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Introduction

Group gradings on algebras play a key role in linear algebra, representation
theory, ring theory, commutative algebra, combinatorics, algebraic geometry
and Lie theory. Gradings are tools that can be useful to study specific proper-
ties of algebraic structures on which they are considered. There are two main
sources where the concept of a graded algebra arose from. The first one is the
study of polynomials; the algebra of polynomials in an arbitrary number of inde-
terminates has a natural grading by the additive group of integers given by the
usual polynomial degree. The second one is group representation theory, where
the group algebra kG of a group G over the field k has a natural G-grading.

If A is an algebra over the field k, and G is a (multiplicative) group, a
G-grading on A is a decomposition A = ⊕g∈GAg of A as a direct sum of k-
subspaces, such that AgAh ⊂ Agh for any g, h ∈ G.

One of the first constructions of a graded algebra structure who has played
a fundamental role in commutative algebra was done by Krull in 1938 (see
[35], [12]). He considered m a maximal ideal in a local Noetherian ring A
and {αi}1≤i≤r a minimal system of generators for m. He defined for all nonzero
elements x in A the ”initial forms” of x as the set of all homogeneous polynomials
P (X1, . . . , Xr) of degree j with coefficients in the quotient field k = A/m such
that x ≡ P (α1, . . . , αr) (mod mj+1), where j = max {q ∈ Z | x ∈ mq}. To every
ideal a of A he put in correspondence the ”Leitdeal”, i.e. the graded ideal of
k[X1, . . . , Xr] generated by the ”initial forms” of all the elements of a; for Krull
these two notions took the place of the associated Z-graded algebra.

If G is a group and k is a field, the group algebra A = kG has the natural
G-grading given by Ag = kg for any g ∈ G. Moreover, if H is a normal
subgroup of G, the algebra kG also has a natural grading by the factor group
G/H; the homogeneous component of degree gH is

∑
h∈H kgh for any g ∈ G.

Thus the homogeneous component of trivial degree of this grading is just the
group algebra kH of H, and this point of view has been used in connecting
representations of G to representations of H. Note that this G/H-grading of
A = kG has the property that AgHArH = AgrH for any g, r ∈ G. This approach
was initiated by E. Dade in [17], [18], [19], who studied strongly graded algebras,
i.e. G-graded algebras A for which AgAh = Agh for any g, h ∈ G, the connection
between modules over the homogeneous component Ae (where e is the neutral
element of G) and (graded) modules over A, and as an application he extended
Clifford theory by investigating simple modules over Ae in relation to (graded)
simple modules over A. This applies to the classical case, where irreducible
representations of G are connected to irreducible representations of the normal
subgroup H, since kG endowed with the above mentioned G/H-grading is a
strongly graded algebra.

Many concepts and constructions from Ring Theory have graded versions
for graded algebras. For example, a graded left ideal of a G-graded algebra A is
a left ideal I with the property that for any element a ∈ I, with decomposition
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a =
∑
g∈G ag in the graded structure of A, all homogeneous components ag lie in

I, too. Then A is called graded left Noetherian if any ascending chain of graded
left ideals of A is stationary. One relevant application of the graded theory
is to investigate certain ring properties of an algebra via the grading. More
precisely, it can be studied the connection between an algebra having a certain
ring property and having the graded version of that property; if it happens that
the property is equivalent to its graded version, then it is usually easier to check
whether the graded version is satisfied. For example, it was proved in [37] that
for an algebra A graded by the additive group of integers, A is left Noetherian if
and only if it is graded left Noetherian. More generally, the equivalence between
the left Noetherian property and the graded left Noetherian property was proved
in [14] for any algebra graded by a polycyclic-by-finite group.

Graded ring theory became a direction of study of great interest in the
1970’s. The first books in this direction [38], [39] were written by C. Năstăsescu
and F. van Oystaeyen. One major advance in the theory was done in [16],
where a duality between group actions and group gradings was explained in the
finite group case; this suggested an enlightening Hopf algebra approach. More
precisely, a G-grading on a k-algebra A is just a coaction of the group Hopf
algebra kG on A (in other words, A is a kG-comodule algebra). If G is finite,
this is the same with a action of the dual Hopf algebra (kG)∗ on A. If k has
enough roots of unity, then the group Hopf algebra kG is selfdual, and then a
G-grading, i.e. a coaction, is in fact an action of G as algebra automorphisms.

Given a graded algebra A, one can consider A-modules, but also graded A-
modules, which are just A-modules endowed with a grading compatible with
the grading of A. A theory of graded modules over a graded ring may seem
not to differ much from ordinary module theory. Indeed, the category of graded
left A-modules is a Grothendieck category, and many concepts can be defined
as in the case of un-graded modules. However, graded modules come equipped
with a shift because of a possible partitioning followed by a rearrangement of
the partitions (see [28]). From this point of view, graded module theory demon-
strates a specific complexity. For example, a local theory of graded modules
is introduced by Green and Marcos in [27]; it is applied for quotients of path
algebras. Furthermore, graded modules play an essential role in the study of
homological aspect of rings (see [43]).

