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Overview of the thesis and outline
of the original results

The core of this thesis is built on three papers, [1], [2] and [3]. The main topic consists
in associating multigraded objects of commutative algebra, namely rings and ideals, with
combinatorial objects such as simplicial complexes and graphs.

In the first part of this thesis, we focus on the study of some classes of toric ideals, namely
convex polyomino ideals. A polyomino P is a finite connected set of adjacent cells in the
cartesian plane N2, where a cell in N2 means a unitary square. A connection of polyominoes
to commutative algebra first appeared in [45]. In that paper, to each polyomino it is assigned
its ideal of 2-inner minors. There it was shown that if P is a convex polyomino, then the
quotient ring modulo this ideal, called the coordinate ring of P, is a normal Cohen-Macaulay
domain. This was proved by viewing the coordinate ring of P as the edge ring of a suitable
bipartite graph GP associated with P.

We follow this research direction and we contribute to the study of the coordinate ring
of a convex polyomino. More precisely, we classify all convex polyominoes whose coordinate
rings are Gorenstein. We compute the Castelnuovo-Mumford regularity of the coordinate
ring of any stack polyomino in terms of the smallest interval which contains its vertices and
we give a recursive formula for computing the multiplicity of the coordinate ring of a stack
polyomino.

In the second part of this thesis, we study square-free monomial ideals, namely t-spread
monomial ideals which have been recently introduced in [22]. In that paper, V. Ene, J.
Herzog and A. Qureshi proved that every t-spread strongly stable ideal is componentwise
linear. They also gave formulas for graded Betti numbers and height, and they computed
the generic initial ideal of a t-spread strongly stable ideal. In this research direction, we have
the last two papers. More precisely, in [3], we introduce the ft-vector of a t-spread ideal
and a new t-operator which is involved in the proof of Kruskal-Katona Theorem for t-spread
strongly stable ideals. We show that any t-spread strongly stable ideal has a unique t-spread
lex ideal with the same ft-vector. The main theorem in [3] gives a complete classification of
the sequences of positive integers which are the ft-vectors of some t-spread strongly stable
ideals.

In paper [2], we obtain the sequential Cohen-Macaulay and the strong persistence prop-
erties of a t-spread principal Borel ideal. We also prove that a t-spread principal Borel ideal
satisfies the `-exchange property with respect to a certain sorting order. That implies that
a t-spread principal Borel ideal satisfies an x-condition which guarantees that all the powers
of such ideals have linear quotients. Finally, we characterize the limit behavior of the depth
for the powers of t-spread principal Borel ideals.

The first chapter starts with a brief description of simplicial complexes. We recall some
methods to classify Cohen-Macaulay simplicial complexes and we pay attention to some
properties of Stanley-Reisner ring by studying Alexander duality. Next, we recall some basic
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Figure 1: A polyomino

definitions and known facts about toric rings. Finally, we look at the behaviour of the set
of the associated prime ideals of the powers of a monomial ideal. These properties will be
needed in the following chapters of the thesis.

2. Properties of the coordinate ring of a
convex polyomino. Main results

In this chapter, we classify all convex polyomino whose coordinate rings are Gorenstein.
We also compute the Castelnuovo-Mumford regularity of the coordinate ring of any stack
polyomino in terms of the smallest interval which contains its vertices. Finally, we give a
recursive formula for computing the multiplicity of the coordinate ring of a stack polyomino.

Let P be a finite collection of cells of N2. Two cells A and B of P are connected, if there
is a sequence of cells of P given by A = A1, A2, . . . , An−1, An = B such that Ai ∩ Ai+1 is an
edge of Ai and Ai+1 for each i ∈ {1, . . . , n− 1}. Such a sequence is called a path connecting
the cells A and B.

Definition 1 [45] A collection of cells P is called a polyomino if any two cells of P are
connected.

Definition 2 [45] A polyomino P is called row (respectively column) convex, if for any two
cells A and B of P with left lower corners a = (i, j) and b = (k, j) (respectively a = (i, j)
and b = (i, l)), the horizontal (respectively vertical) cell interval [A,B] is contained in P.

If P is row and column convex, then P is called a convex polyomino.

In Figure 2, we give an example of column (row) convex polyomino which is not row
(column) convex polyomino. The third polyomino of this figure is a convex polyomino.

Let P be a convex polyomino. After a possible translation, we consider [(1, 1), (m,n)] to
be the smallest interval which contains the vertices of P. In this case, we say that P is a
convex polyomino on [m]× [n], where [m] = {1, . . . ,m} and [n] = {1, . . . , n}.

