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A thesis presented for the degree of
Doctor of Philosophy

Bucharest, 2016





ABSTRACT

INTRODUCTION

Grothendieck categories were introduced by Alexander Grothendieck in
his paper [32] published in 1957. His aim was to use the homological alge-
bra methods for the study of sheaves. A systematic study of Grothendieck
categories was done by Gabriel in his thesis [28]. The study of Grothendieck
categories has unified many theories in mathematics. Relevant examples of
Grothendieck categories are: the category of left modules over a ring, the
category of quasi-coherent sheaves on an algebraic variety, the category of
sheaves of abelian groups on a topological space, the category of graded mod-
ules over a graded ring, the category of comodules over a coalgebra, the cate-
gory of generalized Doi-Hopf modules. At the beginning of the theory it was
an open question whether any Grothendieck category is equivalent to a cate-
gory of modules (over a ring). The answer turned out to be negative. For ex-
ample it is possible to show that certain categories of graded modules are not
equivelnt to a category of modules. However, Popescu and Gabriel proved in
1964 a famous theorem that shows that each Grothendieck category is equiv-
alent to a quotient category of a module category, see [29]. More precisely, if
A is a Grothendieck category with a generator G, R = EndA(G) is the endo-
morphism ring of G and Mod(R) is the category of unitary right R-modules,
then the functor T : A → Mod(R) defined by T (X) = HomA(G,X) on
objects X of A and by T (f) = HomA(G, f) : T (X) → T (Y ) on morphisms
f : X → Y in A is fully faithful and has an exact left adjoint S. The initial
proof was rather complicated; especially the part on the exactness of the
functor S. In order to simplify the proof, the initial proof was revisited by
several authors, among them the most elegant and short proof in chronologi-
cal order where given by Takeuchi [65], Ulmer [67] and Mitchell [44]. The last
one uses an ingenious lemma, that remained in literature as Mitchell Lemma
and also the existence of enough injective objects in any Grothendieck cate-
gory.
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The concept of localization was first studied for commutative rings. In
this case we consider P a prime ideal of a commutative ring R. The com-
plement of this ideal is denoted by SP = R− P , that is a multiplicative set.
Then we can consider the localizing subcategory of R−Mod denoted by

CP = {M ∈ R−Mod|S−1
P M = 0}

It is easy to see that this is the same thing with

CP = {M ∈ R−Mod|HomR(M,E(R/P )) = 0}

where E(R/P ) denotes the injective hull of R/P . Moreover, the quotient
category R − Mod/CP is equivalent to the category RP − Mod of all left
modules over the localized ring RP . When the notion of abelian category was
introduced the notion of hereditary torsion theory appeared and it quickly
became a powerful instrument for studying categories. A hereditary torsion
theory in an arbitrary abelian category A is the same thing with having a
localizing subcategory C in A. Moreover, for every localizing subcategory C
in A we have the concept of quotient category A/C. The natural question to
study here is the proximity between any localizing subcategory C of A and
the localizing subcategories of CP -type. Cahen was the first who introduced a
notion of ”stability”. He introduced this notion for a localizing subcategory
of a module category over a commutative ring. In this case a localizing
subcategory is said to be stable if C =

⋂
P∈X CP , for a set X ⊆ Spec(R).

One of the aims of this thesis is to revisit the Gabriel-Popescu Theorem
and its generalizations, and also to introduce a notion of stability in the
general case of Grothendieck categories. Another aim is to look at special
examples of Grothendieck categories, more precisely categories of corepre-
sentations over Hopf algebras, and to investigate Frobenius algebras and
symmetric algebras in such categories. Frobenius algebras originate in the
work of F.G. Frobenius on representation theory of finite groups. Their study
was initiated by Brauer, Nesbitt and Nakayama and then was continued by
Dieudonne,Eilenberg, Azumaya etc. Frobenius algebras have played an im-
portant role in Hopf algebra theory, because any finite dimensional Hopf alge-
bra is Frobenius, cohomology rings of compact oriented manifolds, solutions
of the quantum Yang-Baxter equation, Jones polynomials and topological
quantum field theory. It is a challenging problem to understand the signifi-
cance of Frobenius algebras in monoidal categories other than the categories
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of vector spaces. We discuss this problem for the category of right comodules
over a Hopf algebra H. Under additional assumptions on H, we also look
at symmetric algebras in the category. A special attention is given to the
case where H is a group Hopf algebra kG, where G is an arbitrary group; in
this situation the category of corepresentations over H is just the category of
G-graded vector spaces, and an algebra in the category is a G-graded alge-
bra. One last direction of study in this thesis is also related to group graded
algebras. The theory of algebras graded by an arbitrary group has been sys-
tematically developed after 1970. The main two sources of inspiration were
polynomial algebras with the (usual) positive grading by integers, and group
algebras with the standard grading by the considered group. The study of
group gradings on several classes of algebras have been of interest in commu-
tative and noncommutative algebras, on Lie algebras and in representation
theory. We are interested in gradings on polynomial algebras.

