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Abstract. The aim of this paper is to relate the theory of harmonic-
ity, in the sense of Korevaar-Schoen and Eells-Fuglede, to the notion of
Brownian motion in a Riemannian polyhedron, achieved by the second
author. We define an exponential map at some singular points. Under
the assumption that these exponential maps are totally geodesic (for in-
stance in dimension one), we find the infinitesimal generator of a Brow-
nian motion in a Riemannian polyhedron. We prove that it is uniquely
defined on some Banach space. Finally, we show that harmonic maps, in
the sense of Eells-Fuglede, with target smooth Riemannian manifolds,
are characterized by mapping Brownian motions in Riemannian polyhe-
dra into martingales, while harmonic morphisms are exactly the maps
which are Brownian preserving paths.

1. Introduction.

Brownian motions in Riemannian manifolds are intimately related to har-
monic functions, maps and morphisms. The origin of this relationship is the
definition of a Brownian motion in a Riemannian manifold as a diffusion
process generated by the Laplace-Beltrami operator, which is also the basic
tool in the theory of harmonic maps. In [8], Darling studied the relation be-
tween the behaviour of Brownian motions under maps between Riemannian
manifolds and harmonicity.

The theory of harmonic maps between smooth Riemannian manifolds was
extended by Gromov, Korevaar and Schoen (see [17], [20]) to the case of
maps between certain singular spaces, such as admissible Riemannian poly-
hedra. Riemannian polyhedra are interesting in many regards. They carry
natural harmonic space structures in the sense of Brelot, and they include
several geometric objects: smooth Riemannian manifolds, Riemannian orbit
spaces, normal analytic spaces, Thom spaces etc. A deeper study of har-
monic maps and morphisms between Riemannian polyhedra was done by
Eells and Fuglede in [11]. Using the weak conformality property, in the case
when the target space is a Riemannian manifold, they obtained the same
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characterization for harmonic morphisms as in the smooth case, cf. [13] and
[18].

On the other hand, a rigorous construction of a Brownian motion in a
Riemannian complex, was given by the second author in [4]. In particular,
this construction applies to the case of a Riemannian polyhedron. Previously,
Brin-Kifer had constructed a Brownian motion in the particular case of flat
2-dimensional admissible complexes [7].

The aim of this paper is to relate, in the case of Riemannian polyhedra,
the theory of harmonic maps and morphisms [11] to the notion of Brownian
motions in Riemannian polyhedra [4], in order to generalize Darling’s results,
[8], [22]. Notice that the second differential calculus on Riemannian mani-
folds, which is the basis of the theory of stochastic calculus, has no natural
generalization on Riemannian polyhedra. Consequently, we are compelled to
develop a new approach mixing smooth theory with some hybrid methods.

The outline of the paper is as follows. Section 2, included here for the
sake of completeness, is an overview on Riemannian polyhedra, energy of
maps, harmonic maps and morphisms on Riemannian polyhedra, Brownian
motions in Riemannian manifolds, martingales etc. In Section 3, we prove
that the Brownian motion has a unique infinitesimal generator defined on
some Banach space. In this section we also study the behaviour of Brownian
motions under harmonic functions in the sense of Gromov-Korevaar-Schoen
[17], [20]. In order to state this characterization we show that the Brownian
motion in a Riemannian polyhedron has the "Laplacian" as an infinitesimal
generator Theorem 3.5 (we give a suitable definition of the "Laplacian" in
this case). For technical reasons we make some assumption on the exponen-
tial maps (being totally geodesic). This condition is realized for example in
the one-dimensional case or for flat metrics. In the last section we prove that
harmonic maps, with target smooth Riemannian manifolds in the sense of
[11], are exactly those which map Brownian motions in Riemannian polyhe-
dra into martingales, Theorem 4.1, while harmonic morphisms are exactly
the maps which are Brownian preserving paths, Theorem 4.2.

Acknowledgements. The authors would like to thank Professor A. Ver-
jovsky to encourage them to investigate these problems and the ICTP Trieste
for hospitality during this work. The first named author was partially sup-
ported by the ANCS contract 2-CEx06-11-12/25.07.2006.

2. Preliminaries.

In this section we recall some basic notions and results which will be used
throughout the paper.

2.1. Riemannian admissible complexes. [2], [5], [6], [9], [11], [28].
Let C be a locally finite simplicial complex, endowed with a piecewise

smooth Riemannian metric g, i.e. g is a family of smooth Riemannian metrics
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gS on simplexes S of C, such that the restriction (gS)|S′ = gS′ , for any
simplexes S′ and S with S′ ⊂ S.

The set of all formal linear combinations α =
∑

v∈C α(v)v of vertices of
C, such that 0 6 α(v) 6 1,

∑
v∈C α(v) = 1 and {v;α(v) > 0} is a simplex

of C, is denoted by space|C|. This set is a subset of the linear space linC
of all formal finite linear combinations of vertices of C. A vertex v of C
will be identified with the formal linear combination 1v, thus formal linear
combinations of vertices become true linear combinations in linC.

Let C be a finite dimensional simplicial complex which is connected locally
finite. A map f from [a, b] to C is called a broken geodesic if there is a
subdivision a = t0 < t1 < · · · < tp+1 = b, such that f([ti, ti+1]) is contained
in some cell and the restriction of f to [ti, ti+1] is a geodesic inside that cell.
Then, define the length of the broken geodesic map f to be:

L(f) =
p∑
i=0

d(f(ti), f(ti+1)).

The length inside each cell is measured with respect to its metric.
For every two points x, y in C, define d̃(x, y) to be the lower bound of the

lengths of broken geodesics from x to y. Note that d̃ is a pseudo-distance.
If C is connected and locally finite, then (C, d̃) is a length space and hence

a geodesic space (i.e. a metric space where every two points are connected
by a curve with length equal to the distance between them ), if complete.

We say that the complex C is admissible, if it is dimensionally homoge-
neous, and for every connected open subset U of C, the open set U \ {U ∩
{(n − 2) − skeleton }} is connected, where n is the dimension of C (i.e. C
is (n− 1)-chainable).

We call an admissible connected locally finite simplicial complex, endowed
with a piecewise smooth Riemannian metric, an admissible Riemannian com-
plex.

In the sequel we shall denote a p-skeleton of a complex C by C(p).

2.2. Riemannian polyhedra. [11].
We mean by polyhedron a connected locally compact separable Hausdorff

space K for which there exists a simplicial complex C and a homeomorphism
θ : C → K. Any such pair (C, θ) is called a triangulation of K. The complex
C is necessarily countable and locally finite (see [26] page 120) and the space
K is path connected and locally contractible. The dimension of K is by
definition the dimension of C and it is independent of the triangulation.

If K is a polyhedron with specified triangulation (C, θ), we shall speak of
vertices, simplexes, i-skeletons (the set of simplexes of dimensions lower or
equal to i), stars ofK as the image under θ of vertices, simplexes, i-skeletons,
stars of C. Thus our simplexes become compact subsets of K.

If for a given triangulation (C, θ) of the polyhedron K, the homeomor-
phism θ is locally bi-lipschitz then K is said to be a Lip polyhedron and θ a
Lip homeomorphism.
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A null set in a Lip polyhedron K is a set Z ⊂ K such that Z meets
every maximal simplex S, relative to a triangulation (C, θ) (hence any) in
a set whose pre-image under θ has n-dimensional Lebesgue measure 0, with
n = dim S. Note that ’almost everywhere’ (a.e.) means everywhere except
in some null set.

