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1 Subject of the thesis

This thesis is concerned with studying the geometric properties of locally
conformally symplectic (LCS for short) and, to a certain extend, of locally
conformally Kihler (LCK) manifolds. It is based on [OS], [S1] and [S2}.

LCS manifolds are quotients of symplectic manifolds by a discrete group
of homotheties. Products of contact manifolds with S are LCS ([V]), but
there are many other examples. Equivalently, they are even-dimensional
manifolds endowed with a non-degenerate two-form w and a closed one-form
# (called Lee form} such that

diw =8 Aw.

LCK manifolds intertwine the above definition with the existence of both
a complex and Riemannian structures 7.e. we ask w above to be the two-
form given by a Riemannian metric composed with the complex structure
endomorphism.

There is a growing interest in LCS manifolds, concerning both their
geometry and topology (e.g. [Ba], [CM] and the references therein). A
strong motivation for studying LCS manifolds is a recent result by Eliashberg
and Murphy [EM] proving that all compact almost complex manifolds with
non-trivial integer one-cohomology do have 1.CS structures, and hence these
manifolds are much more numerous than symplectic ones.

The broad goal of the thesis is to generalize well-known procedures
and theorems in symplectic and Kahler geometry and bring them into the
LCS/LCK setting, leading to a better understanding of the field and, per-
haps, to new examples of LCS manifolds.

2 Contents of the thesis. Summary of original re-
sults

I will now explain the structure of my thesis and, doing so, give an outline
of the original results therein.

2.1 The preliminaries

Chapter 2 serves as a collection of preliminary facts needed for the de-
scription and proof of the original results in the later chapters. This includes
the definitions and basic facts about symplectic, Kahler, contact and Sasaki



geometry, as well as a brief overview on LCS and LCK geometry. As an
interesting and rich subclass in LCK geometry, I also look at Vaisman man-
ifolds. I give special importance to the relations between all these different
objects, relations which I will exploit to prove my own results.

An especially important part of Chapter 2 is Subsection 2.1.2, concern-
ing symplectic reduction. The Marsden-Weinstein reduction for symplectic
manifolds is a classic and well known procedure (see [AM, pp. 298-299],
[Br, ch. 7]) by which, given a Poisson action of & Lie group on a symplectic
manifold, one can produce other symplectic manifolds as quotients of level
sets of the momentum mapping. Since its introduction, the general idea has
been applied to many geometric structures (contact, Kihler etc.).

The symplectic reduction consists of the following steps:

o Using the Poisson character of the action, one constructs a momentum
mapping from the symplectic manifold to the dual of the Lie algebra
of the group. This will be equivariant with respect to the group action
and to the coadjoint action.

¢ Factoring the level set of a regular value of the momentum mapping
through the action of the stabilizer of this value. The restriction of
symplectic form to the level set will project to a symplectic form on
the quotient.

S. Haller and T. Rybicki ([HIR1]) adapted this symplectic reduction to
L.CS manifolds, and their construction was used in [MTP] to obtain universal
models for several types of LCS manifolds. The path chosen in [HR1] was
to retain the idea of factoring by the group action itself; however, in the
general case, this means the level sets of the momentum mapping ne longer
satisfy the hypotheses they impose.

Of significance is also Subsection 2.2.2, discussing contact reduction. At
regular value zero, this procedure has been well established, independently,
by various authors (see [A], [G1], [Lo]), for some time. Lerman and Willett
[LW] studied the topological structure of contact quotients. Albert [A] in
1989 and Willett [W] in 2002 developed different reduction procedures for
non-zero regular values; the first depends on the choice of a contact form
for the contact structure, the latter imposes more conditions than in the
symplectic analogue. They were later unified by Zambon and Zhu [ZZ]
using groupoid actions.



2.2 The original results

In Chapter 3, based on a joint work with A. Otiman ([OS]), I state
and prove the following result, generalizing in a natural way the classical
Darboux-Weinstein thecrem to the LCS setting:

Theorem 2.1: ([O8]) Let M be a manifold, 6y and 81 closed 1-forms and
wo,wy 2-forms on M such that dpw; = 0. Let @ C M be a compact sub-
manifold such that wy and wy are nondegenerate and equal on TyM for all
g € Q, and Oyrq = Oyrg-

Then there exist Ny, N1 neighberhoods of Q and ¢ : Ng — N a diffeo-
morphism such that

p'wy ~wy and pg =id.