The thesis is divided in four chapters.

Chapter 1: Grothendieck categories. A generalization of Mitchell’s Lemma

In 1964 Pierre Gabriel and Nicolae Popescu showed that each Grothendieck
category is equivalent to a quotient category of a module category.

More precisely if:

• A is a Grothendieck category with a generator G

• R = EndA(G) is the endomorphism ring of G

• Mod(R) the category of unitary right R-modules

then the functor T : A →Mod(R) defined by:

• T (X) = HomA(G,X), where X ∈ A

• T (f) = HomA(G, f) : T (X)→ T (Y ) on morphisms f : X → in A

is fully faithful and has an exact left adjoint S.
Afterward it was revisited by several authors; among the most elegant and

short proofs in cronological order are those of Takeuchi, Ulmer and Mitchell.
The latter uses an ingenious lemma, referred to as Mitchell Lemma.

Our aim in this chapter is to extend the Mitchell lemma from module
categories to functor categories and to show how it can be used in order
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to obtain in an easier way the Ulmer Theorem on the exactness of S, a
generalized Gabriel-Popescu Theorem and a generalized Takeuchi Lemma.

We will use the following notations:

• A a Grothendieck category

• U the set of all objects of A
Gen(U) = {A ∈ A|(∃)f :

⊕
Ui∈U Ui → A→ 0}, the full subcategory of

A, that is a preabelian category of A (has kernels and cokernels)

• AU = {M ∈ A|(∀) morfism f :
⊕

U∈F U → M ∈ A cu F o submul-
time finita a lui U , Ker(f) ∈ Gen(A)}

Let (Uop, Ab) be a category defined in the following way:

• objects: the additive contravariant functors from U to Ab

• morphisms: the natural transformations between such functors

(Uop, Ab) is a Grothendieck category, whose functors (hU)U∈U , where hU
form a generating family of finitely generated projective objects for (Uop, Ab).

Consider the functor T : A → (Uop, Ab) defined by:

• T (X) = HomA(−, X)|U on objects X ∈ A

• T (f) = HomA(−, f)|U : T (X)→ T (Y ) on morphism f : X → Y in A

It is known that T has a left adjoint S : (Uop, Ab)→ A. In particular we
have that S(hU) = U , (∀)U ∈ U .

The most important result of this chapter is the following:

Lemma 1. (Generalized Mitchell Lemma) Consider:

• U be a set of objects of A

• A, B objects of A with A ∈ AU

• MA a subobject of T (A)

• G : MA → T (B) a morphism in (Uop, Ab)

We denote:

• M =
⋃
U∈UMA(U)
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• (∀)m ∈M take Um ∈ U for which m ∈MA(U)

• (∀)m ∈M , pm :
⊕

m∈M Um → Um the canonical projection

• ψ :
⊕

m∈M Um → A the unique morphism with ψum = m, (∀)m ∈M

• φ :
⊕

m∈M Um → B the unique morphism with φum = GU(m), (∀)m ∈
MA(U)

The φ factors through Im(ψ).

We will have the following three important applications, that follow di-
rectly from Mitchell Lemma.

Theorem 2. (Ulmer) The functor S : (Uop, Ab)→ A is exact if and only if
U ⊆ AU .

Theorem 3. (Generalized Gabriel Popescu) Assume that U is a family of
A. Then T : A → (Uop, Ab) is a full and faithful functor, and its left adjoint
S : (Uop, Ab)→ A is exact.

Corollary 4. (Takeuchi Lemma): Let A be an object of A, let YA be a
subobject of T (A) and denote by i : YA → T (A) the inclusion morphism.

(i) If U ⊆ AU then S(i) is a monomorphism
(ii) If A ∈ AU

⋂
Gen(U), then the canonical morphism νA : ST (A)→ A

is an isomorphism.

