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Chapter 1

Introduction

The main objective of the research realized in the doctoral school program was the

study of some extension of stochastic models concerning aggregate claims and their

implementation through several practical applications.

We extend such models from the univariate case to the multivariate case, models in

which we include some dependencies in order to help the actuaries to make a more

realistic analysis of insurance scenarios.

In my opinion, the study of such models is a starting point in the theory of the aggregate

claims distributions and opens a variety of ways of research that other young future

PhD students could follow.

The operational objectives of my research were:

• The extension to a multivariate settings of the bivariate collective model intro-

duced by Jin and Ren [14], to study aggregate claims when different types of

claims simultaneously affect an insurance portfolio. The simpler multivatiate

collective models were studied by Sundt [29].

• The description of several techniques used to evaluate the compound distribu-

tion such as: convolution, recursions, simulation, calculation with approximate

distribution and inversion methods, which also includes the FFT, and moreover

the study of how these methods interact with our new collective models in order

to obtain the distribution of the aggregate amount of claims occurred in an in

insurance portfolio within a given period of time. For details on these methods

see Klugmann [17], while for the FFT method see Bühlmann [3], Grubel and

Hermesmeier [8] and Embrechts et al. [7].

• A comparison between these techniques mentioned above in order to find the

optimal way to be closer to the reality;

• We also focused on the so called alternative methods in order to simplify calcu-

lations and reduce the computing time, here we detailed a lot of aspects such as:

a variety of errors that these methods imply but also a strongly comparison be-
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tween simulation and recursive methods. For details on such errors see Klugman

[17], Grubel and Hermesmeier [8], [9], and Sundt and Vernic [33].

• A study case using the Monte Carlo method in order to demonstrate the utility

and the application of this method in the field of engineering, more precisely in

the shipbuilding area. Fore more details regarding risk in shipbuilding see Dorp

and Duffey [6] and Kolic and Calic [18], and fore mode generic details see also

Storch and Lin, [27], and Winston [37] and Dlugokecki et al. [5].

The original results of this thesis were accepted and published in 4 inter-

national ISI journals such as:

1. Elena-Gratiela Robe-Voinea, Raluca Vernic, On a multivariate aggregate

claims model with multivariate Poisson counting distribution, Proceedings of the

Romanian Academy, Series A, ISSN: 1454-9069,cotat CNCSIS A, ID =789, and

ISI indexed, 2015-IF=1.658, accepted

2. Elena-Gratiela Robe-Voinea, Raluca Vernic, Another appproach to the eval-

uation of a certain multivariate compound distribution Analele Universitatii

”Ovidius” Constanta, seria Matematica, ISSN 1224-1784, E-ISSN 1844-0835. (co-

tat CNCSIS A, ID =31, ISI indexed), 2015-IF= 0.383, accepted.

3. Elena-Gratiela Robe-Voinea, Raluca Vernic, Fast Fourier Transform for mul-

tivariate aggregate claims, Computational and Applied Mathematics, Springer In-

ternational Publishing, 2016, DOI 10.1007/s40314-016-0336-6, Print ISSN 0101-

8205, Online ISSN 1807-0302. (ISI indexed), 2016-IF=0.802.

4. Elena-Gratiela Robe-Voinea, Raluca Vernic, On the recursive evaluation of

a certain multivariate compound distribution, Acta Mathematicae Applicatae

Sinica, English Series, Springer International Publishing, 2016,. (ISI indexed),

2016-IF=0.250, accepted.

Furthermore during the doctoral school there were attendace with presen-

tantion to the following national and international conferences:

1. Elena-Gratiela Robe-Voinea, Raluca Vernic, Fast Fourier Transforms for Bi-

variate aggregate losses. A Matlab application, The 16th Conference of Roma-

nian Society of Statistics and Probabilities, SPSR , April 26, 2013, The Bucharest

University of Economic Studies, Bucharest, Romania.