A Riemannian polyhedron K = (K, g) is defined as a Lip polyhedron K
with a specified triangulation (C, θ), such that C is a simplicial complex
endowed with a covariant bounded measurable Riemannian metric tensor g,
satisfying the ellipticity condition below. In fact, suppose that K has homo-
geneous dimension n and choose a measurable Riemannian metric gS on the
open Euclidean n-simplex θ−1(

o
S ) of C. In terms of Euclidean coordinates

{x1, . . . , xn} of points x = θ−1(p), gS assigns to almost every point p ∈
o
S (or

x), an n × n symmetric positive definite matrix gS = (gSij(x))i,j=1,...,n, with
measurable real entries and there is a constant ΛS > 0 such that (ellipticity
condition):

Λ−2
S

n∑
i=0

(ξi)2 ≤
∑
i,j

gSij(x)ξiξj ≤ Λ2
S

n∑
i=0

(ξi)2

for a.e. x ∈ θ−1(
o
S ) and every ξ = (ξ1, . . . , ξn) ∈ Rn. This condition

amounts to the components of gS being bounded and it is independent not
only of the choice of the Euclidean frame on θ−1(

o
S ) but also of the chosen

triangulation.
For simplicity of statements, we shall sometimes require that, relative

to a fixed triangulation (C, θ) of the Riemannian polyhedron K (uniform
ellipticity condition),

Λ := sup {ΛS : S is simplex of K} <∞.

A Riemannian polyhedron K is said to be admissible if for a fixed triangu-
lation (C, θ) (hence any) the Riemannian simplicial complex C is admissible.

We underline that, for simplicity, the given definition of a Riemannian
polyhedron (K, g) contains already the fact (because of the definition above
of the Riemannian admissible complex) that the metric g is continuous rela-
tive to some (hence any) triangulation (i.e. for every maximal simplex S the
metric gS is continuous up to the boundary). This fact is sometimes omitted
in the literature. The polyhedron is said to be simplexwise smooth if relative
to some triangulation (C, θ) (and hence any), the complex C is simplexwise
smooth. Both continuity and simplexwise smoothness are preserved under
subdivision.

2.3. Energy of maps. [17], [20], [11].
The concept of energy of maps from a Riemannian domain into an arbi-

trary metric space Y was defined and investigated by Gromov, Korevaar and
Schoen [17], [20]. Later on, this concept was extended by Eells and Fuglede
[11] to the case of a map from an admissible Riemannian polyhedron K
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with simplexwise smooth Riemannian metric. The energy E(ϕ) of a map ϕ
from K to the space Y is defined as the limit of suitable approximate energy
expressed in terms of the distance function dY of Y .

The maps ϕ : K → Y of finite energy are precisely those quasicontinuous
(i.e. have continuous restrictions to closed sets), whose complements have
arbitrarily small capacity, (see [11], page 153) whose restriction to each top
dimensional simplex of K has finite energy in the sense of Korevaar-Schoen,
and E(ϕ) is the sum of the energies of these restrictions.

Consider now an admissiblem-dimensional Riemannian polyhedron (K, g)
with simplexwise smooth Riemannian metric. It is not required that g is
continuous across lower dimensional simplexes. The target (Y, dY ) is an
arbitrary metric space.

Denote L2
loc(K,Y ) the space of all µg-measurable (µg the volume measure

of g) maps ϕ : K → Y having separable essential range and for which the
map dY (ϕ(.), q) ∈ L2

loc(K,µg) (i.e. locally µg-squared integrable) for some
point q (hence by triangle inequality for any point). For ϕ,ψ ∈ L2

loc(K,Y )
define their distance D(ϕ,ψ) by:

D2(ϕ,ψ) =
∫
K

d2
Y (ϕ(x), ψ(y))dµg(x).

Two maps ϕ,ψ ∈ L2
loc(K,Y ) are said to be equivalent if D(ϕ,ψ) = 0, (i.e.

ϕ(x) = ψ(x) µg-a.e.). If the space K is compact, then D(ϕ,ψ) < ∞ and
D is a metric on L2

loc(K,Y ) = L2(K,Y ) which is complete if the space Y is
complete [20].

The approximate energy density of the map ϕ ∈ L2
loc(K,Y ) is defined for

ε > 0 by:

eε(ϕ)(x) =
∫

BK(x,ε)

d2
Y (ϕ(x), ϕ(x′))

εm+2
dµg(x′).

The function eε(ϕ) ≥ 0 is locally µg-integrable.
The energy E(ϕ) of a map ϕ of class L2

loc(K,Y ) is:

E(ϕ) = sup
f∈Cc(K,[0,1])

lim sup
ε→0

∫
K

feε(ϕ)dµg

 ,

where Cc(K, [0, 1]) denotes the space of continuous functions from K to the
interval [0, 1] with compact support.

A map ϕ : K → Y is said to be locally of finite energy, and we write ϕ ∈
W 1,2
loc (K,Y ), if E(ϕ|U ) <∞ for every relatively compact domain U ⊂ K, or,

equivalently, if K can be covered by domains U ⊂ K such that E(ϕ|U ) <∞.
For example (Lemma 4.4, [11]), every Lip continuous map ϕ : K → Y is

of class W 1,2
loc (K,Y ). In the case when K is compact, W 1,2

loc (K,Y ) is denoted
by W 1,2(K,Y ) the space of all maps of finite energy.
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W 1,2
c (K,Y ) denotes the linear subspace of W 1,2(K,Y ) consisting of all

maps of finite energy of compact support in K.

2.4. Harmonic maps and harmonic morphisms on Riemannian poly-
hedra. [11].

Let (K, g) be an arbitrary admissible Riemannian polyhedron (g is only
bounded, measurable, with local elliptic bounds), dim K = m and (Y, dY ) a
metric space .

A continuous map ϕ : K → Y of class W 1,2
loc (K,Y ) is said to be harmonic

if it is bi-locally E-minimizing, i.e. K can be covered by relatively compact
subdomains U for each of which there is an open set V ⊃ ϕ(U) in Y such
that

E(ϕ|U ) ≤ E(ψ|U )

for every continuous map ψ ∈ W 1,2
loc (K,Y ), with ψ(U) ⊂ V and ψ = ϕ in

K\U .
Let (N,h) denote a smooth Riemannian manifold without boundary of

dimension n and Γkαβ the Christoffel symbols on N . By a weakly harmonic
map ϕ : K → N we mean a quasicontinuous map (a map which is continuous
on the complement of open sets of arbitrarily small capacity; in the case of
the Riemannian polyhedron K, it is just the complement of open subsets of
the (m− 2)-skeleton of K) of class W 1,2

loc (K,N) with the following property:
For any chart η : V → Rn on N and any quasiopen set U ⊂ ϕ−1(V ) of

compact closure in K, the equation∫
U

〈∇λ,∇ϕk〉dµg =
∫
U

λ(Γkαβ ◦ ϕ)〈∇ϕα,∇ϕβ〉dµg,

holds for every k = 1, . . . , n and every bounded function λ ∈W 1,2
0 (U).

When K and Y denote two Riemannian polyhedra (or any harmonic
spaces in the sense of Brelot; see Chapter 2, [11]), a continuous map ϕ :
K → Y is a harmonic morphism if, for every open set V ⊂ Y and for every
harmonic function v on V , v ◦ ϕ is harmonic on ϕ−1(V ).

2.5. Brownian motions in Riemannian manifolds. [8], [12], [29].
Consider (Ω,A, P ) a probability space, (E, ε) a measurable space, and I

an ordered set. By a stochastic process on (Ω,A, P ) with values on (E, ε)
and I as time interval, we mean a map (see [12], or [29], or [8]):

X : I × Ω → E
(t, ω) 7→ X(t, ω),

such that for each t ∈ I, Xt : ω ∈ Ω 7→ X(t, ω) ∈ E is measurable from
(Ω,A) to (E, ε).