It is of interest to study group gradings on certain given algebras. Thus a
general problem is: given an algebra A, determine all G-gradings on A, for all
possible groups G. Describing gradings was useful in solving certain problems in
Ring Theory. For example, in his solution to the Specht problem for associative
algebras in characteristic zero, see [32] and [49], Kemer needed to describe all
gradings on the 2× 2 matrix algebra by the cyclic group of order two. In [29],
there is the description of Z-gradings on finite-dimensional complex Lie algebras.
It was proved in [47] that all finite Z-gradings on a simple associative algebra
can be obtained from the Pierce decomposition of this algebra. In [24], there
are classified all gradings of a Cayley-Dickson algebra. A classification of finite
Z-gradings on infinite-dimensional simple Lie algebras is described in [48].

Gradings on matrix algebras are an important object of study among graded
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algebras in general and have a wide range of applications. E. Zelmanov posed
the following general problem (see [30], [31]): find all G-gradings of the matrix
algebra Mn(k), where G is a group, k is a field and n a positive integer. This
seems to be a complex problem and a lot of work has been done in this direction.
The first results concerning gradings on matrix algebras were obtained by Knus
in 1969 (see [34]). Many results so far have given solutions to this problem
depending on the structure of G and k and the value of n; the general problem is
still unsolved. Steps towards the general solution have been made. For instance,
in [26] and [27], a special case of gradings (such that all the matrix units eij are
homogeneous elements) was considered; this type of gradings are called good
gradings in [21]. All gradings of M2(k) by C2 were described in [21] making
use of computational methods and the duality between group actions and group
gradings. These methods appear in [9] in the form of actions and coactions
of Hopf algebras (a G-grading on an algebra A coincides with a structure of a
kG-comodule algebra on A). This idea was also used in the study of gradings
on matrix algebras by cyclic groups (see [9]). All the isomorphism types of
C2-gradings on M2(k) are illustrated in [9] (for char(k) 6= 2) and in [7] (for
char(k) = 2). If k is algebraically closed, it was proved in [13] (see also [46])
that any Cm-grading on Mn(k) is isomorphic to a good grading; there were
further described (in cohomological terms) all gradings over cyclic groups for an
arbitrary field k through descent theory. Additionally, if G is torsion-free (see
[21]) or if G = Cp (where p is a prime), k has a pth root of unity, and p - n (see
[9]) again any grading on the matrix algebra is isomorphic to a good grading.
This demonstrates the importance of good gradings. The study of gradings by
non-cyclic groups is more difficult. In [8] the gradings of M2(k) over the Klein
group C2 ×C2 (for an arbitrary field k) were classified; it was applied the Hopf
algebra technique and duality. Furthermore, in [33] a classification of all group
gradings of M2(k) for any field k was provided; in addition, an elementary
approach was given to the results about C2-gradings and C2 × C2-gradings
without any use of the technique mentioned above and it was also proved that
any grading on M2(k) is either isomorphic to a good grading or reduces to a
grading of C2 or by C2 × C2. In the case of k being an algebraically closed
field, in [1] there were described all gradings on Mn(k) by abelian groups; it was
shown that any such grading is isomorphic with the tensor product between
a good grading and a fine grading (where all the G-indexed direct summands
are at most 1-dimensional). In [2] a similar result was proved for gradings by
arbitrary finite groups in case of k being a algebraically closed of characteristic
zero. For an arbitrary field k, and an arbitrary group G, in [10] there were
described and classified all G-gradings on M3(k) by using Galois extensions; it
was shown that any such grading is either isomorphic to a good grading or it
reduces to a grading by C3 or by C3 × C3.

Subalgebras of full matrix algebras demonstrate great significance and even
more difficulty when considered the associated gradings. Algebras of upper block
triangular matrices (to which we will refer as UT-algebras and we will consider
them as subalgebras in a Mn(k)) are key examples of PI-algebras. For any group
and any field, a conjecture occured in [52], namely that a graded UT-algebra is
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isomorphic to the tensor product between another UT-algebra which is has an
elementary grading (i.e. a grading for which there exists a map f : {1, . . . , n} →
G such that deg(eij) = f(i)−1f(j) for any i, j, see [4]) and a division graded
full matrix algebra (i.e. it has a unit and every non-zero homogeneous element
is invertible); this was proved for any algebraically closed field of characteristic
zero in [53] (for any finite abelian group) and in [44] (for any abelian group). In
[3] good gradings on UT-algebras were investigated; it was shown that any such
grading is isomorphic to the ring of endomorphisms of a graded flag over a field.
Also, it was provided a result according to which any two good gradings are
isomorphic if and only if the corresponding graded flags are isomorphic up to a
shift; this has allowed to classify (in the same paper) all good gradings as orbits
of a certain biaction of a Young subgroup and the group G on the set Gn, where
G is the grading group. In [45] there was determined when two UT-algebras
graded by the same group are isomorphic. UT-algebras are a particular case of
incidence algebras. In [42] group gradings were studied on the incidence algebra
I(X, k) = {f : X×X → k | f(x, y) = 0 if x 6≤ y} for locally finite posets (X,≤)
(for operations on I(X, k) see [50]). It was shown that I(X, k) has a grading
for which a certain homogeneous component (more specifically, the one that
corresponds to the neutral element of the group) is central if and only if X is a
antichain. If X is a finite antichain with n elements, then I(X, k) ' kn; to this
case was directed the study from [20] where a description of all group gradings
on diagonal algebras was made for an arbitrary field k.