2. Elena-Gratiela Robe-Voinea, Raluca Vernic, Fast Fourier transform for Mul-

tivariate aggregate losses, The 17th Conference of Romanian Society of Statistics

and Probabilities, SPSR , April 25, 2014, The University of Bucharest, Romania.
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3. Elena-Gratiela Robe-Voinea, Exponential tilting for computing multivariate

compound distributions using the Fast Fourier Transform, 22nd Conference on

Applied and Industrial Mathematics - CAIM 2014 , September 18-22, 2014, Uni-

versity of Bacău, Romania, Abstracts, pp. 38.

4. Elena-Gratiela Robe-Voinea, Raluca Vernic, What if different types of lcaims

simultaneously affect an insurance portofolio?, The 18th Conference of Roma-

nian Society of Statistics and Probabilities,SPSR, May 8, 2015, University of

Bucharest, Romania.

5. Elena-Gratiela Robe-Voinea, Raluca Vernic, On the recursive evaluation of

a certain multivariate compound distribution, The 8th Congress of Romanian

Mathematicians, June 28 - July 1, 2015, ”Alexandru Ioan Cuza” University of

Iasi, Romania, Abstracts, pp. 120.

6. Elena-Gratiela Robe-Voinea, On the recursive evaluation of a certain multi-

variate compund distribution , Scientific PhD Students Session of the PhD School

of Mathematics, June 22, 2015, University of Bucharest, Romania.

7. Elena-Gratiela Robe-Voinea, Raluca Vernic, A recursive procedure for a com-

pound risk model with compound-type severity distributions, The 12th Balkan

Conference on Operational Research BALCOR, September 9-13, 2015, ”Roma-

nian Naval Academy”, Constanta, Romania.

8. Elena-Gratiela Robe-Voinea, Raluca Vernic, Risk analysis based on the Monte

Carlo method for a ship design project, The 19th Conference of Romanian Soci-

ety of Statistics and Probabilities, SPSR, May 27, 2016, Technical University of

Civil engineering, Bucharest, Romania.

9. Elena-Gratiela Robe-Voinea, Scientific PhD Students Session of the PhD

School of Mathematics, June 21, 2016, University of Bucharest, Romania.

10. Elena-Gratiela Robe-Voinea, Raluca Vernic, Multivariate aggregate claims

evaluation using the Fast Fourier Transform, 13éme Colloque Franco-Roumain

de Mathématiques Appliquées], August 25-29, 2016, ”Alexandru Ioan Cuza” Uni-

versity of Iasi, Romania.
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Chapter 2

Preliminary notions

2.1 Collective models

2.1.1 Univariate case

The collective model in the univariate case can be written as

S =
N∑
j=0

Uj, (2.1)

where S represents the random variable (r.v.) aggregate claims, N the r.v. num-

ber of claims occurring during the given time period, U0 = 0 and (Uj)j≥1 are

independent and identically distributed (i.i.d.) claim sizes positive r.v.s, which

are also independent of N see [11].

The distribution of S is called compound, while the distribution of N is called

counting distribution.

2.1.2 Bivariate case

The collective model in the bivariate case, can be written as

(S1, S2) =

(
N1∑
l=1

Ul,

N2∑
j=1

Vj

)
, (2.2)

where S1 represents the aggregate losses of type I, S2 the aggregate losses of type

II, Ul the cost of type I losses, i.i.d., Vj the cost of type II losses, i.i.d., N1 the

number of type I losses, N2 the number of type II losses. Here N1 and Ul are

independent while N2, Vj are also independent.

Recently, [14] introduced a bivariate collective model to study aggregate claims

in the case when different types of claims simultaneously affect an insurance
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portfolio (e.g., floods, storms or earthquakes).

Their model is

(S1, S2) =

(
N1∑
i=1

Ui +

N3∑
k=1

Lk,

N2∑
j=1

Vj +

N3∑
k=1

Qk

)
, (2.3)

where N1 denotes the number of accidents that cause only type one claims, N2

denotes the number of accidents that cause only type two claims and N3 denotes

the number of accidents that cause both types of claims. The claim number vector

(N1, N2, N3) has probability function p(n1, n2, n3) = P (N1 = n1, N2 = n2, N3 =

n3); (Ui)i≤1 and (Vj)j≤1 are mutually independent and independent of the claim

numbers (N1, N2, N3) and claim sizes (Lk, Qk)k≤1, in the same manner the claim

sizes vectors (Lk, Qk)k≤1 are mutually independent, identically distributed and

independent of claim numbers (N1, N2, N3) and claim sizes Ui and Vj.