A family F = (Ft)t∈I of σ-subalgebras of A, such that Fs ⊂ Ft, for all s,
t with s < t, is called a filtration on (Ω,A, P ) with I time interval.

Given a filtration F = (Ft)t∈I , a process X, admitting as time interval a
part J of I, is said to be adapted to F , if for every t ∈ J , Xt is Ft-measurable.

6



A real-valued process X is said to be a submartingale, with respect to a
filtration Ft fixed on (Ω,A, P ), if it has the following properties : a) X is
adapted; b) each random variable Xt is integrable; c) for each pair of real
numbers s, t, s < t, and every A ∈ Fs we have:∫

A

XsdP ≤
∫
A

XtdP.

When the equality holds we say that X is a martingale.
A real-valued process X is said to be a continuous local martingale if and

only if it is a continuous ( with respect to the time variable ) adapted process
X such that each Xt∧Tnχ{Tn>0} is a martingale, where χ is the characteristic
function and Tn is the stopping time: inf{t : |Xt| ≥ n}.

A semimartingale is the sum of a continuous local martingale and a process
with finite variation. If the process of the finite variation is an increasing
one, the semimartingale is called a local submartingale.

Let M be a manifold with a connection M∇, and X be an M -valued
process. Following Schwartz characterization [25], a M∇-martingale tester,
(U1, U2, U3, f) will consist of:

• open sets U1, U2, U3 in M with U1 ⊂ U2 ⊂ U2 ⊂ U3,
• a convex function f : U3 → R.

The process X = (Xt,Ft) is said to be a M∇-martingale, if it is a continuous
semimartingale on M (i.e. ∀f ∈ C2(M), f ◦X is a real valued semimartin-
gale), and for all M∇-martingale tester (U1, U2, U3, f), the process

Y = (Yt,Ft), Yt =

t∫
0

χF (s)d(f ◦Xs),

is a local submartingale. F denote the previsible set
∞⋃
i=1

(σi, τi] where σi, τi, i ≥

0 is the collection of stopping-times, associated to the process X and any
M∇-martingale tester, defined by:

• σ0 = 0, τ0 = 0
• σi = inf{t > τi−1 : Xt ∈ U1}; τi = inf{t > σi : Xt /∈ U2}, i ≥ 1.

χF denotes the characteristic function.
SupposeM is a Riemannian manifold with Levi-Civita connection M∇. A

Brownian motion is characterized as a diffusion B = (Bt,Ft) with generator
1
2∆; in other words, for all f : M → R, the process Cf , where Cft =

f(Bt)− f(B0)− 1
2

t∫
0

χF (s)∆f(Bs)ds, is a local martingale.
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3. Brownian motions in admissible Riemannian polyhedra.

In [4], the second author proved the existence of a Brownian motion on
a Riemannian polyhedron. In this section, we find explicitly its infinitesi-
mal generator, Theorem 3.5. Furthermore, we give necessary and sufficient
conditions for harmonicity in terms of local martingales, see Corollary 3.10.

We begin by recalling some basic results used in the sequel.

3.1. Boundary normal coordinates, [19], [27] and the second funda-
mental form. [1], [12], [24].

LetM be a Riemannian manifold with non-empty boundary ∂M . For any
point y ∈ M there is a shortest geodesic to the boundary that is normal to
∂M .

Similarly to the exponential mapping defined on TxM for x an interior
point of M , we can define (see [19]) the boundary exponential mapping:
exp∂M : ∂M × R+ → M , exp∂M (z, t) = γz,ν(t), where R+ = [0,∞) and
t sufficiently small such that exp∂M (z, t) ∈M. Here, γz,ν denotes the normal
geodesic to ∂M whose derivative at zero equals ν, the unitary normal vector
to ∂M at the point z.

Using the boundary exponential mapping, one introduced (see for example
[19] or [27]) the boundary normal (or semi-geodesic) coordinates, analogously
to the Riemann normal coordinates. Compared to the classical case of empty
boundary, instead of a set of geodesics starting from a point one considers
the set of geodesics normal to ∂M.

Consider Uρ = ∂M × [0, ρ) a collar neighbourhood of ∂M × {0} in the
boundary cylinder ∂M × R+. Denote by

Vρ = exp∂M (Uρ) = {x ∈M ; d(x, ∂M) < ρ}
a collar neighbourhood of ∂M in M .

Then, for ρ sufficiently small, define (Vρ, x1, . . . , xn) local coordinates in
M ( the boundary normal coordinates) in the following way: for x ∈ Vρ,
xn := d(x, ∂M), z ∈ ∂M is the unique boundary point such that d(x, z) =
d(x, ∂M) and (x1, . . . , xn−1) on ∂M are local coordinates around z. ρ is
chosen small enough such that γz,ν(t) is the unique shortest geodesic to ∂M
for t < ρ.

As in the case of Riemannian manifolds without boundary, the Laplacian
is given in boundary normal coordinates (see [21]) by:

∆ =
1√
|g|

∂

∂xi

(
gij
√
|g| ∂
∂xj

)
= gij

(
∂2

∂xi∂xj
− Γkij

∂

∂xk

)
,

where |g| = det(gkl) and Γkij are the Christoffel symbols on M .

Let (M, g), (N,h) two Riemannian manifolds and ϕ : M → N a smooth
map. The Levi-Civita connection ∇M of M and the pull-back connection
∇ϕ of the pull-back bundle ϕ−1TN induce a connection ∇ on the bundle
T ∗M ⊗ ϕ−1TN . Applying this connection to dϕ one obtain the second
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fundamental form of ϕ (also called the Hessian of ϕ) (see [1] or [24]), denoted
by Hess ϕ, or ∇dϕ, and explicitly given by:

(1) (Hess ϕ)(X,Y ) := ∇ϕX(dϕ(Y ))− dϕ(∇MX Y ), ∀X,Y ∈ Γ(TM).

When N = R and (M, g) is a manifold with or without boundary then (1)
reads:

(2) (Hess ϕ)(X,Y ) := X(Y (ϕ))− dϕ(∇MX Y ), ∀X,Y ∈ Γ(TM).

Using the Hessian, the Laplacian can be also defined as:

∆f := Tr(Hess f).

A smooth map ϕ : M → N between two Riemannian manifolds is totally
geodesic (see [1], [12]) if for every f : N → R

(HessM (f ◦ ϕ))(∗, ∗) = (HessNf)(dϕ(∗), dϕ(∗)),

where HessM , HessN denote the second fundamental forms on M , N respec-
tively.

3.2. The tangent cone and the exponential map. Let (K, g) be an n-
dimensional admissible Riemannian polyhedron and p a point in the ((n−1)-
skeleton)\ ((n− 2)-skeleton).

We shall slightly reformulate the definition of the tangent cone previously
introduced in [2].

Suppose that p is in
o

Ŝn−1, the topological interior of the (n− 1)-simplex
Sn−1. Let S1

n, S
2
n, . . . , S

k
n, k ≥ 2, denote the n-simplexes adjacent to Sn−1.

Then each Sln, for l = 1, . . . , k, can be viewed as an affine simplex in Rn,
that is Sln =

⋂n
i=0Hi where Hi are closed half spaces in Rn. The Riemannian

metric gSln is the restriction to Sln of a smooth Riemannian metric defined
in an open neighbourhood of Sln in Rn.

Since p ∈ ((n − 1) − skeleton) \ ((n − 2) − skeleton), each Sln for l =
1, . . . , k, can be viewed, locally around p, as a manifold with boundary,
where the boundary is Sn−1. Then there exists a unique hyperplane, for
i = 0, . . . , n, containing p. Define TpSln as the half-space Hi which contains
the corresponding hyperplane.