The original results of this thesis are the content of [5] and [6]. We study
structural matrix algebras; these algebras got their name in [54], but they had
already been considered in [41]. Our research on structural matrix algebras (a
special case of incidence algebras) was made in terms of description (a struc-
tural matrix algebra is isomorphic to the endomorphism algebra of a generalized
flag) with direct relation to good gradings and in terms of presentation of the
automorphism group (as a biproduct). We classified all good gradings that
arise from graded generalized flags and all good gradings on structural matrix
algebras that are associated to partial order relations. The second classification
led the computation of the number of types of isomorphism of good gradings in
some particular cases (for finite groups). Structural matrix algebras have been
useful for providing examples and counterexamples in ring theory and in the
study of numerical invariants of PI- algebras. The illustrated study from this
thesis brings also as mentioned a new type of flags which represents an impor-
tant mathematical contribution also; flags in general are concepts of great value
for algebraic geometry, representation theory, algebraic groups, combinatorics
(see [36]).

In the first chapter, for a field k, a positive integer n and a preorder relation
ρ on {1, . . . , n}, we introduce the structural matrix algebra M(ρ, k) (as a sub-
algebra of the full matrix algebra Mn(k)) consisting of all matrices with zero
entries on all positions (i, j) with the property that (i, j) 6∈ ρ. In the termino-
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logy of [50], A is the incidence algebra over k associated with ρ. We define some
useful structures. We associate to ρ an equivalence relation ∼ and we call C
its set of equivalence classes; we connect these cosets by a partial order ≤. To
(C,≤) we correlate an oriented graph Γ; we illustrate this combinatorial object
in many examples. In addition, we show that through transformations that are
generated by certain permutations we can have in M(ρ, k) all the inferior blocks
to be null.

Chapter 2 represents a description of the automorphisms of a structural ma-
trix algebra providing also a preparation for a classification of good G-gradings
(G being a group). We show that a structural matrix algebra M(ρ, k) is isomor-
phic to the endomorphism algebra of a certain algebraic-combinatorial structure
F which we call a ρ-flag. If F = (V, (Vα)α∈C) is a ρ-flag, we show that the
End(F)-submodules of V are in bijective correspondence with the antichains of
C. We exemplify the lattice of such submodules in some cases. We also describe
the lattice automorphisms of A(C) (A(C) being the set of antichains of C). We
find that the set of algebra isomorphisms from End(F) to End(F ′) (where F
and F ′ are ρ-flags) is in bijective correspondence with the equivalence classes
of a set involving the invertible matrices of M(ρ, k), the automorphisms of C
preserving the cardinality of elements, and the transitive functions on ρ, with
respect to an equivalence relation. In particular, if F = F ′, the automorphism
group of End(F) is described as a factor group of a double semidirect product.
As a biproduct, we obtain a descriptive presentation of the automorphism group
of a structural matrix algebra. This automorphism group was computed in [15],
and we show how the presentation in [15] can be derived from ours.

The third chapter regards G-gradings on structural matrix algebras; we cla-
ssify those which arise from graded flags. If F is a G-graded ρ-flag, we find that
its endomorphism algebra End(F) gets an induced G-graded algebra structure;
we denote by END(F) the obtained G-graded algebra. This grading transfers
to a G-grading on M(ρ, k) via the isomorphism mentioned in the previous para-
graph. The gradings produced in this way are good gradings on M(ρ, k). It is
an interesting question whether all good gradings are obtained like this. This
is a problem of independent interest, and it can be formulated in simple terms
related to the graph Γ associated with ρ: if G is a group, and on each arrow of
Γ we write an element of G as a label, such that for any two paths starting from
and terminating at the same points the product of the labels of the arrows is
the same for both paths, does the set of labels arise from a set of weights on the
vertices of Γ, in the sense that an arrow starting from v1 and terminating at v2

has label g1g
−1
2 , where g1 and g2 are the weights of v1 and v2? This problem

was considered in [41] in the case where G is abelian, and it was showed that
the answer is positive if and only if the cohomology group H1(∆, G) = 0, where
∆ is a certain simplicial complex associated with ρ. Also, for a given ρ, the
answer to the above question is positive for any abelian group G if and only if
the homology group H1(∆) = 0. We show that the answer is positive for any
arbitrary group G if and only if the normal closure of two certain subgroups
A(Γ) ⊆ B(Γ) of the free group generated by the arrows of Γ coincide; A(Γ) and
B(Γ) are defined in terms of cycles of the un-directed graph obtained from Γ.