2.1.3 Multivariate case

The multivariate form for the collective model can be written as

(S1, ..., Sm) =

(
N1∑
i=1

U1i, ...,
Nm∑
i=1

Umi

)
(2.4)

where Nk denotes the number of claims of type k and (Uki)i≤1 their corresponding

costs, which are i.i.d. and independent of the number of claims. [14] obtained

recursions for the bivariate form (2.3) under three different assumptions related

to the dependency structure of the claim numbers; the resulting models were

named A, B and C, corresponding to the similar ones from [11]. They also used

FFT as an alternative method.

Remark 2.1 We recall that a distribution belongs to the R1(a, b) class if its

probability function (p.f.) satisfies the recursion

Pr (N = n) =

(
a+

b

n

)
Pr (N = n− 1) ,∀n ≥ 1,

for some constants a, b ∈ R (for details on the Rk classes see, e.g., [28] or [33]).

There are several techniques used to evaluate the compound distributions such

as: convolutions, recursions, simulation, calculation with approximate distribu-

tion and inversion methods, which also includes the FFT. The recursive and the

FFT method will be studied in detail in the following together with the manner

in which they interact with our new collective models in order to obtain the dis-

tribution of the aggregate amount of claims occurred in an in insurance portfolio

within a given period of time.
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Chapter 3

Recursions for compound

multidimensional models

3.1 Introduction

We consider the following multivariate aggregate claims model

(S1, ..., Sm) =

(
N1∑
i=0

U1l +

N0∑
k=0

L1k, ...,
Nm∑
l=0

Uml +

N0∑
k=0

Lmk

)
, (3.1)

where m ≥ 2 is the number of different types of claims affecting the portfolio,

Sk denotes the aggregate claims of type k, Nk the number of claims of only type

k, N0 the number of common claims (e.g., accidents that causes all m types of

different claims). Each set of claim sizes (Ujl)l ≥ 1 are positive, independent

and identically distributed (i.i.d.) as the generic random variable (r.v.) Uj, 1 ≤
j ≤ m, independent of the claim numbers and of the other claim sizes, including

(L1k, ..., Lmk). The random vectors (L1k, ..., Lmk)k≤1 are non-negative i.i.d. as

the generic (L1, ..., Lm), and independent of the claim numbers. Clearly, Uj0 =

Lj0 = 0,∀j. In the following, by a bold faced letter we denote a vector, i.e.,

X = (X1, ..., Xm) or x = (x1, ..., xm). We shall work with discrete r.v.s and if the

claim sizes distributions are continuous, they should be discretized using, e.g.,

the rounding method, see [17]. If f is a probability function (p.f.), we denote by

f ∗n its n-fold convolution corresponding to the distribution of the sum of n i.i.d.

r.v.s having p.f. f , note thatf ∗1 = f and, by convention, f ∗0(x) =

{
1 x = 0

0 x 6= 0
.

Let fS denote the p.f. of S, fj the p.f. of Uj,j = 1,m, f0 the p.f. of L, and p the

p.f. of N = (N0, ..., Nm).

Then from [17], we easily obtain

fS(x) =
∑

n0≥0,...,nm≥0

p(n0, ..., nm)
x∑
k=0

m∏
j=1

f
∗nj

j (kj)f
∗n0
0 (x− k),x ≥ 0, (3.2)
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where 0 = (0, ..., 0) , while the inequality x≥0 and the difference x-k are com-

ponentwise. Note that due to the convolutions in (3.2), fS could be difficult to

evaluate and time-consuming; therefore, alternative methods have been devel-

oped, from which recursions play an important role in actuarial mathematics.