Fix a field K and a polynomial ring S = K[xij | (i, j) ∈ V (P)]. We consider the ideal
IP ⊂ S generated by all binomials xilxkj − xijxkl for which [(i, j), (k, l)] is an interval in P.
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A column convex polyomino A row convex polyomino

A convex polyomino

Figure 2: Some polyominoes
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Figure 3: The bipartite graph attached to a cell in N2

The K-algebra S/IP is denoted K[P] and is called the coordinate ring of P. By [45, Theorem
2.2], K[P] is a normal Cohen-Macaulay domain.

Let P be a convex polyomino on [m] × [n]. The ring R = K[xiyj | (i, j) ∈ V (P)] ⊂
K[x1, . . . , xm, y1, . . . , yn] can be viewed as the edge ring of the bipartite graph GP with vertex
set V (GP) = X ∪ Y , where X = {x1, . . . , xm} and Y = {y1, . . . , yn} and edge set E(GP) =
{{xi, yj} | (i, j) ∈ V (P)}. In Figure 3, we displayed the bipartite graph attached to a cell in
N2. According to [45], K[P] can be identified with K[GP ].

We set X = {x1, . . . , xm} and Y = {y1, . . . , yn} and, if needed, we identify the point
(xi, yj) in the plane with the vertex (i, j) ∈ V (P).

Proposition 3 Let P be a convex polyomino on [m] × [n]. Then the bipartite graph GP is
2-connected.

Definition 4 Let P be a convex polyomino on [m] × [n] and T ⊂ X. The set NY (T ) =
{y ∈ Y | (x, y) ∈ V (P) for some x ∈ T} is called a neighbor vertical interval if NY (T ) =
{ya, ya+1, . . . , yb} with a < b and for every i ∈ {a, a + 1, . . . , b − 1} there exists x ∈ T such
that [(x, yi), (x, yi+1)] is an edge in P.

In the polyomino of Figure 4, if T1 = {x1, x4} and T2 = {x1, x2}, then NY (T1) =
{y1, y2, y3, y4} = NY (T2). We notice that NY (T2) is a neighbor vertical interval, while NY (T1)
is not.

Definition 5 Let P be a convex polyomino on [m] × [n] and U ⊂ Y . The set NX(U) =
{x ∈ X | (x, y) ∈ V (P) for some y ∈ U} is called a neighbor horizontal interval if NX(U) =
{xa, xa+1, . . . , xb} with a < b and for every i ∈ {a, a + 1, . . . , b − 1} there exists y ∈ U such
that [(xi, y), (xi+1, y)] is an edge in P.
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x1 x4 x1 x2

Figure 4: (Non-)Neighbor vertical interval

y1

y5

y2

y3

Figure 5: (Non-)Neighbor horizontal interval

In the polyomino of Figure 5, let U1 = {y2, y3} and U2 = {y1, y5}. We notice that
NX(U1) = {x1, x2, x3, x4, x5} is a neighbor horizontal interval, whileNX(U2) = {x1, x2, x3, x4}
is not.

Theorem 6 Let P be a convex polyomino on [m]× [n] and G := GP its associated bipartite
graph.

Then K[P] is Gorenstein if and only if the following conditions are fulfilled:

1. |U | ≤ |NX(U)| for every U ⊂ Y and |T | ≤ |NY (T )| for every T ⊂ X;

2. For every ∅ 6= T ( X with the properties

(a) NY (T ) is a neighbor vertical interval,

(b) NX(Y \NY (T )) = X \ T is a neighbor horizontal interval,

one has |NY (T )| = |T |+ 1.

We consider P to be a polyomino and we may assume that [(1, 1), (m,n)] is the smallest
interval containing the vertices of P. Then P is called a stack polyomino, if it is a convex
polyomino and for i ∈ [m− 1], the cell [(i, 1), (i+ 1, 2)] belongs to P.

Theorem 7 If P is a stack polyomino on [m]×[n], then the a-invariant of K[P] is −max{m,n}.

Corollary 8 If P is a stack polyomino on [m]×[n], then the Castelnuovo-Mumford regularity
of K[P] is min{m,n} − 1.

Figure 6: A stack polyomino
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P P1 P2

Figure 7: The multiplicity of K[P]

Let P be a stack polyomino on [m]× [n]. For every i ∈ [m], we define the height of i as

height(i) = max{j ∈ [n] | (i, j) ∈ V (P)}.

Following the proof of [44, Theorem], we give a total order on the variables xij , with (i, j) ∈
V (P), as follows:

xij > xkl if and only if (1)

(height(i) > height(k)) or (height(i) = height(k) and i > k) or (i = k and j > l).

Let < be the reverse lexicographical order induced by this order of variables.