»

where by “ ~ " we mean conformally equivalent.

The Darboux-Weinstein theorem in symplectic geometry has several im-
portant consequences, one of which is the fundamental Darboux Theorem.
Another is a theorem due to Weinstein (see [We, Theorem 6.1, pages 338
339}) characterizing, up to diffeomorphism, any symplectic form around a
compact Lagrangian submanifold. To show the natural quality of our theo-
rem, we also proved a generalization of this fact to the LCS context in:

Theorem 2.2: ([OS]} Let (M,w) be en LCS manifold with Lee form 8 and
@ C M o compact Legrangion submaenifold.

Then there exists a neighborhood M of Q, a neighborhood N of the zero
section in T*Q and o diffeomorphism o : M — N such that

Prws = w,

where wg = dn — 8 An and 7 is the tautological one-form on the cotangent
bundle T*Q.

In Chapter 4, based on [S1], I adapt the symplectic reduction to LCS
manifolds in a natural way by doing, in a sense, the opposite of the reduc-
tion defined by [HR1]}: I factor the level sets of the momentum mapping, as
in the symplectic case, but not through the group action, but along a foli-
ation derived by “twisting” the group action. This amounts to the known
symplectic reduction if the Lee form @ is zero.

I do not ask that the group action preserve the LCS form, only the LCS
structure; however, if only the latter is true, certain additional conditions
have to be imposed. Specifically, the main theorem states:

Theorem 2.3: ([S1]) Let (M,w,8) be a connected LCS manifold and G o
connected Lie group acting twisted Hamiltonian on it.



Let p be the momentum mapping and £ € g* a regular velue. Denote by
F=Tp )N (Tu 1 (€))”. Assume that one of the following conditions is
met:

o The action of G preserves the LCS form w.

o C is compact, £ ABz(X.) =0 for all x € p~H€) and there exists a
function b on p~(€) such that 6, = dh.

-1
If Ng = H# (6)/_7: is a smooth manifold and m : p~(€) — Ng is
a submersion, then Ng has an LCS structure such that the LCS form wg
satisfies
g = el

Jor some f € C®(u1(£)).

Moreover, one can take f = h; in particular, f = 0 if the action preserves
the LCS form.

I then prove that this reduction along a foliation can be expressed as a
quotient of a group action of the universal covering of the stabilizer of the
regular value £.

The reduction described above can produce a great number of LCS man-
ifolds, by varying either the regular value or the LCS form in its conformal
class. I show that in both cases and under certain conditions, the quotients
produced are cobordant.

Most importantly, I also show that, with an additional hypothesis, our
construction is compatible with the existence of a complex structure i.e. if
the manifold M is LCK, the resulting reduced manifold is also LCK:

Theorem 2.4: ([S1]) Let (M, J, h,w,0) be a connected LCK manifold and
G a connected Lie group whose action on M is twisted Hamiltonian and
holomorphic.

Let po be the momentum mapping and £ € g* e reguler value. Denote by
F=Tu &) N (TpYE))”. Assume that one of the following conditions is
met:

e The action of G preserves the LCS form w.

o G is compact, £ A0.(X.) = 0 for all z € u~1(£) and there exists a
function 5 on u~1(€) such that 7 = dn.

Assume further that Gy = G and that the s-Lee field 6% is holomorphic.



-1
IfF N = H (E)/}- is a smooth manifold and = : p~1(¢) — N¢ is a
submersion, then Ng has an LCK structure (Jg, he,we, O¢) which satisfies

g = el

for some f € C®{(u71(¢)).

Moreover, one can take f = n; in particular, f = 0 if the action preserves
the LCK form.

The most significant of these conditions is met if the manifold belongs
to a large subclass of LCK manifolds called Vaisman manifolds. Thus I
also looked at reduction for Vaisman manifolds and found that, with an
additional hypothesis, the reduced space also becomes Vaisman.