Notice that TpSln can be naturally embedded in linSln ⊂ linK and

(3) TpS
l
n = TpSn−1 × [0,∞).

Define the tangent cone of K over p as: TpK =
⋃k
l=1 TpS

l
n ⊂ linK.

The difference from the original definition (see [2]) is that we do not need
to pass to subdivision of K in order to make the point p become a vertex.

Let Up(Sln) be the subset of all unit vectors in TpS
l
n and denote Up =

Up(K) =
⋃
Sln3p Up(Sln). The set Up is called the link of p in K. As Sln is

a simplex adjacent to p, then gSln(p) defines a Riemannian metric on the
9



(n − 1)-simplex Up(Sln). The family gp of Riemannian metrics gSln(p) turns
Up(Sln) into a simplicial complex with a piecewise smooth Riemannian metric
such that the simplexes are spherical.

Having defined the tangent cone, and using the boundary exponential
map, we can introduce next the exponential map locally around a point p in
the topological interior of an (n− 1)-simplex Sn−1.

Take V0 a neighbourhood of 0 in TpK. The definition of the exponential
map Ep : TpK → K on each maximal face V0

⋂
TpS

l
n, l = 1, . . . , k is based on

the fact that, locally around p, each Sln becomes a manifold with boundary,
with ∂(Sln) = Sn−1. This allows us to consider the boundary exponential
map (see Section 3.1):

exp∂Sln : Vρ →Wρ,

where Up is a small neighbourhood of p, Vρ = (Up ∩ Sn−1)× [0, ρ) is a collar
neighbourhood of (Up∩Sn−1)×0 in the boundary cylinder (Up∩Sn−1)×R+

and

Wρ = exp∂Sln(Vρ) := {x ∈ (Up ∩ Sln); d(x, (Up ∩ Sn−1)) < ρ}.
Moreover, on the manifold Sn−1 we consider the usual exponential map

at p:
expp : TpSn−1 → Sn−1.

Using the decomposition TpSln = TpSn−1× [0,∞), we define the exponen-
tial map

Ep : V0 ∩ TpSln → Sln
in the following way. Consider u a tangent vector in V0 ∩ TpSln. We can
decompose u = (v, w) where v ∈ TpSn−1 and w is a normal vector to ∂Sln.
Then

Ep(u) = exp∂Sln(expp(v), ||w||).

3.3. Brownian motions. The Brownian motion in a piecewise smooth Rie-
mannian complex, was obtained in [4], as a weak limit of isotropic processes.
This construction holds obviously for the piecewise smooth Riemannian poly-
hedron K.

Let us recall some essential facts about this construction. In [4], the
second author defined a process: Y η = (Ω,F0

t , Y
η
t , θt, P ), for η ∈ (0, 1], in

the following way:

Y η
t (ω) =

{
ΥηZi(ω)( t

η2 − τi(ω)) if τi(ω) ≤ t
η2 ≤ τi+1(ω)

D if ξ(ω) ≤ t
η2 ,

where τi are the stopping times such that, for all i ∈ N, the real random vari-
able (τi− τi+1) is exponentially distributed and τ0 = 0; Υη is the generalized
geodesic flow (see [2]); D is the one point compactification of K (because
K is semicompact) and ξ is the life time of Y η

t ; Z is a unit tangent vector
randomly chosen in the link of the point ΥηZi−1(ω)(τi(ω)) with respect to
the volume measure (link is viewed as a spherical Riemannian polyhedron),
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where Z0(ω) is also a unit tangent vector randomly chosen in the link of the
starting point.

In [4] it is also proved that Y η
t (for η ∈ (0, 1]) is a continuous Markov pro-

cess, for each η ∈ (0, 1], Y η generates a measure µη on the space C(R+,K) :=
{f : R+ → K, f − continuous} and µη has a subsequence which converges
to a measure W on C(R+,K), called Wiener measure. This Wiener measure
generate a Brownian motion in the Riemannian polyhedron, such that the
transition functions of the generated Brownian motion are just the projec-
tions of the Wiener measure on K (see for details [4]).

Proposition 3.1. Let (Bt)t≥0 denote the Brownian motion in the n− di-
mensional admissible Riemannian polyhedron K, see [4]. Then (Bt)t≥0 al-
most surely never hits the (n − 2)−skeleton and for every point p of the
((n− 1)− skeleton) \ ((n− 2)− skeleton), all the maximal simplexes adja-
cent to p have the same probability to be chosen by Bp

t i.e. (Bt)t≥0 has equal
branch probabilities.

Proof: The s−skeleton of K is usually denoted by K(s), [11].
For any p ∈ K(n−1) \K(n−2), denote by U ⊂ K \K(n−2) an open neigh-

bourhood of p and by τU := inf{t > 0/Bp
t /∈ U} the fist exit time of Bp

t

from U .
For any maximal simplex S of K adjacent to p and for t close to 0,

P (Bp
t∧τU ∈ U ∩ S) = lim

η→0
P (pY η

t ∈ U ∩ S).

Denote by τ1 the first stopping-time associated to the process Y η
t . Suppose

that P{τU ≤ τ1} = 1. For any η > 0,

P (pY η
t ∈ U ∩ S) = E[χU∩S(pY η

t )] =

=

∞∫
0

e
−
(
s+ t

η2

) ∫
Up(U∩S)

χU∩S

(
pΥηξ

(
s+

t

η2

))
dλ(ξ) ds.

So, for all η > 0, P (pY η
t ∈ U ∩ S) depends only on the link Up(U ∩ S)

which is independent of the choice of the maximal simplex adjacent to p.We
conclude that Bt

p has equal branch probabilities.
Let us compute P (Bt ∈ K(n−2)) :

P (Bt ∈ K(n−2)) = lim
η→0

P (Y η
t ∈ K(n−2)).

For any η > 0,

P (Y η
t ∈ K(n−2)) = E[χK(n−2)(Y η

t )].

Since the process Y η
t is Markov, to compute the above average, we can

suppose that 0 < t < τ1 which does not change the result. Then

E[χK(n−2)(Y η
t )]
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is equal to
∞∫
0

e
−
(
s+ t

η2

) ∫
Up(K(K(n−2)))

χK(n−2)

(
pΥηξ

(
s+

t

η2

))
dλ(ξ) ds,

where Up(K(K(n−2))) denotes all the vectors in the link Up(K) pointing into
the K(n−2).

Since λ(Up(K(K(n−2)))) = 0, we have∫
Up(K(K(n−2)))

χK(n−2)

(
pΥηξ

(
s+

t

η2

))
dλ(ξ) = 0.

Therefore, we have proved that for any η > 0, P (Y η
t ∈ K(n−2)) = 0 and

consequently P (Bt ∈ K(n−2)) = 0.

Proposition 3.2. The Brownian motion (Bt)t≥0 on admissible Riemannian
polyhedra has an infinitesimal generator L defined on a Banach subspace DL

i.e. for every f ∈ DL,

Lf := lim
t→0

E[f(Bt)]− f(B0)
t

uniformly.

Proof: Remark that the Brownian motion (Bt)t≥0 is trajectories continu-
ous [4] so it is stochastically continuous. Then by Dynkin’s result (see [10]
Theorem 2.3), the existence of L is completely insured. �

Let (K, g) be a n-dimensional admissible Riemannian polyhedron, en-
dowed with a continuous simplexwise smooth metric.

