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Chapter 1

Overview

1.1 Introduction

In most of the thesis we discuss about three operations inspired by biologi-
cal phenomena, namely, the prefix-suffix duplication, the bounded prefix-suffix
duplication and the prefix-suffix-square completion operations. Duplication is
one of the most frequent and less understood mutations among the genome
rearrangements [24]. Roughly speaking, duplication is the process in which a
stretch of DNA is duplicated yielding two or more adjacent copies. This process
may happen at any position in the chromosome, including its beginning and its
end. Actually, the distribution of these tandem repeats varies widely along the
chromosomes and some authors consider that approximately 5% of the genome
rearrangements are different types of duplications [26].

It is considered that a so-called phylogenetic analysis, might be useful in the
investigation of the evolution of species, by the studying duplications along the
genome the most likely duplication history could be determined [27]. The detec-
tion of these tandem repeats and algorithms for tandem repeats reconstructing
history have received a great deal of attention in bioinformatics [2, 1, 25]. How-
ever, a special type of duplications, known as telomeres, appear only at the ends
of chromosomes. Generally, telomeres consist of tandem repeats of a small num-
ber of nucleotides, specified by the action of telomerase. They are considered to
be protective DNA-protein complexes found at the end of eukaryotic chromo-
somes which stabilize the linear chromosomal DNA molecule [5, 24]. The length
of telomeric DNA is important for the chromosome stability: the loss of telom-
eric repeat sequences may result in chromosome fusion and lead to chromosome
instability [23]. In [26] one states that it is a further challenge the sequencing
of the 20% of the genome that is formed by repetitive heterochromatin which
is implicated in the process of chromosome replication and maintenance.

The interpretation of duplications as a formal operation on words has in-
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spired several works in the areas of Combinatorics on Words and Formal Lan-
guages, starting with [3, 14] and continued in [8, 28, 21]and the references
therein. It is worth mentioning that a PhD thesis has been devoted to this
topic [20]. These works have been the starting point for this thesis.

In [15] duplications that appear at both ends of the words namely prefix-
suffix duplications were first considered. The basic motivation of introducing
these operations was to mathematically model a special type of duplications
within DNA sequences, that appear only at the ends of these sequences, also
known as telomeres. Another motivation would be to model the process of gen-
erating long terminal repeats (LTRs): identical sequences of DNA that repeat
hundreds or thousands of times at either end of some specific DNA sequence.
Such sequences are used, for instance, by viruses to insert their genetic material
into the host genomes.

In [15] the class of languages that can be defined by the iterative applica-
tion of the prefix-suffix duplication to a word are investigated, and the class
is compared to other well studied classes of languages. It is shown that the
languages of this class have a rather complicated structure even if the initial
word is rather simple: they are already non-context-free as soon as the initial
word contains at least two different letters. Algorithms for the membership and
distance computation problems are also given. In this context we considered a
weaker variant of the prefix-suffix duplications, called the bounded prefix-suffix
duplication. The new model allowed us to solve some problems that remained
unsolved in [15] and also the new model seems closer to the biochemical reality
that inspired the definition of this operation. It seems more practical and closer
to the biological reality to consider that the factor added by the prefix-suffix
duplication cannot be arbitrarily long.

In the same context of prefix-suffix duplication languages we introduced the
prefix-suffix square completion operation [10]. The initial motivation of study-
ing the prefix-suffix duplication were some biological processes that essentially
create repetitions at the ends of the genetic sequences ; however, the formal
operations defined in [15] assumed that such repetitions are created by repli-
cating their root. In [10] we assumed a different point of view: we considered
the possibility of creating squares (the simplest type of repetition) at one of the
ends of the word by completing a prefix or suffix of the considered sequence to
a square.

Keeping to the above mentioned operations we found it interesting to see
how our operations can be used to generate infinite words [10]. We first show
that the infinite Fibonacci word, the Period-doubling word and the infinite
word Thue-Morse can be generated by suffix square completion. This exhibits
a property that seems interesting to us: every (infinite) word generated by
suffix completion contains squares, but there are (infinite) words generated by
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this operation (which basically creates squares) that avoid any repetition of
(rational) exponent higher than 2. In comparison, we show that the Thue-
Morse infinite word cannot be generated by prefix-suffix duplication. However,
we show that one can generate an infinite cube-free word by suffix-duplication.
This is a weaker version of the result obtained for square completion: every
(infinite) word generated by suffix duplication contains squares, but there are
(infinite) words generated by this operation that avoid any repetition of integer
exponent higher than 2.

