
Heuristic Algorithms for NP-Hard Problems

Radu Ştefan Mincu

-summary-

The challenges of solving NP-hard problems are everywhere. From
thinking about acquiring groceries under a limited capacity (a classic knap-
sack problem), to planning for a multi-country holiday tour (featuring the
famous travelling salesman problem), solving such problems is and always
has been ubiquitous.

Why would these issues need more attention now than in the past? In
the last century, due to the advances of computational power, a good amount
of research has dealt with finding out exactly how much can be done with
computers. Needless to say, many tasks have become or are close to becom-
ing fully automated by computer algorithms (e.g. automatic translation).
However, some problems remain stubborn and cannot be easily handled by
our current computational models (even with the advent of quantum com-
puting), the knapsack and traveling salesman problem being well-known
examples.

In this thesis we concern ourselves with approaching difficult computa-
tional problems by several methods (such as heuristic algorithms) and sub-
sequently providing evidence that our methods are sound. However, first of
all, what is considered a difficult computational problem? And why would
we go out of our way trying to solve it?

We find ourselves in a time and age where we are faced with handling
computationally difficult problems in practically all areas having to do with
scheduling, planning, cost analysis, transportation, many of which are a
part of everyday life. For example, the problem of finding the cheapest
airliner ticket between airport A and airport B in today’s airliner systems
is computationally difficult (even in very restricted forms, see [4, 8]), yet it
is a problem that must be answered millions of times each and every day.

The previous example emphasizes the importance of solving difficult
problems: surely we need to be able to find the correct flight such that
we may arrive at our destination by boarding the aircraft of companies
worth billions of U.S. dollars. To illustrate the prevalence of difficult prob-
lems, look no further than being tasked with grocery shopping under the
constraint of physical space limitation (such as having to pack your car with

1



the most important groceries in your shopping list - a simple example of a
knapsack problem). We can perceive these problems as not simple, though
we have yet to define the concept of problem difficulty.

How do we determine whether a problem is difficult or not? If one is
unable produce a reasonable algorithm for solving the problem, does it mean
that a problem is difficult? Are there any problems for which we are simply
unable to provide such a reasonable algorithm? These are all questions that
need to be answered in order to grasp the concept of difficult computational
problem. Furthermore, what do we mean by reasonable algorithm?

Fortunately, there exists well established groundwork that gives a suit-
able answer to these questions in the fields of the theories of computation,
computational complexity and algorithm analysis. These long studied fields
have developed instruments to characterize the efficiency of algorithms that
we can apply to a given problem. More precisely, we may be concerned
with the usage of two main resources, namely time (i.e. duration of the pro-
cess of computation required to provide a solution) and space (i.e. memory
capacity needed to keep record of all items required for the process of com-
putation to successfully complete). The consumption of these two resources
of time and memory leads to the definition of two abstractions regarding
algorithms: the time complexity and space complexity of the various algo-
rithms employed to solve different problems. These two notions are defined
in terms of asymptotic necessities of computation time and machine memory
required to compute the solution to a given problem as the size of the input
increases.

It turns out that many common problems can be solved efficiently in
terms of the required resources. If the resources of space and time can
be bounded by some polynomial functions, then they are easy to solve by
computers i.e. they are tractable. Examples include:
• sorting a collection of items (e.g. lexicographic sorting of book titles

in a library)
• finding an item efficiently (e.g. searching for a name in the telephone

book by locating the section with the first letter, then narrowing down
using the second letter and so on - is related to both hashing and binary
search algorithms)
• locating the shortest combination of roads between two points on a

map (maybe less straightforward for humans, but computers can han-
dle this task easily)

Other problems are not easy to solve, but are easy to verify. Consider the
subset sum problem, where, given a set of positive and negative integers, one
must determine a subset of integers which sums to zero. Given a solution,
we can quickly tell if it is correct by adding everything up. However, finding
such a subset for an arbitrarily large problem instance is much more resource
demanding than the previously mentioned problems.

In fact, we do not know if algorithms exist which easily solve the problems

2



that can be verified quickly. Moreover, researchers have been unable to prove
neither existence, nor non-existence of such an algorithm. This question
known as the P vs. NP problem has left scientists baffled for a long time,
so much that P vs. NP is part of the famous Millenium Prize Problems [3].