Chapter 2: Locally stable Grothendieck categories

Consider:

• A a Grothendieck category

• C a localizing subcategory of A

• tC : A → C the torsion functor

• TC : A → A/C the canonical functor

• SC : A/C → A the right adjoint of the functor TC

We define the spectrum of a Grothendieck category as follows:
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Sp(A) = {I ∈ A|I indecompozabil injectiv}

To any indecomposable injective object I of Sp(A) we can associate the
localizing subcategory

AI = {M ∈ A|HomA(M, I) = 0}

Definition 5. A subobject A of an object B ∈ A is irreducible in B if it
cannot be written as the intersection of thwo strictly larger subobjects of B,
or equivalently, if A = M

⋂
N , where M and N are two subobjects of B,

then A = M or A = N .

Proposition 6. AI is an irreducible element in Tors(A), where Tors(A) is
the set of localizing subactegories.

Definition 7. Let A be a Grothendieck category. A localizing subcategory C
of A is said to be stable if there exists a subset Λ of Sp(A sucht that

C =
⋂
I∈ΛAI

In this case, we write CΛ = C. If every localizing subcategory C of A is stable,
then A is called a locally stable category. If A = R−Mod is a locally stable
category then R is a left locally stable ring.

A Grothendieck category A is called locally coirreducible if every nonzero
object contains a nonzero coirreducible subobject. This is equivalent to say-
ing that every injective object of A is the injective hull of a direct sum of
indecomposable injective objects. A is called atomical if it has two localizing
subcategories, namely {0} and A. We say that A has Gabriel dimension if
any object of A has Gabriel dimension.

Using this definitions we give some examples of locally stable Grothendieck
categories.

Proposition 8. Let A be a Grothendieck category verifying one of the fol-
lowing conditions:

1. A is locally coirreducible

2. A has Gabriel dimension

3. A is atomical with spectrum Sp(A 6=
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Then A is locally stable category.

The main result of this chapter gives a connection between the stability
of the Grothendieck category A and the stability of the subcategory C and
the quotient category A/C.

Theorem 9. Let A be a Grothendieck category and let C be a localizing
subcategory of A. Then A is locally stable if and only if C and A/C are
locally stable.

In the following sections of this chapter we will consider some particular
cases of Grothendieck categories.

Let A a locally finitely generated Grothendieck category. A is called a V -
category if every simple object of A is an injective object. The main theorem
of this section states that some localizing subcategories of a V -category are
stable. A localizing subcategory C of A is called a TTF -class if C is closed
under arbitrary direct products.

We will also consider the category of comodules over a coalgebra. Let
C be a coalgebra over a field k. We denote by MC the k-linear category of
all right C-comodules. The Hom bifunctor in this category is denoted by
ComC(−,−). To every localizing subcategory T ofMC we can associate the
quotient categoryMC/T , a k-abelian category determined up to equivalence
by an exact functor T :MC →MC/T . For any simple right C-comodule S
we can consider its injective hull E(S) which is an indecomposable injective
object in MC . We denote by

TE(S) = {M ∈MC |ComC(M,E(S)) = 0}

the localzing subcategory of MC associated to E(S). The main theorem of
this section states that:

Theorem 10. Let {Si|i ∈ I} be a complete set of representatives of the iso-
morphism types of simple right C-comodules. If T is a localizing subcategory
of MC, then

T =
⋂
i∈J⊆I TE(Si),

where J = {i ∈ I|Si /∈ T }. Moreover, this intersection is irreducible.

Chapter 3: Frobenius algebras and symmetric algebras in
monoidal categories



8 Abstract

We will work over a field k. We say that a Frobenius algebra is a fi-
nite dimensional algebra A such that A ' A∗ as left(or, equivalently right)
A-modules. This is an important concept for:representation theory, Hopf
algebra theory, quantum group theory, the topological quantum field theory
and others.

An equivalent characterization for the notion of Frobenius algebra was
given by Abrams. So, Abrams proved that an algebra A is Frobenius⇔ there
exists a coalgebra structure (A, δA, εA) on the k-vector space A such that the
comultiplication δA is a morphism of A,A-bimodules. This equivalent defini-
tion of the Frobenius property makes sense in any monoidal category, which
allowed the introduction of the concept of Frobenius algebra in a monoidal
category. The study of Frobenius algebras in monoidal categories was initi-
ated by M. Murger(2003), R. Street(2004) and S. Yamagami(2004). This is
an important concept that appears in the theory of Morita equivalences of
tensor categories, conformal qunatum field theory and others.