We then proceed to investigate the problem of efficiently detecting the ex-
istence of repetitive structures occurring at both ends of some sequence. For
instance, words that do not end or start with repetitions may model DNA
sequences that went through some degenerative process that destroyed the ter-
minal repeats, affecting their stability or functionalities. Moving away from the
biological motivation, words that do not start nor end with repetitions seem to
be interesting from a combinatorial point of view, as well. Indeed, repetitions-
free words (i.e., words that do not contain consecutive occurrences of the same
factors) are central in combinatorics on words, stringology, and their applica-
tions (see, e.g., [22, 16]); words that do not have repetitive prefixes or suffixes
model a weaker, but strongly related, notion. In [11] and in this thesis we show
how to efficiently compute the number of prefix-suffix-square free factors in a
word, how to count them but also how to compute the longest one.

Keeping to our biological motivation we discuss about gapped repeats and
palindromes. Gapped repeats and palindromes have been investigated for a
long time (see, e.g., [16, 4, 19, 17, 18, 6, 7]), with motivation coming espe-
cially from the analysis of DNA and RNA structures, where tandem repeats or
hairpin structures play important roles in revealing structural and functional
information of the analyzed genetic sequence (see [16, 4, 17]). More precisely,
a gapped repeat (respectively, palindrome) occurring in a word w is a factor
uvu (respectively, uRvu) of w. The middle part v of such structures is called
gap, while the two factors u (or the factors uR and u) are called left and right
arms. Generally, the previous works were interested in finding all the gapped
repeats and palindromes, under certain restrictions on the length of the gap or
on the relation between the arm of the repeat or palindrome and the gap. In
this thesis (and in [9]) we solved the problem in three new different settings.

One should note that the investigation we pursue here is not aimed to tackle
real biological facts and provide solutions for them. In fact, its aim is to provide
a better understanding of the structural properties of strings obtained by the
specific operations discussed as well as specific tools for the manipulation of
such strings.
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1.2 Thesis structure

The thesis is split into five chapters as follows:

1. The first chapter ”Introduction” starts by presenting the motivation
for the thesis and the place of our results in the research context. In the
second part of the chapter personal contributions are presented.

2. In the second chapter ”Preliminaries” we define most of the notions we
use in the thesis. The chapter is split into four sections:

(a) The first section covers basic definitions about finite and infinite
words, factors, periods, runs and finite state machines.

(b) The second section introduces several operations on strings inspired
from DNA biochemistry.

(c) The third section covers details about the various data structures
used in the thesis.

(d) The fourth and last section presents a few of the lemmas used
throughout the thesis.

3. In the third chapter ”Language theoretical and algorithmic as-
pects” we present a lot of our main results focusing, as the chapter’s
title suggests on language theory and algorithmic aspects of our opera-
tions. The chapter is split into three sections:

(a) In the first section we discuss about various duplication languages.

(b) In the second section we discuss membership problems for the three
different operations and also discuss how we can efficiently compute
ancestors and common ancestors of words in relation to our opera-
tions.

(c) In the third section we discuss distance related problem in the context
of our three operations.

4. The fourth chapter ”Combinatorial aspects” includes a lot of the im-
portant algorithmic and combinatorial results. The chapter is split into
three sections:

(a) The first section tackles the problem of generating finite and infinite
words using our operations.

(b) In the second section we tackle the problem of efficiently detecting
the existence of repetitive structures occurring at both ends of some
sequence.
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(c) In the third section we discuss about gapped repeats and palindromes
within a word.

5. In the last chapter ”Future Work” we present a number of open prob-
lems that arise from this thesis.

1.3 Main Results

After discussing about the motivation for our work and pointed out the direc-
tions of our research we will now present in detail some of the most important
results in the paper.

Though most of the results in the paper are presented in the third and fourth
chapter it is worth noting that we feel that the lemmas in section 2.4 are of real
interest. Not only because a lot of our results rely on them but also because
we feel the technique we used could be useful to prove other results. In section
2.4 we show how we can compute in linear time the length of the minimum or
maximum square that starts in each position of the array, or it is centered in
each position of the array and other similar results. Although some of the results
have already been proved, we bring a different, and from some perspectives, a
more general solution. We give a new proof of these results based on a Lempel-
Ziv-like factorisation of the input word and a series of combinatorial remarks on
the structure of this factorisation. In order to prove these lemmas we also need
to use a special case of the disjoint sets union-find problem. Thus, we firstly
prove a lemma that shows the disjoint sets union-find problem works in linear
time in our problem settings. The results have been published in [10, 9].

In 3.1 we give a few results related to duplication languages that have been
published in [12, 13]. We first give a result that clearly separates bounded
prefix-suffix duplication languages from prefix-suffix duplication languages:

Theorem 1.3.1 Every nonempty class of languages closed under union with
regular languages, intersection with regular languages, and substitution with reg-
ular languages, is closed under bounded prefix-suffix duplication.