6



This parallels the result in the abelian case, where H1(∆) = B/A for similar
subgroups A and B in a free abelian group associated with Γ. In fact we use
slightly different A and B, by working with a different graph. For classifying
G-gradings arising from graded flags, we consider two G-graded ρ-flags F and
F ′, and we look at the isomorphisms between the graded algebras END(F) and
END(F ′). Using the structure of isomorphisms between End(F) and End(F ′),
which we already know by now, and adding the additional information about
gradings, we obtain that END(F) ' END(F ′) if and only if the connected
components of F and F ′ are pairwise isomorphic up to a permutation, some
graded shifts and an automorphism of C. Using this result, we show that the
isomorphism types of graded algebras of the form END(F) are classified by the
orbits of the action of a certain group, which is a double semidirect product of
a Young subgroup of Sn, a certain subgroup of automorphisms of C, and Gq,
where q is the number of connected components of C, on the set Gn.

In the last chapter we consider structural matrix algebras M(ρ, k) in the
case of ρ being a partial order. We describe in an explicit way (and illustrate in
some examples) the automorphisms of M(ρ, k), by following the approach from
chapter 2. The explicit description is used to show that the isomorphism classes
of good G-gradings on M(ρ, k) are in a bijective correspondence to the orbits
of a certain action of the automorphism group of the poset ({1, . . . , n}, ρ) on
the set of G-valued transitive functions on ρ. An alternative version in terms
of the graph associated with ρ is given. Furthermore, we compute explicitly
the number of isomorphism types of good gradings for certain partial order
relations.

Graded flags allowed the description of all good gradings on UT-algebras.
Unfortunately, it is not the case for structural matrix algebras, i.e. not any good
grading comes from a graded generalized flag. This is a problem to be solved
by future research.
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1 Preliminaries

Let k be a field, n a positive integer. Let ρ a preorder relation on the set
{1, . . . , n}.

We define a structural matrix algebra associated with ρ and k a
subalgebra in Mn(k) by

M(ρ, k) = {(aij)1≤i,j≤n ∈Mn(k) | aij = 0 if (i, j) /∈ ρ}.

Let ∼ be the equivalence relation on {1, . . . , n}:

i ∼ j ⇔ iρj and jρi.

Let C be the set of equivalence classes. On C we define a partial order:

î ≤ ĵ ⇔ iρj.

The structure of the partially ordered set (C,≤) can be illustrated via an
associated oriented graph Γ where:

- the vertices are the elements of C
- if α, β ∈ C, then we draw an arrow a from α to β (we write s(a) = α and

t(a) = β) if and only if
α < β
and
there is no γ ∈ C such that α < γ < β.

Let σ ∈ Sn. We define a bijection

ϕσ : {1, . . . , n} × {1, . . . , n} → {1, . . . , n} × {1, . . . , n}
(i, j) 7→ (σ(i), σ(j)).

If ρ is a preoder relation, then ϕσ(ρ) is a preorder relation too; we denote
ρσ = ϕσ(ρ). Thus,

M(ρ, k) ' M(ρσ, k)

A = (aij)i,j 7→ Aσ = (aσ(i)σ(j))i,j .

Proposition 1.1 Let M(ρ, k) be a structural matrix algebra. Then there exists
σ ∈ Sn for which M(ρσ, k) is a block matrix algebra with the property that all
the blocks below the main diagonal blocks are null.
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2 The automorphisms of structural matrix
algebra

• Structural matrix algebras as endomorphism algebras

A ρ-flag is an n-dimensional vector space V with a family (Vα)α∈C of sub-

spaces such that there is a basis B of V and a partition B =
⋃
α∈C

Bα with the

property that |Bα| = mα and
⋃
β≤α

Bβ is a basis of Vα for any α ∈ C.

If F = (V, (Vα)α∈C) and F ′ = (V ′, (V ′α)α∈C) are ρ-flags, then a morphism
of ρ-flags from F to F ′ is a linear map f : V → V ′ such that f(Vα) ⊂ V ′α for
any α ∈ C.

Proposition 2.1 Let F = (V, (Vα)α∈C) be a ρ-flag. Then the algebra End(F) of
endomorphisms of F (with the map composition as multiplication) is isomorphic
to M(ρ, k).

We note that if there is B = {vi | 1 ≤ i ≤ n} a basis on V and
Bα = {vi | i ∈ α} for any α ∈ C as in the definition of a ρ-flag, then

Eij(vt) = δjtvi for any iρj, t
EijEpq = δjpEiq for any i, j, p, q.

Thus
End(F) ' M(ρ, k)

Eij ↔ eij

for any iρj.

• The lattice of End(F)-submodules of V

Let F = (V, (Vα)α∈C) a ρ-flag. We consider the action of End(F) on V the
restriction of the usual End(V )-action on V .

If D is a subset in C, we denote

VD =
∑
α∈D

Vα.

By convention V∅ = 0.

Proposition 2.2 The End(F)-submodules of V are the subspaces of the form
VD, where D is a subset of C.