Theorem 9 Let P be a stack polyomino on [m]× [n] and v = (i, j) ∈ V (P) with the proper-
ties:

1. xi1 is the smallest variable in S and

2. j = height(i).

We consider P1 and P2 to be the following polyominoes:

1. P1 is the polyomino obtained from P by deleting the cell which contains the vertex v
if i = 1. Otherwise, P1 is given by deleting the cell of P which contains the vertex
(m,height(m)).

2. P2 is the polyomino obtained from P be deleting all the cells of P which lie below the
horizontal edge interval containing the vertex v.

Then the multiplicity of K[P] has the following recursive formula

e(K[P]) = e(K[P1]) + e(K[P2]).

In Figure 7, we present the first step which is applied for computing the multiplicity of
K[P].

3. T-spread monomial ideals. Main results

In this chapter, we study t-spread strongly stable ideals with t ≥ 1. They have been recently
introduced in [22] and they represent a special class of square-free monomial ideals.

In the first part, we prove that any t-spread strongly stable ideal has a unique t-spread
lex ideal with the same ft-vector. This result is the main step to characterize the possible
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ft-vectors of t-spread strongly stable ideals in the ”t-spread” analogue of Kruskal-Katona
theorem.

In the last part, we study t-spread principal Borel ideals. In fact, we give explicitly all the
generators of the ideal of the Alexander dual ∆∨, where ∆ is the simplicial complex associated
to a t-spread principal Borel ideal. We then derive that the Stanley-Reisner ideal of ∆∨ has
linear quotients, which yields the sequential Cohen-Macaulay property of a t-spread principal
Borel ideal, by Alexander duality.

Fix a field K and a polynomial ring S = K[x1, . . . , xn]. Let t be a positive integer. A
monomial xi1xi2 · · ·xid ∈ S with i1 ≤ i2 ≤ . . . ≤ id is called t-spread, if ij − ij−1 ≥ t for
2 ≤ j ≤ d. A monomial ideal in S is called a t-spread monomial ideal, if it is generated by
t-spread monomials.

Let I be a t-spread monomial ideal of S. We denote by Ij , the j-th graded component of
I and call the set of t-spread monomials in Ij , the t-spread part of Ij and denote it by [Ij ]t.
Furthermore, we set

ft,j−1(I) = |[Sj ]t| − |[Ij ]t|.
Then the vector

ft(I) = (ft,−1(I), ft,0(I) . . . , ft,j(I), . . .)

is called the ft-vector of the t-spread monomial ideal I. By convention, we set ft,−1 = 1.
Note that if t = 1, then I is the Stanley-Reisner ideal of a uniquely determined simplicial
complex ∆ and f1(I) is the classical f -vector of ∆.

We denote by Mn,d,t the set of the t-spread monomials of degree d in the polynomial ring
S. For a monomial u ∈ S, we set supp(u) = {i : xi | u}.

Definition 10 (a) A subset L ⊂ Mn,d,t is called a t-spread strongly stable set, if for all
t-spread monomials u ∈ L, all j ∈ supp(u) and all 1 ≤ i < j such that xi(u/xj) is a
t-spread monomial, it follows that xi(u/xj) ∈ L.

(b) Let I be a t-spread monomial ideal. Then I is called a t-spread strongly stable ideal, if
[Ij ]t is a t-spread strongly stable set for all j.

A special class of t-spread strongly stable ideals consists of t-spread lex ideals which are
defined as follows.

Definition 11 (a) A subset L ⊂Mn,d,t is called a t-spread lex set, if for all u ∈ L and for
all v ∈Mn,d,t with v >lex u, it follows that v ∈ L.

(b) Let I be a t-spread monomial ideal. Then I is called a t-spread lex ideal, if [Ij ]t is a
t-spread lex set for all j.

Let I ⊂ S be a t-spread strongly stable monomial ideal. Then a t-spread lex ideal J ⊂ S
with ft(I) = ft(J), if exists, is uniquely determined. We then denote this ideal J by It-lex.

Theorem 12 For any t-spread strongly stable ideal I, the t-spread lex ideal It-lex exists.

In general, a t-spread monomial ideal may not have a t-spread lex ideal with the same ft-
vector.

For example, if I = (x2x8, x2x6, x2x4) ⊂ K[x1, . . . x8], then we have

B2 = L2 = {x1x3, x1x4, x1x5} and |Shad2(B2)| = 9 > 5 = |[I3]2|,

which leads to the impossibility to construct the 2-spread lex ideal with the same f2-vector
with I.
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Remark 13 Since every square-free monomial ideal has a square-free lexsegment ideal with
the same f -vector, the proof of Kruskal-Katona Theorem given in [30] works for all square-
free monomial ideals. In our case, a t-spread ideal may not have an associated t-spread lex
ideal with the same ft-vector. Therefore, we will restrict to t-spread strongly stable ideals.