Definition 3.3. Consider U ⊂ K a domain which meets exactly one (n−1)-
simplex Sn−1. Let S1

n, . . . , S
k
n denote the n-simplexes adjacent to Sn−1 and

f a continuous function on U which is of class C2 in each
o

Ŝjn ∩U and at least

of class C1 in each (
o

Ŝjn ∪
o

Ŝn−1) ∩ U . The function f is said to be of zero
normal trace condition if and only if:

k∑
j=1

Djf(x) = 0

at almost every point x of Sn−1∩U , where Djf(x) denotes the inner normal
derivative of f|Sjn∩U at x.

Remark 3.4. The space DL contains the space

W 1,2
loc (K)

⋂{
function of class C2 in the interior of the n-simplexes
and the (n− 1)-simplexes and of zero normal trace condition

}
which is denoted by DL.
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Let B = (Ω,F0
t , Bt, θt, P ) be the K-valued Brownian motion introduced

above (see [4]).

Theorem 3.5. Suppose that the exponential map (Section 3.2) is totally
geodesic in each point in the topological interior of any (n− 1)-simplex. Let
ϕ ∈ W 1,2

loc (K), i.e. there exists a covering U of K with relatively compact
subdomains, such that ϕ is of finite energy on each U ∈ U . Assume that
ϕ is of class C2 on the interior of each n-simplex and on the interior of
each (n − 1)-simplex, and of zero normal trace condition. Denote by τU :=
inf{t > 0/Bt /∈ U} the first exit time of Bt from U . Then we have:

(4)
1
2

∆̃ϕ =
∂

∂t
E[ϕ(Bt∧τU )], on U\((n− 2)− skeleton).

where E[ϕ(Bt∧τU )] is the expectation with respect to Bt∧τU and

∆̃ =


1
k

k∑
l=1

∆l, at a point in (n− 1)-skeleton \(n− 2)-skeleton,

∆l is the Laplacian in Sln at a boundary point;

the usual Laplacian, in the interior of each simplex.

Proof: Let p ∈ K. There are two cases to investigate:

Case 1: If p is in the topological interior of some n-dimensional simplex,
using [12] or [14], the relation (4) clearly holds.

Case 2: Let p be in the ((n− 1)− skeleton)\((n− 2)− skeleton).
The idea in this case is to transfer, locally, the computations from the

polyhedron K to its tangent cone over p, TpK.

Suppose that p is in
o

Ŝn−1 the topological interior of the (n − 1)-simplex
Sn−1. Let S1

n, S
2
n, . . . , S

k
n, k ≥ 2, denote the n-simplexes adjacent to Sn−1.

Take V0 a neighbourhood of 0 in TpK, and consider the exponential map

Ep : V0 ∩ TpSln → Sln,

defined in Section 3.2.
We shrink V0 and Up, if necessary, such that Ep(V0) = Up. Denote by

Φp : Up → V0 the inverse map of Ep. By hypothesis, the maps Ep and Φp,
are locally totally geodesic diffeomorphisms onto their images.

Let (Bt) denotes the Brownian motion in the polyhedron (K, g) (see [4])
and by Xt = Φp(Bt). We remark that (Xt∧τUp ) is a Brownian motion in the
flat polyhedron V0

⋂
TpK with equal branch probabilities (since Φp is totally

geodesic map and Bt has equal branch probabilities), where τUp is the first
exit time of Bt from Up.

Using the fact that V0∩TpSln is also a manifold with boundary, we consider
the boundary normal coordinates (x1, . . . , xn−1, xn) in the neighbourhood
V0 ∩ TpSn−1 of 0, as follows. Pick up coordinates (x1, . . . , xn−1) on V0 ∩

13



TpSn−1 and for a point x in the collar neighbourhood of V0 ∩ TpSn−1 in
V0 ∩ TpSln define xn := d(x, V0 ∩ TpSn−1). Remark that this latest choice of
the coordinates chart in the tangent cone over the point p is possible because
the metric g in the polyhedron is continuous.

Using the boundary normal coordinates (x1, . . . , xn−1, xnl) in any (V0 ∩
TpS

l
n), l = 1, . . . , k, the infinitesimal generator ∆e of the Brownian motion

Xt on the flat polyhedron V0 ∩ TpK has the following properties (see [7]):

1) ∆e is defined on the space of:

• continuous functions on the flat polyhedron V0 which are of class
C2 in the interior of both n-simplexes and (n − 1)-simplexes, have
continuous second derivatives in the interior of Sn−1 which are limits
of corresponding directional derivatives from the interior of adjacent
faces;
• functions with zero normal trace condition for any point in the ((n−

1)-skeleton)\ ((n− 2)-skeleton), i.e.
k∑
l=1

∂f
∂xnl

= 0;

2) 2∆e is the usual Laplacian in the interior of each simplex;

3) For q ∈
o

̂(V0 ∩ TpSn−1), we have

∆ef(q) = 1
2

(
n−1∑
i=1

∂2f
∂xi2

+ 1
k

k∑
l=1

∂2f
∂xnl

2

)

= 1
2

[
1
k

(
n−1∑
i=1

∂2f
∂xi2

+ ∂2f
∂xn1

2

)
+ · · ·+ 1

k

(
n−1∑
i=1

∂2f
∂xi2

+ ∂2f
∂xnk

2

)]
= 1

2k∆e
1f(q) + · · ·+ 1

2k∆e
kf(q)

= 1
2k

k∑
l=1

∆e
l f(q),

where

∆e
l f(q) =

n−1∑
i=1

∂2f

∂xi2
+

∂2f

∂xnl
2

is the usual Laplacian on the manifold V0 ∩ TpSln at a boundary point.
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Now, for a point v1 ∈
o

̂(V0
⋂
TpSln), the second order Taylor’s development

of a function f (as above) in the boundary normal coordinates has the form:
(5)

f(v1) = f(0) + ∂nlf(0)xnl(v1) + 1
2∂

2
nl
f(0)x2

nl
(v1)

+ 1
2

n−1∑
j=1

∂nl∂jf(0)xnl(v1)xj(v1) + 1
2

n−1∑
i=1

∂i∂nlf(0)xi(v1)xnl(v1)

+
n−1∑
i=1

∂if(0)xi(v1) +
n−1∑
i,j=1

∂i∂jf(0)xi(v1)xj(v1) + o(ε),

with the notation:

∂nl =
∂

∂xnl
, ∂i =

∂

∂xi
, ∂2
nl

=
∂2

∂xnl
2
.

Using the symmetry of the connection, (5) reduces to:

(6)

f(v1) = f(0) + ∂nlf(0)xnl(v1) + 1
2∂

2
nl
f(0)x2

nl
(v1)

+
n−1∑
j=1

∂j∂nlf(0)xnl(v1)xj(v1)

+
n−1∑
i=1

∂if(0)xi(v1) +
n−1∑
i,j=1

∂i∂jf(0)xi(v1)xj(v1) + o(ε).

Equation (6) evaluated at Xt∧τU supposed in
o

̂(V0
⋂
TpSln) becomes:

(7)
f(Xt∧τU ) = f(0) + ∂nlf(0)xnl(Xt∧τU ) + 1

2∂
2
nl
f(0)x2

nl
(Xt∧τU )

+
n−1∑
j=1

∂j∂nlf(0)xnl(Xt∧τU )xj(Xt∧τU )

+
n−1∑
i=1

∂if(0)xi(Xt∧τU ) +
n−1∑
i,j=1

∂i∂jf(0)xi(Xt∧τU )xj(Xt∧τU ) + o(t).

The process Xt∧τU can be decomposed into a product (Xn−1
t∧τU , X

n
t∧τU ) of

two independent processes such that Xn−1
t∧τU is (n−1)−dimensional Euclidean

Brownian motion in the submanifold V0 ∩ TpSn−1 and Xn
t∧τU is a Brownian

motion on a graph Γ with k edges e1, . . . , ek of length ε attached to the
point 0 with equal branch probabilities at 0 i.e. Xn

t∧τU is one dimensional
Brownian motion on each edge of Γ with equal branching probabilities, see
[3].