If D ⊆ C, then Dmax is the set of maximal elements of D. The End(F)-
submodules of V are VD with D an antichain in C. We denote by A(C) the set
of all antichains of C.
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The lattice of End(F)-submodules of V is isomorphic to the lattice A(C)
where the infimum and the supremum are given by

D ∧ E = {α ∈ C | there exist β1 ∈ D, β2 ∈ E such that α ≤ β1 and α ≤ β2}max,

D ∨ E = (D ∪ E)max.

The partial order on A(C) is

D ≤ E ⇐⇒ VD ⊂ VE ⇐⇒ for any α ∈ D there exists β ∈ E such that α ≤ β.

Proposition 2.3 If g is an automorphism of the poset (C,≤), then the map
fg : A(C) −→ A(C), fg(D) = g(D) = {g(α) | α ∈ D} is an automorphism of the
lattice A(C). Moreover, for any lattice automorphism f of A(C) there exists an
automorphism g of the poset (C,≤) such that f = fg.

• Isomorphisms between endomorphism algebras of flags

Let F = (V, Vα)α∈C be a ρ-flag.

Let Aut0(C,≤) = {g ∈ Aut(C,≤) | |α| = |g(α)| for any α ∈ C}. It is a sub-
group in Aut(C,≤).

For any g ∈ Aut0(C) we define a bijection g̃ : {1, . . . , n} → {1, . . . , n}:
if α = {i1, . . . , ir} with i1 < . . . < ir and g(α) = {j1, . . . , jr} with j1 < . . . <

jr, then
g̃(i1) = j1, . . . , g̃(ir) = jr.

Let T (ρ, k∗) = {(aij)iρj ⊂ k∗ | aijajr = air for any i, j, r with iρj, jρr} (i.e.
the set of transitive k∗-valued functions on ρ.).

Multiplication on positions (i.e. pointwise multiplication of functions) makes
T (ρ, k∗) a group.

Let F ′ = (V ′, V ′α)α∈C be another ρ-flag.

Define

F : U(M(ρ, k))×Aut0(C)× T (ρ, k∗) −→ Isoalg(End(F),End(F ′))

F (A, g, (aij)iρj) = ϕ

for any A = (λij)1≤i,j≤n ∈ U(M(ρ, k)), g ∈ Aut0(C), (aij)iρj ∈ T (ρ, k∗), where

ϕ(Eij) = aij
∑
sρg̃(i)
g̃(j)ρt

λsg̃(i)λg̃(j)tE
′
st

for any iρj
( (E′ij)iρj is the basis on End(F ′) and A−1 = (λij)1≤i,j≤n).
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Proposition 2.4 F is surjective.

Proof plan:
Let ϕ : End(F) −→ End(F ′) be an algebra isomorphism. We have that:

- the set of all End(F)-submodules of V is in a bijective correspondence with
A(C);

- the algebra isomorphism ϕ induces a linear isomorphism γ : V −→ V ′ that
is a ϕ′-isomorphism for a certain deformation of ϕ;

- the new algebra isomorphism ϕ′ is obtained from ϕ using a k∗-valued
transitive function on ρ;

- since ϕ′ is an algebra isomorphism, γ induces an isomorphism between
the lattice of End(F)-submodules of V and the lattice of End(F ′)-submodules
of V ′, and this lattice isomorphism reduces in fact to an automorphism of the
lattice A(C);

- such an automorphism is completely determined by an automorphism g of
the poset C;

- ϕ can be recovered from g, the deformation constants producing ϕ′ from
ϕ and a matrix of γ in a fixed pair of bases.

For any A = (λij)1≤i,j≤n ∈ U(M(ρ, k)), g ∈ Aut0(C) define

Ag = (λig̃(j))1≤i,j≤n s, i gA = (λg̃(i)j)1≤i,j≤n.

We note that g(Ah) = (gA)h for any A, g, h.

We consider the relation ≈ on U(M(ρ, k))×Aut0(C)× T (ρ, k∗):

(A, g, (aij)iρj) ≈ (B, h, (bij)iρj) if and only if
g = h
there exist d1, ..., dn ∈ k∗ such that aijb

−1
ij = did

−1
j for any iρj

Bg = Ag diag(d1, . . . , dn).

≈ is an equivalence relation.

We have that F (A, g, (aij)iρj) = F (B, h, (bij)iρj) if and only if (A, g, (aij)iρj) ≈
(B, h, (bij)iρj).

Theorem 2.5 F induces a bijection

F :
U(M(ρ, k))×Aut0(C)× T (ρ, k∗)

≈
−→ Isoalg(End(F),End(F ′)).

The group Aut0(C) acts to the right on T (ρ, k∗) by

(aij)iρj · g = (ag̃(i)g̃(j))iρj .
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Thus we can form a right crossed product Aut0(C) n T (ρ, k∗), where the mul-
tiplication is given by

(g n (aij)iρj)(hn (bij)iρj) = ghn ((ah̃(i)h̃(j)bij)iρj .