Theorem 2.3 can be used in the contact context. Exploiting the rela-
tionship between contact and LCS manifolds, I derive (and get a new proof
of) a contact reduction method that works for any regular value of the mo-
mentum mapping, which turns out to preduce the same result as the one
defined by Albert. Since we present this reduction as being naturally linked
to LCS reduction, this seems to be the most natural of the existing methods
for non-zero contact reduction. As a byproduct, this provides a wide class
of examples for the reduction method. Specifically, the contact reduction
method is described in:

Theorem 2.5: Let (C, o) be a connected contact manifold and G o connected
Lie group acting on C and preserving the contact form. Denote by R the
Reeb field of C.

Let po be the momentum mapping and £ € g* a regular value. Let Fgo
be the foliation

(Fe)o = {v € Tup™2(€) | v = (Xo)e — £(a)Ry for some a € g},

where X, is the fundamental vector field corresponding to a € g.
—1

If C¢ := He (f)/}—c is @ smooth manifold and m : p; (€) — C¢ is a
submersion, then C¢ has a natural contect structure such that the contact
form a¢ satisfies

™oy = o

Moreover, (S x C¢,dga,8) is the LCS reduction of 8! x C with respect to
the regular value —£.

Even though this turns out to be the same constructions as Albert’s,
having the benefit of knowing its relationship with the LCK reduction of



Theorem 2.4, T also prove that, if the original contact manifold is Sasaki,
the reduced space obtained wia this method is also Sasaki.

The chapter then concludes with a few applications of this LCS reduction
on a few classes of examples.

In Chapter 5, I turn to the class of LCS manifolds I must thoroughly
studied the effects of LCS reduction on, namely the cotangent bundles.

The canocnical symplectic structure of the cotangent bundle of any dif-
ferentiable manifold has a kind of universality property with respect to re-
duction. Namely, if a2 group G acts on 2 manifold @ such that the quotient
@ /G is a manifold, the action can be naturally lifted to a Hamiltonian action
on the cotangent bundle T*() and the reduction at 0 of T7@Q is symplecto-
morphic with the cotangent bundle 7*(Q/G). When performing reduction
at a non-zero regular value of the momentum map, the symplectomorphism
becomes a symplectic embedding (see [MMOPR]).

On the other hand, the cotangent bundle of a manifold has many LCS
structures, given by choices of a closed 1-form on the manifold (this was
first noticed by [HR2]). It is then natural to try to adapt the symplectic
cotangent reduction theorems to the LCS setting. A useful observation is
that if a Lie group acts on a manifold, determining a principal bundle, then
the corresponding action on the cotangent bundle has the same momentum
map considered with the symplectic structure, as well as with any LCS
structure.

The main result of this chapter is that the cotangent bundle reduction
theorem is true, in the same conditions, for the LCS structures of a cotangent
bundle, reduced as in Theorem 2.3:

Theorem 2.6: ([S2]) Let Q be o manifold with a free and proper action of
a Lie group G and take § € Q1Q/G) a closed 1-form.

Denote by p : T*Q — g* the corresponding momentum mapping end
take £ € g*.

We have the following diagram:



(T*Qa Wi, é) (T* (Q/Gf)i War, 9-")

|

(@,6) i
\

where § = p*f, § = 7*6, &' = 7™*0 and ws and wy, are the LCS forms on
the respective cotangent bundles.

Assume there ezists ag € Q1(Q) such that (ae)q € p'~1{¢') forallge @
and which satisfies

Lx, 0 =&(a)f, Ya € ge. (2.1)
Then:
i) There exists a dg-closed 2-form B¢ on Q/Ge such that p*B; = dpoy.
Let Bf = TI"*,BE.
il) There is a canonical embedding of LCS manifolds
¢ ((T*Q)e, we, b)) — (T7(Q/Cy),wz + Bg, '),

(where (T™*Q)¢ is the LCS reduction of T*@ performed as in Theorem
2.8) whose image covers Q/Ge.

This is an isomorphism if and only if g¢ = g.
iii) If, additionally, (cg)q € u=1(€) for all g € Q, then
Imyp = Ann(p, @),
where O is the subbundle of TQ) tangent to the orbits of G.

In addition to the result itself, this shows the naturality of the reduction
scheme introduced in Chapter 4.

‘The chapter then ends with a discussion on the hypotheses imposed and
a concrete and computed example.
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