The previously mentioned subset sum problem is part of the NP-hard
category of problems. These problems are not known to admit algorithms
that use polynomial amounts of space and time. Researchers believe that
these problems need at least an exponential amount of time to solve and
this requirement makes the problems intractable, i.e. not easily handled by
computers.

At first glance, some problems can only be solved by trying to enumerate
all possible solutions and see if they are correct. For the subset sum prob-
lem, these possible solutions number 2n, where n is the number of items in
the original set. Since 2n is an exponential function, we need at most an ex-
ponential amount of time to check every possible combination and solve the
problem. This method is known commonly as brute-force search or exhaus-
tive search in the solution space (of all possible solutions). To get better
results what is needed is some insight into the structure of the problem,
allowing the use of other techniques that exploit said structure.

Three common approaches to NP-hard problems are briefly introduced
below:

1. Exact methods. What if we need an optimum solution for an NP-hard
problem? We know that we can solve the problem by iterating through
its exponentially-sized solution space. We can solve small instances to
optimality using this method, but how far can we push the size of the
input for the problem to be solvable in reasonable time? Some ideas
can be found in the paradigm of Integer Linear Programming.

2. Approximation algorithms. What if we don’t require the optimum
solution, but instead a solution reasonably close to the optimum? If
we give up on the need for optimality, can we find polynomial time
algorithms that produce a good solution? This is the field of study of
approximation algorithms, the purpose of which is to obtain solutions
proven to be within a factor of the optimum on all instances, yet only
using polynomial time.

3. Heuristic algorithms. Sometimes we need to solve larger instances that
exact methods cannot cope with. In some of these cases, approxima-
tion algorithms are either unknown, have poor approximation factors
or simply do not work well in practice. Heuristic algorithms come in
to fill the gap and provide practical solutions. Since they are often
not approximation algorithms in the sense that we have no proof of
their approximation factor, these algorithms are usually backed up by
experimental evidence that they are suitable for the problem at hand.

In this thesis we focus on the heuristic methods for NP-hard problems.
Despite this statement, we are often faced with having to show that our

3



methods work well in practice. Consequently, some attention is needed to-
wards finding optimum solutions on smaller or otherwise restricted instances
in order to provide an idea about the performance of our heuristics. In the
case of approximation algorithms, the quality of the algorithm is given by the
approximation ratio guarantee. However, in the case of heuristic approaches,
there is no such proof. As such, we resort to experimental evidence by pro-
viding some relevant instances for which the optimum is known (found by
using exact methods) and showing how close we can get to the optimum by
using the designed heuristics.

Structure of the Thesis

The present thesis is structured as follows:
Chapter 2) introduces some preliminaries about local search and meta-

heuristic frameworks, as well as setting these topics in the
context of combinatorial optimization. We also describe the
connection to approximation algorithms and exact methods.
We present three well-known metaheuristic frameworks, namely
simulated annealing, tabu search and genetic algorithms, that
have seen usage in our approaches presented in the subsequent
chapters.

Chapter 3) presents the min-max 2-coloring problem, an edge coloring
problem on graphs motivated by applications in wireless mesh
network optimization. The metaheuristics used here are based
on simulated annealing and tabu search and are thoroughly de-
scribed and tested. The work in this chapter has been pub-
lished in the proceedings of the 24th International Computing
and Combinatorics Conference (COCOON2018) [6].

Chapter 4) describes the repetition-free longest common subsequence
problem and showcases a new heuristic based on dynamic pro-
gramming that can stay competitive with the state-of-the-art
metaheuristic approaches based on ant colony optimization, while
being much easier to implement and maintaining low running
time. The work in this chapter has been published in the pro-
ceedings of the 25th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE2018) [5].

Chapter 5) reveals the string factorization problem, where the goal
is to split a string into as many distinct substring as possible.
Despite the simple definition, the problem is difficult to handle.
We describe a greedy-based heuristic that adds the immediately
following distinct substring at each step (starting “at the left”).
While attempting to prove that this algorithm is in fact a 1

2 -
approximation, we draw a parallel to a less restricted problem.

4



We are baffled by the discovery that the less restricted problem
seems to have the same optimum as the original in all of our
experiments, although there is no easy way to prove this con-
jecture. The work in this chapter is submitted for publication
in conference proceedings and is currently under review.