We recall the fact that the distribution of N is also called counting distribution,

while the distribution of S is called compound. Let us denote the p.f. of a dis-

crete random vector X by fX and its probability generating function (p.g.f.) by

gX; we recall that

gX(t)
def
= E

[
m∏
j=1

t
Xj

j

]
.

Moreover, as a property of the p.g.f., it holds that

gX(t) =
∑
x≥0

fX(x)
m∏
i=1

txii (3.3)

and clearly, gX(0) = fX(0).

Proposition 3.1 Under the assumptions of model (3.1), the p.g.f. of S is given

by

gS(t) = gN(gL(t), gU1(t1), ..., gUm(tm)). (3.4)

3.2 Recursive evaluation: first case, correspond-

ing to model B

This section is based on paper [21].

In this next section, we shall present a recursion to evaluate the distribution for

model 3.1 when the number of claims N follows a multivariate Poisson distribu-

tion. In the bivariate setting, when m = 2, a recursion for this case has been

recently presented in [14]; our recursion extends this one to a general m. In

the simpler univariate case (m = 1), the history of recursions involving Poisson

counting distributions starts in insurance with [20] and [35], and continues with

more complex recursions for compound mixed Poisson distributions discussed in

[36], [11] among others, or, in the multivariate case, in [32], etc. In particular,

as we mentioned from the beginnig, if N follows the multivaritate Poisson dis-

tribution MPom+1(λ, λ0, ..., λm) with λ > 0, λj > 0,∀j, then, from [16] we have

that

gN(t) = exp

{
λ

(
m∏
j=0

tj − 1

)
+

m∑
j=0

λj(tj − 1)

}
. (3.5)
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Proposition 3.2 Under the assumptions of model (3.1), if N follows the mul-

tivariate Poisson distribution MPom+1(λ, λ0, ..., λm), then the p.f. of S satisfies

the recursion

fS(x) =
λk
xk

xk∑
zk=0

zkfk(zk)fS(x1, ..., xk−1, xk − zk, xk+1, ..., xm) +

+
λ0
xk

x∑
z=0

zkf0(z)fs(x− z) +
λ

xk

x∑
v=0

(
v∑

u=0

vkfi(ui)f0(v − u)

)
,

xk ≥ 1, 1 ≤ k ≤ m,with starting value

fS(0) = exp

{
λ

(
f0(0)

m∏
j=1

fj(0)− 1

)
+

m∑
j=1

λj(fj(0)− 1) + λ0(f0(0)− 1)

}
.

(3.6)

3.3 Recursive evaluation: second case correspond-

ing to model A

This section is based on [25].

In this case, we start by extending the recursion of model A from [14] in a multi-

variate setting under the assumption that the distribution of the total number of

claims N belongs to the R1(a, b) class, while, conditionally on it, the distribution

of N is multinomial.

Therefore, we derive the recursive formula corresponding to the multivariate

model A, and provide a numerical example in the trivariate case m = 3 making

some remarks in what regards the computations order.

According to the model A in Jin and Ren [14], we consider the following supple-

mentary assumptions on model (3.1):

A1 The first one is related to the total number of claims N = N0 + N1 + ... +

Nm, whose probability function (p.f.) is assumed to satisfy the Panjer-type

recursion

Pr (N = n) =

(
a+

b

n

)
Pr (N = n− 1) ,∀n ≥ 1,

for some constants a, b ∈ R (for details on Panjer’s class, see [19] or [33]);

A2 The second one concerns the conditional distribution of N given N = n,

which is assumed to be multinomial Mnom(n; p1, ..., pm) with the parame-

ters n ∈ N and p1, ..., pm ∈ (0, 1) such that p0 := 1 −
∑m

i=1 pi ∈ (0, 1). We

recall that (see, e.g., [16]), with n =
∑m

i=0 ni,

Pr(N0 = n0, N1 = n1, ..., Nm = nm|N = n) =
n!

m∏
i=0

ni!

m∏
i=0

pni
i .
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Moreover, denoting by E the expected value operator, based on the p.g.f. formula

of this multinomial distribution (see, e.g., [16]), the p.g.f. of N becomes

gN(n) = E

[
E

[
m∏
j=0

n
Nj

j

∣∣∣∣∣N
]]

= E

( m∑
j=0

pjnj

)N
 = gN

(
m∑
j=0

pjnj

)
.