Kruskal-Katona Theorem for t-spread strongly stable ideals gives a complete answer to
the following question: When is a given sequence of positive integers

ft = (ft,−1, ft,0, ft,1, . . . , ft,d, . . .)

the ft-vector of a t-spread strongly stable ideal?
To answer this question, we proceeded like in the proof of Kruskal-Katona Theorem given

in [30, Chapter 6]. To this aim, we need to define a ”t-operator” analog to the operator
a→ a(d) which is involved in the proof of Kruskal-Katona Theorem.

Definition 14 Let n, d, t and a be positive integers with a ≤
(n−(d−1)(t−1)

d

)
. If

a =

(
ad
d

)
+

(
ad−1

d− 1

)
+ · · ·+

(
ar
r

)
is the binomial expansion of a with respect to d, then we set

ar−1 = r − 2, ad+1 = n− (d− 1)(t− 1) and ad+2 = ad+1 + (t+ 1)

and we define

a[d]t := a[d]kt ,

where k is the largest integer of the interval [−1, d − r + 1] with the property that ad−k+1 −
ad−k ≥ t+ 1 and

a[d]kt :=

d∑
j=d+1−k

(
aj − (t− 1)

j + 1

)
+

(
ad−k − (2t− 1)

d− k + 1

)
+

d−k∑
j=r

(
aj
j

)
for all k ≥ 0 and

a[d]−1
t :=

(
n− d(t− 1)

d+ 1

)
.

Again for convenience, we set 0[d]t = 0 for positive integers d and t.

Theorem 15 Let f = (f(0), f(1), . . . , f(d), . . .) be a sequence of non-negative integers and
t ≥ 1 be an integer. The following conditions are equivalent:

(1) there exists an integer n ≥ 0 and a t-spread strongly stable ideal

I ⊂ K[x1, . . . , xn]

such that f(d) = ft,d−1(I) for all d.

(2) f(0) = 1 and f(d+ 1) ≤ f(d)[d]t for all d ≥ 1.

Let t be a positive integer. A monomial ideal I ⊂ S = K[x1, . . . , xn] is called t-spread
principal Borel if there exists a monomial u ∈ G(I) such that I is the smallest t-spread
strongly stable ideal which contains u. According to [22], we denote I = Bt(u).

Let ∆ be the simplicial complex such that I∆ = Bt(u). We consider I∨ to be the Stanley-
Reisner ideal of the Alexander dual of ∆.
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Theorem 16 Let t ≥ 1 be an integer and I = Bt(u), where u = xi1xi2 · · ·xid ∈ S is a
t-spread monomial. We assume that id = n. Then I∨ is generated by the monomials of the
following forms

n∏
k=1

xk/(vj1 · · · vjd−1
) (2)

with jl ≤ il for 1 ≤ l ≤ d − 1 and jl − jl−1 ≥ t for 2 ≤ l ≤ d − 1, where vjk =
xjk · · ·xjk+(t−1) for 1 ≤ k ≤ d− 1.

i1∏
k=1

xk. (3)

is∏
k=1

xk/(vj1 · · · vjs−1) (4)

with 2 ≤ s ≤ d − 1, jl ≤ il for 1 ≤ l ≤ s − 1, jl − jl−1 ≥ t for 2 ≤ l ≤ s − 1, where
vjk = xjk · · ·xjk+(t−1) for 1 ≤ k ≤ s− 1.

Theorem 17 Let t ≥ 1 be an integer and u = xi1xi2 · · ·xid ∈ S be a t-spread monomial.
Suppose that id = n. Then the t-spread principal Borel ideal I = Bt(u) is sequentially Cohen-
Macaulay.

4. Powers of t-spread principal Borel ideals.
Main results

The first part of this chapter is devoted to the study of the Gröbner basis of presentation ideals
of Rees algebras of t-spread principal Borel ideals. The form of the binomials in this Gröbner
basis shows that all the powers of a t-spread principal Borel ideal have linear quotients and
the Rees algebra of a t-spread principal Borel ideal is a normal Cohen-Macaulay domain
which implies that a t-spread principal Borel ideal possesses the strong persistence property.

In the last part, we study the limit behavior of the depth for the powers of t-spread
principal Borel ideals.