The group T (ρ, k∗) acts to the left on the group U(M(ρ, k)):

if (aij)iρj ∈ T (ρ, k∗) and A = (αij)1≤i,j≤n ∈ U(M(ρ, k)),
then (aij)iρj ·A is the matrix (mij)1≤i,j≤n where

mij =

{
aijαij , if (i, j) ∈ ρ

0, if (i, j) /∈ ρ .

The group Aut0(C) acts to the left on U(M(ρ, k)) by

g ·A = g−1

Ag
−1

.

We obtain that Aut0(C) n T (ρ, k∗) acts to the left on U(M(ρ, k)) by

(g n (aij)iρj) ·A = g−1

((aij)iρj ·A)g
−1

,

can form the left crossed product

U(M(ρ, k)) o (Aut0(C) n T (ρ, k∗)).

The multiplication on this group is defined as

(Ao (g n (aij)iρj)) · (B o (hn (bij)iρj)) =

= (A g−1

((aij)iρj ·B)g
−1

) o (ghn (ah̃(i)h̃(j)bij)iρj).

Theorem 2.6 F is a morphism of groups, and it induces a group isomorphism

U(M(ρ, k)) o (Aut0(C) n T (ρ, k∗))

D
' Aut(End(F)),

where D = {diag(d1, . . . , dn) o (Idn (d−1
i dj)iρj) | d1, . . . , dn ∈ k∗}.

We showed that the description of the automorphism group of M(ρ, k) given
in [15] can be deduced from this theorem.
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3 Good gradings on structural matrix algebras

If G is a (multiplicative) group and A is a k-algebra, a G-grading on A is a
decomposition

A =
⊕
g∈G

Ag

(as a direct sum of linear spaces) such that AgAh ⊆ Agh for any g, h ∈ G.
Let A ⊆ Mn(k) a subalgebra. A good G-grading on A is a G-grading such

that all matrices
eij = (δ(i,j),(p,q))p,q ∈ A

are homogeneous elements.
A G-graded ρ-flag is a ρ-flag (V, (Vα)α∈C) such that V is a G-graded vector

space, and the basis B from ρ-flag’s definition consists of homogeneous elements.
If F = (V, (Vα)α∈C) and F ′ = (V ′, (V ′α)α∈C) are G-graded ρ-flags, then a

morphism of graded flags from F to F ′ is a morphism f : V → V ′ of ρ-flags,
which is also a morphism of graded vector spaces.

If F = (V, (Vα)α∈C) is a G-graded ρ-flag and σ ∈ G, define

End(F)σ = {f ∈ End(F) | f(Vg) ⊆ Vσg for any g ∈ G}.

Proposition 3.1 End(F) =
⊕
σ∈G

End(F)σ, and this decomposition makes End(F)

a G-graded algebra.

We consider

END(F) = End(F) + the grading from the proposition.

The isomorphism
End(F) 'M(ρ, k)

Eij ↔ eij

is a graded algebra isomorphism. Thus

END(F) 'M(ρ, k)

and via this isomorphism, M(ρ, k) becomes a G-graded algebra.
Moreover,
any grading on M(ρ, k) that arises from a graded ρ-flag is a good

grading.
If M(ρ, k) is an upper blocked triangular matrix algebra, it was shown in [3]

that any good grading on M(ρ, k) is of type END(F).
This doesn’t happen for any structural matrix algebra, i.e. not any good

grading on a structural matrix algebra is of type END(F).

13



We denote
Γ0 = the set of all vertices of Γ,
Γ1 = the set of all arrows of Γ,
Γu = the un-oriented graph obtained from Γ by omitting the directions of

arrows,
Γ̃ = the oriented graph obtained from Γ by doubling the arrows

if α
a
66 β in Γ, then α

a
66 β

ã
vv

in Γ̃

T (Γ, G) = the set of all functions v : Γ1 → G such that v(a1) . . . v(ar) =
v(b1) . . . v(bp) for any paths a1 . . . ar and b1 . . . bp in Γ with s(a1) = s(b1) and
t(ar) = t(bp).

If v ∈ T (Γ, G), we consider ṽ : Γ1 ∪ {ã | a ∈ Γ1} → G

ṽ|Γ1 = v and ṽ(ã) = v(a)−1 for any a ∈ Γ1.

Define
F (Γ) = the free group generated by the set Γ1,
A(Γ) = the subgroup of F (Γ) generated by all elements of the form

a1 . . . arb
−1
p . . . b−1

1 , where a1 . . . ar and b1 . . . bp are two paths (in Γ) starting
from the same vertex and terminating at the same vertex,

B(Γ) = the subgroup B(Γ) of F (Γ) generated by all elements of the form
a1a

ε2
2 . . . aεmm , where a1, . . . , am are arrows forming in this order a cycle in Γu,

and εi = 1 if ai is in the direction of the directed cycle given by a1, and εi = −1
otherwise.

We recall: if X is a group and Y ⊆ X is a subgroup,

Y N =< xyx−1 | x ∈ X and y ∈ Y > .

Y N is the normal closure of Y , i.e. the smallest normal subgroup ofX containing
Y .