From Proposition 2.1 in [21], we have that for the general model (3.1), the p.g.f.

of S is given by

gS(t) = gN(gL(t), gU1(t1), ..., gUm(tm)),

and inserting the above formula of gN yields that for model A,

gS(t) = gN

(
m∑
j=1

pjgUj(tj) + p0gL(t)

)
. (3.7)

The following recursive formulas were proved in the thesis in two alternative

ways: first based on the properties of the p.g.f. and, alternatively, based on some

recursions presented in [33]. Next, we redenote fL by f0.

Proposition 3.3 Under the assumptions (A1-A2) of model (3.1), the following

starting value and recursive formulas hold:

fs(0) = gS(0) = gN

(
m∑
j=1

pjfj(0) + p0fL(0)

)
;

fS(x) = K

a
m∑
j=1
j 6=k

pj

xj∑
yj=1

fj(yj)fS(x1, ..., xj−1, xj − yj, xj+1, ..., xm)

+pk

xk∑
yk=1

(
a+ b

yk
xk

)
fk(yk)fS(x1, ..., xk−1, xk − yk, xk+1, ..., xm)

+p0
∑

0<y≤x

(
a+ b

yk
xk

)
fL(y)fS(x− y)

}
, (3.8)

xk ≥ 1, xj ≥ 0,∀j 6= k;

fS(x) = K


m∑
j=1

pj

xj∑
yj=1

(
a+ b

yj
x+

)
fj(yj)fS(x1, ..., xj−1, xj − yj, xj+1, ..., xm)

+p0
∑

0<y≤x

(
a+ b

y+
x+

)
fL(y)fS(x− y)

}
, x > 0, (3.9)

where K =

[
1− a

(
m∑
j=1

pjfj(0) + p0fL(0)

)]−1
and x+ =

m∑
i=1

xi.

11



Chapter 4

Alternative methods

In the following, we shall need the characteristic function of model (3.1) presented

in next proposition.

Proposition 4.1 Under the assumptions of model (3.1), it holds that the char-

acteristic function of S is given by

ϕS(t) = gN(ϕL(t), ϕU1(t1), ..., ϕUm(tm)). (4.1)

4.1 Multidimensional discrete Fourier transforms

and FFT algorithm

Let f (x) be an m-variate function defined on the integer values xj = 0, 1, ..., rj−
1, 1 ≤ j ≤ m. Then its discrete Fourier transform (DFT) f̃ can defined by

(definition used in Matlab)

f̃(c) =

r1−1∑
x1=0

...

rm−1∑
xm=0

f(x) exp

{
−2πi

m∑
j=1

xjcj
rj

}
, cj = 0, ..., rj − 1, 1 ≤ j ≤ m.

Its inverse mapping is given by

f(x) =
1

m∏
j=1

rj

r1−1∑
c1=0

...
rm−1∑
cm=0

f̃(c) exp

{
2πi

m∑
j=1

xjcj
rj

}
, xj = 0, ..., rj − 1, 1 ≤ j ≤ m.

For model (3.1), the following algorithm based on the FFT and its inverse (IFFT)

can be used to obtain an approximate distribution of S.

Algorithm 1

Step 1. Set the truncation points for the r.v.s claim sizes Uj at rj, 1 ≤ j ≤ m,

and for L at (r1, ..., rm). The truncated claim size distributions result as fj =

12



{fj(0), fj(1), ..., fj(rj − 1)} for Uj, 1 ≤ j ≤ m, and f0 = [f0 (j1, ..., jm)]j1,...,jm for

L, where 0 ≤ jl ≤ rl − 1, 1 ≤ l ≤ m. If necessary, the resulting vectors fj or the

table f0 can be padded with zeros to force the rjs to be powers of two.

Step 2. Apply the one-dimensional FFT to fj yielding the vector f̃j, 1 ≤ j ≤ m;

then apply the multidimensional FFT to f0, yielding the multidimensional table

f̃0.