Fix a field K and a polynomial ring S = K[x1, . . . , xn]. For two monomials v, w ∈ S of
degree d, we write vw = xi1xi2 · · ·xi2d with i1 ≤ i2 ≤ · · · ≤ i2d. Then the sorting of the pair
(v, w) is the pair of monomials (v′, w′) where v′ = xi1xi3 · · ·xi2d−1

and w′ = xi2xi4 · · ·xi2d .
The map

sort : Sd × Sd → Sd × Sd
with sort(v, w) = (v′, w′) is called sorting operator.

A subset B ⊂ Sd is called sortable if sort(B ×B) ⊂ B ×B.

Proposition 18 [22, Proposition 3.1] Let t ≥ 1 be an integer and I = Bt(u), where u =
xi1 · · ·xid is a t-spread monomial. The minimal set of monomial generators of I is sortable.

Theorem 19 [48, Theorem 14.2] [20, Theorem 6.15] Let B be a sortable subset of monomials
of S of the same degree and

F = {tutv − tu′tv′ : u, v ∈ B, (u, v) unsorted, (u′, v′) = sort(u, v)}.
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Then there exists a monomial order < on R which is called sorting order such that for every
g = tutv − tu′tv′ ∈ F , in<(g) = tutv.

Let I ⊂ S be a monomial ideal generated in a single degree and K[{tu : u ∈ G(I)}] be the
polynomial ring in |G(I)| variables endowed with a monomial order < . Let P be the kernel
of the K-algebra homomorphism

K[{tu : u ∈ G(I)}]→ K[G(I)], tu 7→ u, u ∈ G(I).

A monomial tu1 · · · tuN is called standard with respect to <, if it does not belong to in<(P ).

Definition 20 [33, Definition 4.1] The monomial ideal I ⊂ S satisfies the `-exchange prop-
erty with respect to < if the following condition holds: for every tu1 · · · tuN , tv1 · · · tvN standard
monomials with respect to < of the same degree N satisfying

(i) degxi u1 · · ·uN = degxi v1 · · · vN for 1 ≤ i ≤ q − 1 with q ≤ n− 1 and

(ii) degxq u1 · · ·uN < degxq v1 · · · vN ,

there exists integers δ, j with q < j ≤ n and j ∈ supp(uδ) such that xquδ/xj ∈ I.

Proposition 21 Let u = xi1 · · ·xid be a t-spread monomial in S. Then the t-spread principal
Borel ideal Bt(u) satisfies the `-exchange property with respect to the sorting order <sort .

Let I = Bt(u) ⊂ S, where u ∈ S is a t-spread monomial.
We consider R(I) =

⊕
j≥0 I

jtj to be the Rees algebra of the ideal I. Since the mini-
mal generators of I have the same degree, the fiber R(I)/mR(I) of the Rees ring R(I) is
isomorphic to K[G(I)].

We fix the sorting order <sort on the ring T = K[{tv : v ∈ G(I)}] and the lexicographic
order <lex on the ring S. Let < be the monomial order on R = S[{tv : v ∈ G(I)}] defined as
follows: if m1,m2 are monomials in S and v1, v2 are monomials in T, then

m1v1 > m2v2 if m1 >lex m2 or m1 = m2 and v1 >sort v2.

Theorem 22 The reduced Gröbner basis of the presentation ideal J of R(I) with respect to <
consists of the set of binomials tvtw− tv′tw′ where (v, w) is unsorted and (v′, w′) = sort(v, w),
together with the binomials of the form xitv−xjtw where i < j, xiv = xjw and j is the largest
integer for which xiv/xj ∈ G(I).

Proposition 23 All the powers of Bt(u) have linear quotients. In particular, all the powers
of Bt(u) have a linear resolution.

Corollary 24 The Rees algebra R(Bt(u)) is Koszul.

Corollary 25 The Rees algebra R(Bt(u)) is a normal Cohen-Macaulay domain. In particu-
lar, Bt(u) satisfies the strong persistence property. Therefore, Bt(u) satisfies the persistence
property.

Theorem 26 Let t ≥ 1 be an integer and I = Bt(u) ⊂ S the t-spread principal Borel ideal
generated by u = xi1 · · ·xid where t+ 1 ≤ i1 < i2 < · · · < id−1 < id = n. Then

depth
S

Ik
= 0, for k ≥ d.

In particular, the analytic spread of I is `(I) = n.
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Corollary 27 Let t ≥ 1 be an integer and Bt(u) ⊂ S the t-spread principal Borel ideal gener-
ated by u = xi1 · · ·xid where t+1 ≤ i1 < i2 < · · · < id−1 < id = n. Then dimK[G(Bt(u))] = n.

In the last chapter, we present a summary of the main results of this thesis. We also
provide some interesting questions which have the starting point in these results.
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