Proposition 3.2 Let G be a group. The following are equivalent.
(1) Any good G-grading on M(ρ, k) is of type END(F).
(2) For any v ∈ T (Γ, G) there exists a function f : Γ0 → G such that v(a) =
f(s(a))f(t(a))−1 for any a ∈ Γ1.
(3) For any v ∈ T (Γ, G) and for any cycle z1...zm in Γ̃, with z1, ..., zm ∈ Γ1 ∪
{ã | a ∈ Γ1} (this corresponds to a cycle in Γu), we have that ṽ(z1) . . . ṽ(zm) = 1.
(4) A(Γ)N = B(Γ)N .
(5) Any generator b of B(Γ) can be written in the form b = g1x1g

−1
1 . . . gmxmg

−1
m

for some positive integer m, some g1, . . . , gm ∈ F (Γ) and some x1, . . . , xm
among the generators in the construction of A(Γ).
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• Isomorphisms between graded flag endomorphism algebras

If V and W are G-graded vector spaces and σ ∈ G, we say that a linear
map f : V → W is a morphism of right degree σ if f(Vg) ⊆ Wgσ for any
g ∈ G. This means that f is a morphism of graded vector spaces when regarded
as f : V →W (σ); if W =

⊕
g∈GWg, then W (σ) =

⊕
g∈GWgσ for any σ ∈ G.

If F = (V, (Vα)α∈C) is a G-graded ρ-flag and σ ∈ G, then the right sus-
pension of F is F(σ) = (V (σ), (Vα)α∈C).

Let F = (V, (Vα)α∈C) be a G-graded ρ-flag, with a homogeneous basis

B =
⋃
α∈C

Bα of V providing the flag structure.

Let C = C1∪ . . .∪Cq be the decomposition of C in disjoint connected compo-
nents; these correspond to the connected components of the undirected graph

Γu. For each 1 ≤ t ≤ q, let ρt be the preorder relation on the set
⋃
α∈Ct

α, by

restricting ρ.

If V t =
∑
α∈Ct

Vα, then F t = (V t, (Vα)α∈Ct) is a G-graded ρt-flag with basis⋃
α∈Ct

Bα.

Obviously, V =
⊕

1≤t≤q

V t. In a formal way we can write F = F1 ⊕ . . .⊕Fq,

where F is a G-graded ρ-flag, and F t is a G-graded ρt-flag for each 1 ≤ t ≤ q.
Let ρ and µ be isomorphic preorder relations (i.e. the preordered sets on

which ρ and µ are defined are isomorphic). Let C and D be the posets associated
with ρ and µ, and let g : C → D be an isomorphism of posets.

We say that a ρ-flag F = (V, (Vα)α∈C)) is g-isomorphic to a µ-flag G =
(W, (Wβ)β∈D)) if there is a linear isomorphism u : V → W such that u(Vα) =
Wg(α) for any α ∈ C.

If F and G areG-graded flags, we say that they are g-isomorphic as graded
flags if there is such an u which is a morphism of graded vector spaces.

We consider another G-graded ρ-flag F ′ = (V ′, (V ′α)α∈C). As we did for F ,

we also have V ′ =
⊕

1≤t≤q

V ′t and F ′ = F ′1 ⊕ . . .⊕F ′q, where F ′t is a G-graded

ρt-flag for each 1 ≤ t ≤ q.

Theorem 3.3 Let F = (V, (Vα)α∈C) and F ′ = (V ′, (V ′α)α∈C) be G-graded ρ-
flags. Then the following assertions are equivalent:
(1) END(F) and END(F ′) are isomorphic as G-graded algebras.
(2) There exist g ∈ Aut0(C), σ1, . . . , σq ∈ G and a g-isomorphism γ : V → V ′

between the (ungraded) ρ-flags F and F ′, such that γ
|V ′g(t)
|V t : V t → V ′g(t) is a

linear isomorphism of right degree σt for any 1 ≤ t ≤ q, where g ∈ Sq is the
permutation induced by g, i.e. g(Ct) = Cg(t).
(3) There exists a permutation τ ∈ Sq, an isomorphism gt : Ct → Cτ(t) for each
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1 ≤ t ≤ q, and σ1, . . . , σq ∈ G, such that F t is gt-isomorphic to F ′τ(t)(σt) for
any 1 ≤ t ≤ q.

• Classification of gradings arising from graded flags

We consider three group actions on the set Gn:

Aut0(C) acts to the right on Gn by

(hi)1≤i≤n ← g = (hg̃(i))1≤i≤n

for any (hi)1≤i≤n ∈ Gn and g ∈ Aut0(C).

Gq acts to the right on Gn by

(hi)1≤i≤n ← (σt)1≤t≤q = (h′i)1≤i≤n

where for each i we define h′i = hiσp(i), where p : {1, . . . , n} → {1, . . . , q},
p(i) = j such that î ∈ Cj .

For each α ∈ C let S(α) be the symmetric group of α (regarded as a subset
of {1, . . . , n}).