Then by taking the averages and using [3], (7) turns into:
15



(8)

E0[f(Xt∧τU )] = f(0) +
k∑
l=1

∂nlf(0)E0[d(o,Xn
t∧τU )/{Xn

t∧τU ∈ el}]

+
k∑
l=1

1
2∂

2
nl
f(0)E0[d(o,Xn

t∧τU )2/{Xn
t∧τU ∈ el}]

+
k∑
l=1

n−1∑
i=1

∂i∂nlf(0)E0[xi(Xn−1
t∧τU )]E0[d(o,Xn

t∧τU )/{Xn
t∧τU ∈ el}])

+
n−1∑
i=1

∂if(0)E0[xi(Xn−1
t∧τU )]

+ 1
2

n−1∑
i,j=1

∂i∂jf(0)E0[xi(Xn−1
t∧τU )xj(Xn−1

t∧τU )] + o(t).

Since the process Xn
t is one dimensional Brownian motion on each edge

of Γ with equal branch probabilities (see [7] or [3]) then :

E0[d(o,Xn
t∧τU )/{Xn

t∧τU ∈ el}] =
1
k

√
2t
π

and
E0[d(o,Xn

t∧τU )2/{Xn
t∧τU ∈ el}] =

t

k
for every l.

So for a function f with zero normal trace condition, we have:
k∑
l=1

∂nlf(0)E0[d(o,Xn
t∧τU )/{Xn

t∧τU ∈ el}] =
1
k

√
2t
π

k∑
l=1

∂nlf(p) = 0,

On the other hand, for the (n− 1)-Euclidean Brownian motion Xn−1
t , we

have:

E0[xi(Xn−1
t∧τU )] = 0

and
E0[xi(Xn−1

t∧τU )xj(Xn−1
t∧τU )] = δijt,

where δij = 1 if i = j δij = 0 if i 6= j.
Then equality (8) reduces to:

(9) E0[f(Xt∧τU )] = f(0) + t
2k

k∑
l=1

∂2
nl
f(0) + t

2

n−1∑
i,j=1

δij∂i∂jf(0) + o(t).

Which can be written as:

(10) E0[f(Xt∧τU )] = f(0) + t
2k

k∑
l=1

∆e
l f(0) + o(t)

= f(0) + t∆ef(0) + o(t)

We infer from (10) that:
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(11) f(Xt∧τU ) = f(0) + 1
k

k∑
l=1

1
2

t∧τU∫
0

∆e
l f(Xs)χ{Xs∈TpSln}ds

+ some local martingale,

for a function f defined on V0 with zero normal trace condition.
Observe that the zero normal trace condition is preserved by exponential

map.
Now, for a function ϕ of class W 1,2

loc , which is of class C2 in both the
topological interior of the n-dimensional faces and the (n − 1)-dimensional
faces of the polyhedron K, the equation (11) reads for the function ϕ ◦ Ep:
(12)

ϕ ◦ Ep(Xt∧τU ) = ϕ ◦ Ep(0) + 1
k

k∑
l=1

1
2

t∧τU∫
0

∆e
l (ϕ ◦ Ep)(Xs)χ{Xs∈TpSln}ds

+ some local martingale

The process Xt is an Euclidean Brownian motion in each maximal face,
so we can write (see [12], Proposition 5.18):
(13)

ϕ ◦ Ep(Xt∧τU ) = ϕ ◦ Ep(0) + 1
k

k∑
l=1

1
2

t∧τU∫
0

Hessel (ϕ ◦ Ep)(dX, dX)χ{Xs∈TpSln}

+ some local martingale,

where Hessel (ϕ ◦Ep) denotes the Euclidean Hessian of the function (ϕ ◦Ep)
on the face TpSln.

Since the map Ep is totally geodesic on each maximal face and on the
(n − 1)-dimensional face of V0 ∩ TpK, using (4.21) and (4.32) from [12], we
obtain:
(14)
ϕ(Bt∧τU ) = ϕ ◦ Ep(Xt∧τU )

= ϕ(p) + 1
k

k∑
l=1

1
2

t∧τU∫
0

(T ∗Ep ⊗ T ∗Ep)Hesslϕ(dX, dX)χ{Xs∈TpSln}

+ some local martingale

= ϕ(p) + 1
k

k∑
l=1

1
2

t∧τU∫
0

Hesslϕ(d(Ep ◦X), d(Ep ◦X))χ{Xs∈TpSln}

+ some local martingale,

where Hesslϕ denotes the Hessian of the function ϕ in the boundary normal
coordinates defined by Ep : V0

⋂
TpS

l
n ⊂ Rn → Up

⋂
Sln ⊂ K in Sln viewed

as a manifold with boundary (see Section 3.2).
Relation (14) is equivalent to (see [12] (3.13)):

(15) ϕ(Bt∧τU ) = ϕ(p) + 1
k

k∑
l=1

1
2

t∧τU∫
0

Hesslϕ(dB, dB)χ{Bs∈U
⋂
Sln}

+ some local martingale

By [12], Proposition (5.18), we have:
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(16) ϕ(Bt∧τU ) = ϕ(p) + 1
k

k∑
l=1

1
2

t∧τU∫
0

∆lϕ(Bs)χ{Bs∈U
⋂
Sln}ds

+ some local martingale,

where ∆l denotes the Laplace-Beltrami operator computed by using bound-
ary normal coordinates in a neighbourhood of p on the manifold with bound-
ary Up

⋂
Sln.

This concludes the proof. �

Remark 3.6. The extra-condition appearing in the hypothesis, that the
exponential map is totally geodesic, even though restrictive, is realized in a
certain number of cases. For instance, it holds if K is one-dimensional (tree).
Hence we obtain a new proof of the main results in [7]. Another obvious case
is that of flat metrics.

Remark 3.7. As we have seen, Remark 3.4 gives us the space of functions
on which is defined the infinitesimal generator of the Brownian motion on the
polyhedron. Moreover from Theorem 3.5, we conclude that the infinitesimal
generator is exactly the Laplace-Beltrami operator on the interior of each
simplex and for a point in the (n− 1)-skeleton \ (n− 2)-skeleton it is equal

to ∆̃ = 1
k

k∑
l=1

∆l where ∆l is the usual Laplacian in Sln defined at a boundary

point.

Lemma 3.8. L is uniquely determined on the space DL.

Proof: All the functions considered are supposed to be at least of class C2

in the interior of each n-simplex and each (n− 1)-simplex.
Consider f ∈W 1,2

loc (K). For every ψ ∈W 1,2
c (K), by Theorem 3.5, we have

1
2

∫
K\((n−2)−skeleton)

ψ∆̃fdµg =
∫

K\((n−2)−skeleton)

ψLfdµg.

Consider now an operator L̃ which is weakly defined on the spaceW 1,2
loc (K)

by: ∫
K

ψL̃fdµg := −1
2

∫
K

〈∇ψ,∇f〉dµg,

for every ψ ∈W 1,2
c (K).

Indeed, L̃ is well defined since W 1,2
c (K) is a Dirichlet space (see [11] page

20, 21 and Proposition 5.1) in the Sobolev (1, 2)-norm: ||u||2 =
∫
K

(u2+|∇u|2),

for u : K → R.
It is clear that: ∫

K\((n−2)−skeleton)

ψLfdµg =
∫

K\((n−2)−skeleton)

ψL̃fdµg.
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On the other hand, the Brownian motion almost surely never hits the
(n − 2)-skeleton, so L̃ is also an infinitesimal generator associate to the
transition probability Wt of the Brownian motion.