Step 3. Use formula (4.1) to obtain the discrete characteristic function

ϕ̃S(j) = gN(̃f0(j), f̃1(j1), ..., f̃m(jm)), 0 ≤ jl ≤ rl − 1, 1 ≤ l ≤ m.

Step 4. Apply the multidimensional IFFT to ϕ̃S to obtain the p.f. of S.

Remark 4.2 To find optimal rjs, one can gradually increase them (e.g., 64,

128, 256 etc.) until the differences between the solutions obtained for the current

values of the rjs and the previous ones are no more significant. More details on

errors are given in the next section.

Back to the above Algorithm 1, it essentially generates two types of errors: dis-

cretization and aliasing errors.

4.2 Types of errors. Exponential tilting

The errors generated by the use of the DFT (and, in particular, of the FFT)

have been investigated mainly in connection with harmonic analysis applications

(i.e., images and signal processing) see, e.g., [13] and [1]. In the insurance field,

even if the calculation of aggregate claims distributions using the Fourier method

starts in 1983 with [10], only later on, [8] and [9] conducted a thorough study of

the related errors and even proposed an improved FFT procedure based on an

exponential change of measure. Concerning the same problem, [26] noted that

“such typical errors can be crucial for the final result, especially when working

with heavy-tailed distributions”.

4.2.1 Discretization (arithmetization) errors

The source of this types of errors is the choice of spans hi, and the solutions to

reduce it are the following:

- evaluation of upper and lower bounds (can be too pessimistic);

- successively reducing the spans until the improvment in the computed distri-

bution is small enough.
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4.2.2 Aliasing errors

This is a DFT specific error due to truncation and consists in placing below the

truncation point the compound mass which lies beyond this point (wrap-around

effect). Based on convolutions, we obtained the following upper bound for the

AE corresponding to our model:

AE (S) ≤ 1− FS (r− 1) .

To reduce the AE errors one should :

- Reasonably increasing the truncation points; if there is no available probability

mass between some (smaller) point and the truncation point, the empty range

will be padded with zeros;

- Apply the exponential tilting with a careful choice of the tilting parameters.

Exponential tilting

Generates an exponential decay of the distribution’s tail.

The tilting operators are defined by

Eθj fj =
[
e−θj lfj (l)

]
0≤l≤rj−1

, 1 ≤ j ≤ m,

Eθ1,...,θmf0 =

[
exp

{
−

m∑
j=1

θjlj

}
f0 (l1, ..., lm)

]
0≤lj≤rj−1,1≤j≤m

,

where θj > 0, 1 ≤ j ≤ m, are the tilting parameters.

FFT algorithm with exponential tilting : Algorithm 2

Step 1. Same as in Algorithm 1;

Step 2. Tilt the vectors fj, 1 ≤ j ≤ m, and the multidimensional table f0;

Step 3. Apply FFT to obtain Ẽθj fj, 1 ≤ j ≤ m, and ˜Eθ1,...,θmf0;

Step 4. Use formula (4.1) to obtain the discrete tilted characteristic function of

S, i.e. a multidimensional table of dimension r1 × ...× rm;

Step 5. Apply IFFT to this multidimensional table, then untilt the result by

E−θ1,...,−θm to obtain the p.f. of S.

AE with exponential tilting satisfies :

AET ilt
θ1,...,θm

(S) ≤ e−
∑m

j=1 θj(rj−1)AE (S) .

To avoid other numerical errors, recommended rough value of
m∑
j=1

θjrj ' 20.

In the univariate case : θ = 20/r;

In the bivariate case : θj = 10/rj,;

In the trivariate case (our numerical examples): θj = 7/rj.
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Chapter 5

Monte Carlo method - a

particular study case

A well-known method such as Monte Carlo simulation is quite often used to ana-

lyze the risks in a project development. This chapter aims to present the method

using an ongoing ship design project for a petroleum chemical tanker.