Chapter 6) showcases the longest filled common subsequence prob-
lem, another string problem where the goal is to find the longest
common subsequence between a first unmodified string and a
second string in which we are allowed to insert symbols from
a given finite set. We show that we can drastically reduce the
search space by shifting our point of view from inserting into the
second input string towards deleting from the first input string.
We present a simple local search based heuristic algorithm tak-
ing advantage from this approach. The work in this chapter
has been published in the proceedings of the 20th International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC2018) [7]. The work was also featured in
a PhD session (and displayed in poster format as well) at the
same conference, where it won the Best PhD Paper award.

Chapter 7) brings up generalized function matching, a combinatorial
pattern matching problem variant where pattern symbols may
match entire text substrings. We suggest a heuristic approach
based on suffix trees that yields good results in practice. The
work in this chapter has been published in the proceedings of
the 23rd International Conference on Knowledge-Based and In-
telligent Information & Engineering Systems (KES2019).

Chapter 8) has to deal with a very important problem, that of kidney ex-
change programmes (KEPs) in an international setting.
Patients may exchange their willing but incompatible donors
among themselves using the KEP framework. This has become
common practice across Europe and in the United States, where
KEPs function on a per-country or per-transplant-centre basis,
respectively. We explore the benefits of KEP collaboration us-
ing computational simulations. In this work, we use only exact
methods for tackling the problem because of ethical reasons:
almost all stakeholders (transplant centres, clinicians, surgeons
and most importantly, the patients and the donors) would al-
most certainly reject non-optimal solutions. Moreover, although
the problem is intractable, it is still possible to solve optimally
in a matter of seconds for up to 300 patients using the state of
the art solvers and known ILP models. The work in this chapter
has been published as a short paper in the proceedings of the 8th
VOCAL Optimization Conference: Advanced Algorithms (VO-
CAL2018) [1]. An extended journal version is currently under

5



review at the Central European Journal of Operations Research
(CJOR) and is available on arXiv [2].

Chapter 9) is the concluding chapter where we summarize our findings and
present future work directions.

The author of this thesis, Radu Mincu, mentions here that the majority
of the work is published rightfully featuring his PhD supervisor, Dr. Alexan-
dru Popa as a co-author. The exception is Chapter 8, which is the result
of a more extended collaboration with colleagues from Hungary (Dr. Péter
Biró and Márton Gyetvai), as well as India (Utkarsh Verma). The work in
Chapter 7 presents a publication authored only by Radu Mincu, to satisfy
a recently introduced PhD programme criterion.

References

[1] Péter Biró, Márton Gyetvai, Radu Stefan Mincu, Alexandru Popa, and
Utkarsh Verma. Ip solutions for international kidney exchange pro-
grammes. In VOCAL 2018. 8th VOCAL Optimization Conference: Ad-
vanced Algorithms, pages 17–22, 2018.

[2] Péter Biró, Márton Gyetvai, Radu Stefan Mincu, Alexandru Popa, and
Utkarsh Verma. Ip solutions for international kidney exchange pro-
grammes. arXiv preprint arXiv:1904.07448, 2019.

[3] Arthur M Jaffe. The millennium grand challenge in mathematics. Notices
of the AMS, 53(6), 2006.

[4] Carl Marcken and Edwin Karat. Generating flight schedules using fare
routings and rules, May 19 2005. US Patent App. 10/714,525.

[5] Radu Mincu and Alexandru Popa. Better Heuristic Algorithms for the
Repetition Free LCS and Other Variants: 25th International Symposium,
SPIRE 2018, Lima, Peru, October 9-11, 2018, Proceedings, pages 297–
310. 01 2018.

[6] Radu Mincu and Alexandru Popa. Heuristic Algorithms for the Min-Max
Edge 2-Coloring Problem, pages 662–674. 06 2018.

[7] Radu Stefan Mincu and Alexandru Popa. Heuristic algorithms for the
longest filled common subsequence problem. In 2018 20th International
Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC), pages 449–453. IEEE, 2018.

[8] Sara Robinson. Computer scientists find unexpected depths in airfare
search problem. SIAM News, 35(6), 2002.

6