The transition function Wt associate to the K-valued Brownian motion
is stochastically continuous, so its infinitesimal generator is uniquely deter-
mined (see [10] Lemma 2.2, Theorem 2.3). We infer that L̃ is equal to L on
the space DL, which concludes the proof. �

Theorem 3.9. Let (K, g) be an admissible Riemannian polyhedron endowed
with a simplexwise smooth Riemannian metric and f ∈ DL. As in Theorem
3.5, suppose that the exponential map is totally geodesic in each point in
the topological interior of an (n − 1)-simplex. Let (Bt)t≥0 be a K-valued
Brownian motion and let U be an open set of K taken as in the hypothesis
of Theorem 3.5. Then, for any p ∈ U ∩K\((n− 2)− skeleton) the process

C
f(p)
t∧τU = f(Bp

t∧τU )− f(p)−
t∧τU∫
0

L(f(Bp
s ))ds

is a local martingale, where τU := inf{t > 0/Bt /∈ U} is the first exit time
of Bt from U .

Proof: By construction, the Brownian motion (Bt)t≥0 almost surely never
hits the (n− 2)-skeleton.

For any p ∈ U\((n− 2)− skeleton), consider the process:

C̃
f(p)
t∧τU = χ{Bpt /∈((n−2)−skeleton)}f(Bp

t∧τU )− f(p)

−
t∧τU∫
0

χ{Bps /∈((n−2)−skeleton)}L(f(Bp
s ))ds,

where χ denote the characteristic function.
By Theorem 3.5, ∀p ∈ U\((n− 2)− skeleton),

χ{Bps /∈((n−2)−skeleton)}L(f(Bp
s )) = χ{Bps /∈((n−2)−skeleton)}

1
2

∆̃f(Bp
s ).

Taking the expectation, we obtain:

E[C̃f(p)
t∧τU ] = E[f(Bp

t∧τU )]−E[f(p)]−1
2
E[

t∧τU∫
0

χ{Bps /∈((n−2)−skeleton)}∆̃f(Bp
s )ds].

Moreover,
∂

∂t
E[C̃f(p)

t ] =
∂

∂t
E[f(Bp

t )]− 1
2

∆̃f(p).

Then, using Theorem 3.5, we obtain ∂
∂tE[C̃f(p)

t ] = 0,∀p ∈ U\((n − 2) −
skeleton).

Hence, C̃f(p)
t is a local martingale. Since C̃t is equal, almost surely, to the

process Ct we conclude that Ct is also a local martingale. �
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Corollary 3.10. Let (K, g) be an admissible Riemannian polyhedron en-
dowed with a simplexwise smooth Riemannian metric, f ∈ DL and let U be
an open set of K considered as in the hypothesis of Theorem 3.5. Denote
by τU := inf{t > 0/Bt /∈ U} the first exit time of Bt from U . Then f is
harmonic if and only if, for any p ∈ U \ ((n− 2)− skeleton), f(Bp

t∧τU ) is a
local martingale ((Bp

t )t is a K-valued Brownian motion).

Proof: By Theorem 3.9, the processes:

C
f(p)
t∧τU = f(Bp

t∧τU )− f(p)−
t∧τU∫
0

L(f(Bp
s ))ds

and
C̃
f(p)
t∧τU = χ{Bpt /∈((n−2)−skeleton)}f(Bp

t∧τU )− f(p)

−
t∧τU∫
0

χ{Bps /∈((n−2)−skeleton)}L(f(Bp
s ))ds

are both local martingales, for every p ∈ U \ ((n− 2)− skeleton), where U
is taken as in the hypothesis of the theorem.

Suppose that f is harmonic, then:

χ{Bpt /∈((n−2)−skeleton)}f(Bp
t∧τU ) = C̃

f(p)
t∧τU + f(p),

for every p ∈ U \ ((n− 2)− skeleton).
So the process χ{Bpt /∈((n−2)−skeleton)}f(Bp

t∧τU ) is a local martingale, for
every p ∈ U \ ((n − 2) − skeleton). But this last process is almost surely
equal to f(Bp

t∧τU ), so the process f(Bp
t∧τU ) is also a locale martingale.

Conversely, suppose that for every p ∈ U \((n−2)−skeleton), f(Bp
t∧τU ) is

a local martingale. Then, by classical theory, this implies that f is harmonic
on each U \ ((n−2)− skeleton), so is an E-minimizer on each U \ ((n−2)−
skeleton). Then we have for every ψ ∈W 1,2

loc (K), with ψ = f on K \ U ,∫
U

e(f) =
∫

U\((n−2)−skeleton)

e(f) ≤
∫

U\((n−2)−skeleton)

e(ψ) =
∫
U

e(ψ).

We infer that f is a continuous locally E-minimizer map on K, which
means that f is harmonic on U . �

4. Brownian motions, Harmonic maps and morphisms.

In this section, we extend classical results due to Darling [8] relating Brow-
nian motions and harmonic maps and morphisms to the case of maps defined
on a Riemannian polyhedron. We prove that harmonic maps are charac-
terized by mapping Brownian motions into martingales, Theorem 4.1, and
harmonic morphisms are exactly the maps which are Brownian preserving
paths, Theorem 4.2.
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Theorem 4.1. Let (K, g) be an admissible Riemannian polyhedron as in
Theorem 3.5 and (N,h) a smooth Riemannian manifold. Let ϕ : K → N be
a continuous map such that ϕ ∈ W 1,2

loc (K,N), i.e. there exists a covering U
of K with relatively compact subdomains, such that ϕ is of finite energy on
each U ∈ U . Assume that, ϕ is of class C2 on the interior of each n-simplex
and on the interior of each (n− 1)-simplex. Suppose that for every function
ψ : N → R of class C2, the function ψ ◦ ϕ is of zero normal trace condition.

Then ϕ is harmonic if and only if for almost all p ∈ U (with respect to the
volume measure), ϕ(Bp

t∧τU ) is a N∇-martingale, where (Bp
t )t≥0 is a K-valued

Brownian motion and τU is the first exit time of Bt from U .

Proof: Let (UN , VN ,WN , f) be a N∇-martingale tester on N , such that
ϕ−1(WN ) ⊂ U.

Suppose that ϕ is a harmonic map.
By Theorem 3.9, for all p ∈ U \ ((n− 2)− skeleton), the processes:

C
f◦ϕ(p)
t∧τU := f ◦ ϕ(Bp

t∧τU )− f ◦ ϕ(Bp
0)−

t∧τU∫
0

χF (s)L(f ◦ ϕ)(Bp
s )ds

and

C̃
f◦ϕ(p)
t∧τU := χ{Bpt /∈((n−2)−skeleton)}f ◦ ϕ(Bp

t∧τU )− f ◦ ϕ(Bp
0)−

t∧τU∫
0

χ{Bps /∈((n−2)−skeleton)}χF (s)L(f ◦ ϕ)(Bp
s )ds

are local martingales, where F =
∞⋃
i=1

](σi, τi], with

σi = inf{t > τi−1; ϕ(Bp
t ) ∈ UN}

τi = inf{t > σi; ϕ(Bp
t ) 6∈ V N}

σ0 = 0
τ0 = 0.

The map ϕ is supposed to be harmonic and f is a convex function, hence
by Eells-Fuglede’s result ([11], Theorem 12.1), f◦ϕ is a subharmonic function
on ϕ−1(WN ). But in our case the subharmonicity can be translated by:

∆̃(f ◦ ϕ)(p) ≥ 0, ∀p ∈ U\((n− 2)− skeleton)

The process χ{Bpt /∈((n−2)−skeleton)}(f ◦ϕ)(Bp
t∧τU ) is then the sum of a local

martingale and an increasing process, so it is a local submartingale ∀p ∈
U\((n− 2)− skeleton).