First of all it is important to know that the primary focus during the develop-

ment of a ship basic/detailed design is to pay attention to an important aspect

called risk. Taking into consideration that building a ship implies a lot of risks,

an important duty is to prevent them by maximizing the probability and conse-

quences of positive events and, in the same time, by minimizing the probability

and consequences of adverse events related to the project’s objectives. Shipbuild-

ing industry is for centuries a worldwide subject, see for example Hoving [12],

Chida and Davies [4], Briggs Vernon [2] and involves a lot of aspects such as those

that we will present in the following. Building new ships means substantial costs,

a great consumption of raw matter and materials, significant human resources as

well as launching new dedicated techniques and technologies. Consequently, to

start a new project, a risk analysis is required to reflect as accurate as possible the

implications and consequences of all the factors which are about to participate

in the task achievement.

5.1 Monte Carlo simulation for a ship design

project

In this study case we consider a short part of a ship design project which was

planned to start on January 4, 2016 and scheduled to be completed on July 18,

2017 at a cost of $120.000. The software Primavera Risk Analysis was used.
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5.1.1 Simulation 1

We assigned a triunghiular distribution to the duration uncertainty by applying

percentages to the minimum, likely and maximum the total duration/ activity.

After running the Monte Carlo simulation, the possibility of finishing on time is

90%. Also, we can observe that the P-80 date is now July 04, 2017 for a Triangle

distribution, compared with May 30, 2017 for the Uniform distribution.

We can observe that if we choose a uniform distribution the probability to finish in

time is more optimistic, 98%. This is due to the shape of the Uniform distribution,

but we would expect a Triangular distribution to be more realistic for such a

study.

The costs for Simulation 1 are almost similarly in both cases: even though we

use a Uniform or a Triangle distribution, there are 94% chances for the Uniform

distribution and 96% chances in case we chose a Triangle distribution to maintain

the initial budget.

5.1.2 Simulation 2

In this part, we use a Risk Register. Every risk is defined by five attributes

such as: probability, schedule, cost, performance and score. Every attribute has

assigned a factor scale (low, medium, high) in accordance with its project impact

factor.

We assume risks such as:

• Changing the input data

• Leaving employees

• Class certification

• Logistic database

We can easily observe that in this case, the P-80 date is now August 18, 2017 or

almost more than one month from the scheduled date of July 18, 2017, and that

the possibility of finishing on time is in this scenario only 39% .

Regarding the costs, there are only 19% chances to finish the project with the

initial budget ($120.000), and a P-80 posibility to have a cost of $282.448, which

means a $162.488 amount difference.
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Chapter 6

Conclusions

6.1 General conclusions

In this PhD thesis original results have been presented in accordance with the

study of the aggregate claims distributions of a portfolio insurance, portfolio

which may contain policies for: fires, floods, earthquakes, traffic accidents, and

so on.

We focused firstly on the extension of two bivariate models to a multivariate

setting, and, moreover, we created our own multivariate aggregate claims model,

with its own dependencies.

Our goal was to obtain an exact recursive formula for the probability function of

the multivariate compound distribution of both models.

Why did we do this, and what did we aim by doing this? The answer is obvious,

we wanted to contribute to the improvement of the actuarial science in order to

assist the actuaries to a better analysis of an insurance scenario, especially when a

portfolio is simultaneously affected by different types of claims. It is important to

mention here that all these aspects were proved not only in classical mathematical

ways, but also with numerical examples.

Furthermore, due to the fact that I personally activate as a planner engineer

in the shipbuilding industry, I consider that it was a good idea to complete my

thesis with a study case from this field of activity. I wanted to emphasize the

strong link between planning and the mathematical science, and affirm on that

way that : ”Math is everywhere!”.

I showed how important a simulation method such as Monte Carlo could be and

how this can help us make a relevant risk analysis of a ship design project.

In my opinion, I believe that making this mixture between the classical stochastic

theories and real life circumstances makes my research interesting to read and

undoubtedly original.

It is very important to mention that the entire research of these thesis is the result
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of a strong collaboration with my scientific advisor, PhD Professor Vasile Preda

and with PhD Associate Professor Raluca Vernic who, due to their academic

experience, coordinated my ideas in the best way possible in order to make a

good and efficient work.
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