Among the Frobenius algebras there are some algebras that distinguish
themselves by having more symmetry. This are the symmetric algebras. We
say that a symmetric algebra is a finite dimensional algebra A such that
A ' A∗ as A,A-bimodules. It is obvious that any symmetric algebra is a
Frobenius algebra. However, the converse does not hold. This is an important
concept used in topological quantum field theory and block theory of group
algebras in positive characteristic.

Let H an Hopf algebra, and A a finite dimensional algebra inMH , that is
a right H-comodul algebra. If A ∈AMH it follows that its dual A∗ ∈ MH

A .
Also if A ∈ MH

A it does not follow that A∗ ∈A MH , but it results that
A∗ ∈A(S2

) MH , where A(S2) is just A as an algebra and has the right H-

coaction given by a 7→
∑
a0 ⊗ S2(a1). The right H-coaction of A is given

by
∑
a0 ⊗ a1. Now we will give the definition of left H-Frobenius and right

H-Frobenius.

Definition 11. The finite dimensional right H-comodul algebra A is called

• left H-Frobenius if A(S2) ' A∗ in A(S2)MH

• right H-Frobenius if A ' A∗ in MH
A

The following characterizes the left H-Frobenius property. The first four
equivalent conditions are in the spirit of the classical ones for Frobenius al-
gebras, taking also care of the H-coaction. The last condition shows the
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connection to the concept of Frobenius algebra in the category of corepre-
sentations of H.

Theorem 12. Let A be a finite dimensional right H-comodule algebra. The
following assertions are equivalent.

1. A is left H-Frobenius

2. There exists a non-degenerate associative bilinear form B : A×A→ k
with the property that B(b, (h∗S2) · a) = B((h∗S) · b, a) for any a, b ∈ A
and any h∗ ∈ H∗.

3. A has a hyperplane H which does not contain any non-zero left ideal of
A, and (h∗S2) · A ⊆ H for any h∗ ∈ H∗ with h∗(1) = 0

4. A has a hyperplane H which does not contain any non-zero subobject of
A(S2) in A(S2)MH , and (h∗S2) ·A ⊆ H for any h∗ ∈ H∗ with h∗(1) = 0

5. A(S2) is a Frobenius algebra in the monoidal category MH .

We have a similar theorem for the notion of right H-Frobenius. Also
there exists a connection between left H-Frobenius and right H-Frobenius.
The connection is given by the following:

Theorem 13. Let H be a Hopf algebra, and let A be a finite dimensional
right H-comodule algebra. The following two assertions hold.

1. If A is right H-Frobenius, then A is left H-Frobenius

2. If the antipode S is injective and A is left H-Frobenius, then A is also
right H-Frobenius.

The next thing is to particularize the Hopf algebra H to kG, where G
is an arbitrary group. In this case MkG will be the monoidal category of
G-graded vector spaces, and an algebra A in this category will be just a
G-graded algebra.

Proposition 14. Let A be a finite dimensional G-graded algebra, and let
σ ∈ G. The following conditions are equivalent.

1. A(σ) ' A∗ in A-gr

2. (σ)A ' A∗ in gr-A
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Using the above equivalence we can give the definition for σ-graded Frobe-
nius algebra. So we say that a finite dimensional G-graded algebra A is called
σ-graded Frobenius if it satisfies the equivalent conditions in the above propo-
sition. Clearly, e-graded Frobenius means just graded Frobenius.

We study basic properties of σ-graded Frobenius and give several charac-
terizations of them. One of our main results of this section says that:

Theorem 15. Let A =
⊕

g∈GAg be a finite dimensional G-graded algebra,
and let σ ∈ G. The following assertions are equivalent.

1. A is σ-graded Frobenius

2. Aσ ' A∗e as left Ae-modules, and A is left σ-faithful

3. Aσ ' A∗e as right Ae-modules, and A is right σ-faithful

In particular this theorem gives the structure of Frobenius algebras in the
category of graded vector spaces.

Among graded Frobenius algebras there are some objects with more sym-
metry: the graded symmetric algebras, which are just the symmetric alge-
bras in the sovereign category of graded vector spaces. We say that a finite
dimensional graded algebra A is called graded symmetric if A and A∗ are iso-
morphic as graded left-A, right-A bimodules. Afterwards we give a theorem
that characterizes the property of being graded symmetric.