We consider the group
∏
α∈C S(α), which is a Young subgroup of Sn (iso-

morphic to
∏
α∈C Smα).

Then
∏
α∈C S(α) acts to the right on Gn by

(hi)1≤i≤n ← (ψα)α∈C = (h′i)1≤i≤n

with h′i defined by h′i = hψα(i), where α = î, for each i.

Theorem 3.4 The isomorphism types of G-gradings of the type END(F), where
F is a G-graded ρ-flag, are classified by the orbits of the right action of the group∏
α∈C S(α) o (Aut0(C) nGq) on the set Gn.

4 Classifying good gradings on M(ρ, k) when ρ
is a partial order

Let ρ be a partial order. In this case, î = {i}, for any i, so we identify î with
i. In addition, Aut0(C) = Aut(C).

• Automorphisms of structural matrix algebras

We define ρ a transitive relation on {1, . . . , n}: iρj if iρj and i 6= j. If iρj,
the length `([i, j]) of the interval [i, j] is defined by

`([i, j]) = max{p | there exist i = r1ρr2ρ . . . ρrp = j} − 1.
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Proposition 4.1 Let L = (λij)iρj ∈ M(ρ, k), and assume that L is invertible.
Then λii 6= 0 for any i, L−1 ∈M(ρ, k) and L−1 = (λij)iρj, where λii = λ−1

ii for
any i, and

λij =

`([i,j])+1∑
p=2

∑
i=r1ρr2ρ...ρrp=j

(−1)p−1λ−1
r1r1 . . . λ

−1
rprpλr1r2 . . . λrp−1rp

for any i, j with iρj.

Any algebra automorphism Φ of M(ρ, k) is of the form

Φ(Eij) = aij
∑

sρϕ(i),ϕ(j)ρt

λsϕ(i)λϕ(j)tEst (1)

for any iρj, where L = (λij)iρj ∈ U(M(ρ, k)), ϕ ∈ Aut(C) and (aij)iρj ∈
T (ρ, k∗); here (λij)iρj = L−1, the inverse of L. Using proposition 4.1, the rela-
tion (1) can be written in a more detailed manner in terms of L.

• The number of isomorphism types of good gradings for a
particular case

Let T (ρ,G) the set of all transitive G-valued functions on ρ.
If G is a group, then Aut(C) acts to the right on T (ρ,G) by

(uij)iρj · ϕ = (uϕ(i)ϕ(j))iρj .

Proposition 4.2 Let G be a group. Then the isomorphism types of good G-
gradings on M(ρ, k) are in bijection to the orbits of the right action of Aut(C)
on T (ρ,G).

Example
Let m ≥ 2 be an integer. For computational reasons the elements of the

poset C are the classes of integers modulo 2m. We consider the partial order ρ
on the set Z2m, such that the associated graph Γ is

2̂m− 2 oo

2̂m− 1

::

��
0̂

��
1̂

dd

// 2̂
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Here we have that for any even i both adjacent arrows terminate at î, while
for any odd i both adjacent arrows start from î.

Let r, s : Z2m → Z2m defined by

r(̂i) = î+ 2 and s(̂i) = −î

for any î ∈ Z2m.
Aut(C) is the subgroup of the symmetric group S(Z2m) of Z2m generated by

r and s.
Since s2 = 1, rm = 1 and sr = rm−1s, we have that:

Aut(C) =< r, s >=

{
Dm, the dihedral group of order 2m, if m ≥ 3
the Klein group , if m = 2

.

Because there are no distinct paths in Γ that start from the same vertex and
finish in the same vertex,

T (Γ, G) = {v : Γ1 → G}.

Thus the good G-gradings on M(ρ, k) are in bijection with G2m. In other words,
we identify

v ∈ T (Γ, G) // (g0̂, . . . , g2̂m−1
) ∈ G2moo

where g0̂, . . . , g2̂m−1
are the values of v on the arrows of Γ, starting with the

one joining 1̂ and 0̂, and continuing counterclockwise.
The right action of Aut(ρ) on T (Γ, G) ' G2m is induced by:

(g0̂, g1̂, . . . , g2̂m−1
) · s = (g

2̂m−1
, g

2̂m−2
. . . , g0̂)

(g0̂, g1̂, . . . , g2̂m−1
) · r = (g2̂, g3̂, . . . , g2̂m−2

, g
2̂m−1

, g0̂, g1̂).

We assume that G is finite.

Lemma 4.3 (Burnside)
Let G be a finite group that acts on a set X. The number of orbits is

1

|G|
∑
g∈G
|Fix(g)|.

Using proposition 4.2 and Burnside’s lemma, the number of types of isomor-
phisms of good G-gradings on M(ρ, k) (denoted by N(ρ,G)) is

N(ρ,G) =
1

|Aut(C)|
∑

θ∈Aut(C)

|Fix(θ)|

=
1

2m
(|G|2m +m|G|m +

∑
1≤i≤m−1

|G|2(i,m)).

We can rewrite this as

N(ρ,G) =
1

2m
(m|G|m +

∑
d|m

ϕ(
m

d
)|G|2d).
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