)-holomorphic map f from M to N attains
an absolute minimum of the energy functional in its homotopy class.

Proof: First we have to remark that as N is a Kähler manifold the funda-
mental 2-form ω is closed and because M is cosymplectic Ω is coclosed. Then
if f̃ : M → N is a smooth map homotopic to f , by Theorem 1, K(f) = K(f̃).
Since f is (ϕ, J)-holomorphic it is easy to see that df(T±(M)) ⊂ T±N (see
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[8]) and that df(ξ) = 0, and thus the partial energies E−(f) and E+
0 (f) of f

vanish. So Lemma 1 implies :

E(f) = E+(f) + E−(f) + E+
0 (f)

= E+(f)

= E+(f) − E−(f)

= E+(f̃) − E−(f̃) ≤ E+(f̃) + E−(f̃) + E+
0 (f̃)

≤ E(f̃),

proving that f attains an absolute minimum of E in its homotopy class.

Example 1 It is clear that if B is a compact Kähler manifold and S1 is the
unit circle then the projection on the first factor of the cosymplectic manifold
B × S1 (see Section 1) is (ϕ, J) holomorphic and thus is a harmonic map
which is also a minimizer of the functional energy.

After the conclusion of Theorem 2, a good question to ask is if the converse
is true, that is, when a harmonic map from a cosymplectic manifold into a
Kähler manifold is (ϕ, J)-holomorphic. We can prove the following

Theorem 3 Let (M, ϕ, ξ, η, g) be a compact cosymplectic manifold, (N, J, h)
Kählerian and f0 : M → N a harmonic map minimizing the energy func-
tional E on its homotopy class. If f0 is homotopic to a (ϕ, J)-holomorphic
map then it is also (ϕ, J)-holomorphic .

Proof: Let f1 be an (ϕ, J)−holomorphic map homotopic with the map f0.
By the previous Theorem we have E(f1) ≤ E(f0). On the other hand f0

atains the minimum of the energy functional on its homotopy class, and thus
E(f0) = E(f1). Now by the Theorem 1, as f0 and f1 are homotopic we have
K(f0) = K(f1) and thus E+(f0) − E−(f0) = E+(f1) − E−(f1).

As we heve seen, because f1 is (ϕ, J)-holomorphic we have E−(f1) =
E+

0 (f1) = 0. We have just obtained the following two relations:

E+(f0) − E−(f0) = E+(f1)

and
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E+(f0) + E−(f0) + E+
0 (f0) = E+(f1).

Thus we have:

2E−(f0) + E+
0 (f0) = 0

which implies

E−(f0) = E−
0 (f0) = 0.

Now, from the definition of the partial energy E−(f0) of f0, as e−(f0) is
continuous we obtain e−(f0) = 0. On the other hand, using the relation 6 we
have

e−(f0) =
1

4

n∑

k=1

h(Jdfek − df(ϕek), Jdfek − df(ϕek)) ≥ 0.

Thus e−(f0) = 0 if and only if df0(ϕek) = Jdf0(ek) for any k = 1, n. It is
is easy to se that we also have df0(ϕ(ϕek)) = Jdf0(ϕek) for any k = 1, n.

Similar e+
0 (f0) is a positive continuous function as

e+
0 (f) =

1

2
h(df0ξ, df0ξ).

But e+
0 (f0) = 0 and thus df0(ξ) = 0 = df0(ϕξ) = Jdf0(ξ). So we have just

obtained that df0(ϕX) = Jdf0(X) for any X in an orthonormal basison M ,
so f0 is (ϕ, J)-holomorphic.

A nice geometric interpretation of the homotopy invariant K(f) is given
by the following proposition:

Proposition 1 Let f : M → N be a smooth map from a compact cosym-
plectic manifold M of dimension 2n + 1 into a Kähler manifold N . If there
exist c ∈ IR such that [f ∗ω] = c[Ω], then

K(f) = n · c · vol(M).

Proof: We hnow that K(f) =
∫
M

(f ∗ω, Ω)ϑg. As [f ∗ω] = c[Ω], there exist

an 1-form θ ∈ Ω1(M) such that f ∗ω − cΩ = dθ so
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K(f) =
∫

M

(cΩ + dθ, Ω)ϑg

= c
∫

M

(Ω, Ω) ϑg +
∫

M

(dθ, Ω) ϑg =

= c · n · vol(M) +
∫

M

(θ, δΩ) ϑg

= c · n · vol(M).

From the previous proposition we can obtain the following Corollary:

Corollary 1 For a map as in the previous proposition which is also (ϕ, J)−
holomorphic and if [f ∗ω] = 0, then K(f) = 0 and f is constant

Proof: From the Proposition 1 we have K(f) = n · c · vol(M), and thus
E+(f)−E−(f) = 0. On the other hand, as f is (ϕ, J)-holomorphic, we have
E−(f) = E+

0 (f) = 0 and so we also have E+(f) = 0. But in this case the
total energy E(f) vanishes and thus the map f is constant.
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