Theorem 16. Let A =
⊕

g∈GAg be a finite dimensional G-graded algebra.
The following assertions are equivalent.

1. A is graded symmetric

2. There exists a non-degenerate associative symmetric bilinear form B :
A × A → k such that B(rτ , rν) = 0 for any rτ ∈ Aτ , rν ∈ Aν, with
τν 6= e

3. There exists a linear map λ : A → k such that λ(xy) = λ(yx) for
any x, y ∈ A, Ker(λ) does not contain non-zero graded left ideals, and
λ(xσyτ ) = 0 for any xσ ∈ Aσ, xτ ∈ Aτ with στ 6= e.

From an example of Eilenberg and Nakayamma it is known that every
semisimple algebra is symmetric. Taking into account what happens in the
monoidal category of vector spaces, it is a natural question to ask whether
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finite dimensional graded semisimple algebras are graded symmetric. The
first step is to look at graded division algebras. We show that this is indeed
the case, provided that the characteristic of k does not divide the dimension
of A, in particular is always true in characteristic 0. Using the structure
of graded semisimple algebras, we uncover a class of such objects that are
graded symmetric; in particular any finite dimensional graded semisimple
algebras is graded symmetric if char k= 0.

In one section of this chapter we also discuss the concept of graded Frobe-
nius in relation to Frobenius functors. It is presented at the beginning an
already known theorem, that gives the connection between Frobenius alge-
bras and Frobenius functors and afterwards we prove the same theorem, but
in the graded case.

Theorem 17. A is graded Frobenius if and only if the forgetful functor U :
A− gr → k − gr is a Frobenius functor.

Finally, we give a new proof of a result of Bergen using Frobenius func-
tors, stating that if H is a finite dimensional Hopf algebra acting on a finite
dimensional algebra A, then the smash product A#H is Frobenius if and
only if so is A.

The symmetric algebras can be defined in several monoidal categories,
like the sovereign monoidal categories. However, it is not clear how one
could define symmetric algebras in an arbitrary monoidal category. So, the
question is for which Hopf algebra H, we can give ”a good definition” for the
concept of symmetric algebra in the category of right H-comodule algebra.
The answer is for cosovereign Hopf algebras.

Definition 18. Cosovereign Hopf algebra is a Hopf algebra H with a
character u on H(i.e. u= grouplike on H∗ ) such that

S2(h) =
∑
u−1(h1)u(h3)h2, ∀h ∈ H

We say that u is a sovereign character on H

The map f : A → A(S2), f(a) = u−1 · a, is an isomorphism of right
H-comodule algebras, and its induces an isomorphism of categories F :A(S2)

MH →AMH . By restriction this induces an isomorphism of categories(also
denoted by F ), F :A(S2) MH

A →AMH
A . Now, if A∗ ∈A(S2) MH

A then F (A∗) ∈A
MH . Using the observations above we can define symmetric algebras in the
category MH with respect to u.
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Definition 19. Let H be a cosovereign Hopf algebra with u as a sovereign
character. A finite dimensional right H-comodule algebra A is a symmetric
algebra with respect to u if

F (A∗) ' A in the category AMA

We say simply that A is (H, u)-symmetric.

Afterwards we give explicit characterizations of this property inMH and
show that the definition of symmetry depends on the character. It is pos-
sible that a cosovereign Hopf algebra H has two sovereign characters u and
v, such that a right H-comodule algebra A is (H, u)-symmetric, but not
(H, v)-symmetric. Also, we use a modified version of the trivial extension
construction to give examples of (H, u)-symmetric algebras of corepresenta-
tions.

Theorem 20. Let H be a cosovereign Hopf algebra with sovereign character
u, A a right H-comodule algebra, and ε(A) = A

⊕
F (A∗), with the direct

sum structure of a right H-comodule and the algebra structure obtained by
the trivial extension of A and the A,A-bimodule F (A∗). Then

ε(A) = A
⊕

F (A∗)

is a right H-comodule algebra which is (H, u)-symmetric.

In the case where H is involuntary, i.e. S2 = Id, H is cosovereign if
we take u = ε, the counit of H, and in this case it is clear that an (H, ε)-
symmetric algebra is also symmetric as a k-algebra. However, we show that in
general H may be (H, u)-symmetric, without being symmetric as a k-algebra.