Since the process χ{Bpt /∈((n−2)−skeleton)}(f◦ϕ)(Bp
t∧τU ) is equal almost surely

to (f ◦ ϕ)(Bp
t∧τU ), this last process is also a local submartingale for every

p ∈ U\((n− 2)− skeleton).
Conversely, suppose that for any p ∈ U \ ((n− 2)− skeleton), (U is as in

the hypothesis of the theorem ), ϕ(Bp
t∧τU ) is a N∇-martingale.
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Therefore, for any N∇-tester function f : WN → R, (f ◦ ϕ)(Bp
t∧τU ) is a

local submartingale.
By Theorem (3.9), the process:

H
f◦ϕ(p)
t∧τU := f ◦ ϕ(Bp

t∧τU )− f ◦ ϕ(Bp
0)−

t∧τU∫
0

χF (s)L(f ◦ ϕ)(Bp
s )ds,

is a local martingale, for any p ∈ U\((n−2)−skeleton), where F =
∞⋃
i=1

(σi, τi],

with
σi = inf{t > τi−1;ϕ(Bp

t ) ∈ UN}
τi = inf{t > σi;ϕ(Bp

t ) 6∈ V N}
σ0 = 0
τ0 = 0.

Since for any p ∈ U \ ((n− 2)− skeleton) we have
∂

∂t
E[(f ◦ ϕ)(Bp

t∧τU )] =
1
2

∆̃(f ◦ ϕ)(p).

and (f ◦ ϕ)(Bp
t∧τU ) is a local submartingale, then ∆̃(f ◦ ϕ)(p) ≥ 0, for any

p ∈ U \ ((n− 2)− skeleton).
Hence, by Eells-Fuglede (see [11], Theorem 12.1), we obtain that ϕ is a

harmonic map on U \ ((n− 2)− skeleton).
Using the same arguments as in the proof of Corollary 3.10, for harmonic

functions, we conclude that ϕ is harmonic on each U . �

Theorem 4.2. Notation as in Theorem 4.1. Then ϕ is a harmonic mor-
phism if and only if ϕ maps K-valued Brownian motions (Bp

t∧τU )t≥0, for any
p ∈ U∩K\((n−2)−skeleton), to a Brownian motion on N , i.e. if (NBp

t )t≥0

denote the Brownian motion on the manifold N then there exist a continuous
increasing process (At∧τU )t≥0 such that: NBp

t ◦At∧τU = ϕ◦Bp
t∧τU . τU denote

the first exit time of Bt from U .

Remark 4.3. We shall suppose the dim K ≥ dim N . Otherwise, ϕ is
constant. Indeed, if dim K < dim N , by smooth theory (see [1], p.46), ϕ is
constant on each interior of maximal simplex (of a chosen fine triangulation
of K). On the other hand, ϕ is continuous and K is (n− 1)-chainable, so ϕ
is constant on K.

Proof of Theorem 4.2: For the proof of the Theorem 4.2, we will adapt
and complete the proof given by Darling (see [8]) in the smooth case.

” ⇒ ” Suppose ϕ : K → N is a harmonic morphism. Then by Eells-
Fuglede’s result ([11], Theorem 13.2), there exists a function λ ∈ L1

loc(K)
called the dilation, such that:

(17) −
∫
K

〈∇ψ,∇(v ◦ ϕ)〉 =
∫
K

ψλ[(∆Nv) ◦ ϕ],
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for every v ∈ C2(N) and ψ ∈ Lipc(K).
Let Bp = (Bp

t )t≥0 a K-valued Brownian motion, for any p ∈ K \((n−2)−
skeleton). Take U as in the hypothesis of the theorem and suppose p ∈ U .

Define a continuous increasing process (At∧τU )t≥0 by:

(18) At∧τU :=

t∧τU∫
0

λ(Bs)ds,

and it’s inverse as: Ct∧τU = inf{s;As∧τU > s}.
Denote ϕ ◦Bp by Xϕ(p) = (Xϕ(p)

t )t≥0 on N . For any function f : N → R
of class C2 and any p ∈ U ∩K \ ((n− 2)− skeleton) we have:

t∧τU∫
0

∆Nf(Xϕ(p) ◦ Cs)ds =

Ct∧τU∫
0

∆Nf(Xϕ(p)
u )dAu,

where ∆N denote the Laplace-Beltrami operator on the manifold N .
From (18) we obtain

(19)

t∧τU∫
0

∆Nf(Xϕ(p) ◦ Cs)ds =

Ct∧τU∫
0

λ(Bp
u)∆Nf(Xϕ(p)

u )du.

Using (17), the right hand side of the equality (19) is equal to

2

Ct∧τU∫
0

L(f ◦ ϕ)(Bp
u)du, µg a.e. ,

for every p ∈ U ∩K \ ((n− 2)− skeleton).
On the other hand, by Theorem 3.9, the process

H̃
f◦ϕ(p)
t∧τU := χ{Bpt /∈((n−2)−skeleton)}(f ◦ ϕ)(Bp

t∧τU )− (f ◦ ϕ)(p)−

t∧τU∫
0

χ{Bps /∈((n−2)−skeleton)}L(f ◦ ϕ)(Bp
s )ds

is a continuous local martingale for any p ∈ U ∩K \ ((n− 2)− skeleton).
Consider now the process

H̃f◦ϕ(p) ◦ Ct∧τU
denote= R̃

f◦ϕ(p)
t∧τU .

R̃
f◦ϕ(p)
t∧τU is obviously a continuous local martingale and it is also almost surely

equal (using (17) and (19)) to the process

R
f◦ϕ(p)
t∧τU := f(Xϕ(p) ◦ Ct∧τU )− f(ϕ(p))− 1

2

t∧τU∫
0

∆Nf(Xϕ(p) ◦ Cs)ds.
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So Rf◦ϕ(p)
t∧τU is also a continuous local martingale for any p ∈ U ∩K \ ((n−

2)− skeleton), which means, by definition, that Xϕ(p) ◦Cs∧τU is a Brownian
motion on N .

“ ⇐ “ Conversely, suppose that for any p ∈ K \ ((n − 2) − skeleton),
(ϕ(Bp

t ))t≥0 is a Brownian motion on N up to a change of time.
Let V be an open set of N such that ϕ−1(V ) ⊂ U , where U is taken as in

the hypothesis of the theorem. Let f : V → R be a local harmonic function
on N .

Fix p0 ∈ U \ ((n − 2) − skeleton) with ϕ(p0) ∈ V and τ denote the first
exit time of (Bp0

t )t≥0 from ϕ−1(V ).
By hypothesis, the process

(f(ϕ(Bp0
t∧τ )))t≥0 = (f ◦ ϕ(Bp0

t∧τ ))t≥0

is equal to f(NBϕ(p) ◦At∧τ ).
The latter process is a continuous local martingale (because, by defini-

tion the process (f(NBϕ(p)
t∧τ ))t≥0 is a continuous local martingale and the

martingale property is stable under change of time).
So we have shown that for every p0 ∈ U \ ((n − 2) − skeleton) and for

every (local) harmonic function on N , (f ◦ϕ(Bp0
t∧τ ))t≥0 is a continuous local

martingale. By Corollary 3.10 this means that f ◦ ϕ is harmonic.
In other words, we have shown that ϕ pulls-back (local) harmonic function

on N to (local) harmonic function on K \ ((n − 2) − skeleton). But we
have already proved in the proof of the Corollary 3.10 that (local) harmonic
function on K \ ((n− 2)− skeleton) are (local) harmonic on K.

We conclude that ϕ is a harmonic morphism. �
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