Given a finite dimensional algebra A in the category MH , where H is a
finite dimensional Hopf algebra, one can construct the smash product A#H∗.
Smash product constructions are of great relevance since they describe the
algebra structure in a process of bosonization, which associates for instance
a Hopf algebra to a Hopf superalgebra. It was proved by Bergen as I said
earlie that A is Frobenius if and only if so is A#H∗. On the other hand,
we show in an example that such a good connection does not hold for the
symmetry property. Our main aim in this section is to study the connection
between A being a Frobenius algebra in MH and A#H∗ being a Frobenius
algebra in MH∗

. We show that just an implication holds.
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Theorem 21. Let H be a finite dimensional Hopf algebra and A be a finite
dimensional right H-comodule algebra. Then if A is a Frobenius algebra in
MH , A#H∗ is a Frobenius algebra in MH∗

.

The next aim we have is to establish a good transfer of the symmetry
property between A and A#H∗.

Theorem 22. Let H be a finite dimensional Hopf algebra with antipode S,
and let g and α be the distinguish grouplike elements of H and H∗. We
assume that S2(h) = g−1hg =

∑
α−1(h1)α(h3)h2, ∀h ∈ H. If A is a right

H-comodule algebra, then

A is (H,α)-symmetric ⇔ A#H∗ is (H∗, g)-symmetric.

If A is a right H-comodule algebra which is Frobenius (respectively sym-
metric) as an algebra it is a natural question to ask whether this property
transfers to the subalgebra of coinvariants. It is easy to see that the answer
is no. However, we show that under some extra condition the transfer takes
place.

Group gradings on polynomial algebras

Let k be a field and let A = k[X1, X2, ..., Xn] be the algebra of polyno-
mials in n indeterminates. Let G be a group, with the opperation denoted
additively. Here we can always assumte that G is abelian.

We study a special class of linear gradings, called good gradings, char-
acterized by the fact that any indeterminate is a homogenous element of
nontrivial degree.Our aim main result is the following:

Theorem 23. Let R be an IBN ring, and let u, v : {1, 2, .., n} → G − {0}
be functions, where G is an abelian group. Let A = R[X1, X2, ..., Xn] be the
G-grading ring such that Xi is homogenous of degree u(i), for any 1 ≤ i ≤ n,
and the elements of R has degree 0. Let B = R[X1, ..., Xn] with the G-grading
defined similarly, by using v. If there exists an isomorphism φ : A → B of G-
graded rings such that φ(r) = r for any r ∈ R, then there exists a permutation
σ ∈ Sn such that v = uσ.

The original contributions of the thesis are contained in the papers:

1. S. Crivei, C. Năstăsescu, L. Năstăsescu, A generalization of the Mitchell
Lemma: The Ulmer Theorem and the Gabriel-Popescu Theorem revis-
ited, J.Pure Appl Algebra 216, (2012), 2126-2129
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2. F. Castano-Iglesias, C. Năstăsescu and L. Năstăsescu, Locally stable
Grothendieck categories: Applications, Appl. Categor. Struct. 21
(2013), 105-118

3. S. Dăscălescu, C. Năstăsescu and L. Năstăsescu, Frobenius algebras
of corepresentations and group graded vector spaces, J. Algebra 406
(2014), 226-250

4. S. Dăscălescu, C. Năstăsescu and L. Năstăsescu, Are graded semisimple
algebras symmetric?, preprint, arXiv:1504.04868

5. S. Dăscălescu, C. Năstăsescu and L. Năstăsescu, Symmetric algebras in
categories of corepresentations and smash products, Journal of Algebra
465 (2016), 62-80

6. S. Dăscălescu, C. Năstăsescu and L. Năstăsescu, Group gradings on
polynomial algebras, Communications in Algebra, 44 (2016), no.8,
3340-3348

We also use standard notations from the following books: [18], [37], [38],
[43], [49] and [53].
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supported by the Sectorial Operational Programme Human Resources Devel-
opment (SOP HRD), financed from the European Social Fund and by the Ro-
manian Government under the contract number POSDRU/159/1.5/S/137750
and also by the UEFISCDI Grant PN-II-ID-PCE-2011-3-0635, contract num-
ber 253/5.10.2011 of CNCSIS.

Finally I want to thank my advisor Sorin Dăscălescu, for all the help
and support during this period, my father Constantin Năstăsescu for all the
useful advice and also to Septimiu Crivei for the advice that he gave me
regarding the first two chapters.

I also want to thank my husband Arghir Zărnescu for all his love, support
and patience that he had with me during my last year of Ph.D.
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