We further prove that we can find if a language is a finite k-prefix-suffix
duplication language(that is if it can be generated from a finite set of words
through k-prefix-suffix duplication), and also to find such a minimum set if it
exists:

Theorem 1.3.2 Let L be a regular language which is a multiple k-prefix-suffix
duplication language for some positive integer k. There exists a unique minimal
(with respect to inclusion) regular language E, which can be algorithmically
computed, such that L = PSD∗

k(E). In particular, one can algorithmically
decide whether L is a finite k-prefix-suffix duplication language.
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In 3.2 we start by solving the membership problem for PSD∗
k(L) languages,

provided that we know how to solve the membership problem for L on the RAM
with logarithmic word size model.

Theorem 1.3.3 If the membership problem for the language L can be decided
in O(f(n)) time, then the membership problem for PSD∗

k(L) can be decided in
O(nk log(k) + n2f(n)).

Based on the previous result we show that we can decide if a word x is in
PSD∗

k(w), with |x| = n in O(n log(k)) time if |w| ≥ k and in O(nk log(k)) time
otherwise. The results above have been published in [12, 13, 10].

We then switch to ancestor (or root) computations and obtained the follow-
ing result for the prefix-suffix square completion operations:

Theorem 1.3.4 Given a word w of length n, for the prefix-suffix square com-
pletion operation we can identify in O(n) time:

1. The number of ancestors of w

2. The shortest ancestor of w

Based on this result we give an algorithm that verifies the membership prob-
lem for this operation in linear time.

Later we show how we can find a common ancestor of two words in
O(nk log(k) + n2) time in the case of the bounded prefix-suffix duplication and
in linear time for the prefix-suffix square completion. In order to prove the later
result we use several tools from linear sorts to suffix arrays and LCP queries,
and the lemmas in section 2.4. Using the same tools as before and binary search
we obtain an O(n log(n)) algorithm for finding the shortest common ancestor
of two words with respect to the prefix-suffix square completion. Most of the
results regarding ancestors appeared in [10, 12, 13, 11] while results concerning
common ancestors appear hear for the first time.

In 3.3 we start by giving a O(n log(k)) time algorithm for computing the
bounded prefix duplication distance based on dynamic programming, deques
and a series of combinatorial remarks related to runs in a word. Based on the
previous result we show how we can compute the bounded prefix-suffix distance
between two words:

Theorem 1.3.5 Given k ≥ 1, let x and w be two words of respective length
m and n, n > m. If m ≥ k, then δk(x,w) can be computed in O(n log(k)). If
m < k, then δk(x,w) can be computed in O(nk log(k)).

We then give a totally different solution for computing the distance related
problems for any of our operations, based on graphs, that has complexity O(n3)
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time. We then prove that we can improve this to O(n2) time for the case of
the prefix-suffix square completion operation based on some analytical results.
We finish the chapter with a result for computing the distance between two
bounded prefix-suffix languages:

Theorem 1.3.6 Given two regular languages L1 and L2 over an alphabet V ,
recognized by deterministic finite automata with sets of states Q and S, respec-
tively, and a positive integer k ≥ 1, the distance δk(L1, L2) can be computed in
O((k +N)M2|V |2k) time, where M = max{|Q|, |S|} and N = min{|Q|, |S|}.

Most of the results in this section have been published in [10, 12, 13].
In 4.1 we show how we can generate different infinite words (like the Fi-

bonacci word and the Thue Morse word) using prefix-suffix square completion.
Also we prove that we can’t generate the Thue Morse word by prefix-suffix
duplications but we can generate Stewart’s choral sequence using the PSD op-
eration. Our results are mostly based on thorough analysis of the words and
are partly based on computer simulations. The results in this section have been
published in [10].

In 4.2 we show how we can construct in linear time a data structure that
allows us to verify in constant time if a factor of a word is SD ,PD , or PSD
primitive. We then give an algorithm that computes all the prefix-suffix-square
free factors of a word:

Theorem 1.3.7 Given a word w of length n, we can find the set S of prefix-
suffix-square free factors of w in O(n+ |S|) time.

We continue by giving an O(n log n) algorithm for counting the number of
prefix-suffix square free factors that uses segment trees, beside the lemmas in
section 2.4. A similar solution is given for finding the longest primitive ancestor
of a word in relation to the prefix-suffix square completion operation. We then
show that the longest prefix-suffix-square free factor w[i..j] can be computed in
linear time, so without enumerating all the elements of S:

Theorem 1.3.8 Given a word w of length n, we can find its longest prefix-
suffix-square free factor in O(n) time.

The section ends with a few theorems that provide different factorizations
of a word including a factorization in squares proved by this theorem:

Theorem 1.3.9 Given a word w of length n, we can find (if it exists) in
O(n log(n)) time a factorisation w = s1 · · · sk of w, such that si is a square
for all 1 ≤ i ≤ k.

Most of the results of this section have been published in [11], but there are
also a few results that have been published here for the first time.



8

In 4.3 we look for factors of the form uvu and urvu and compute the longest
previous factor (LPrF ) table, and longest previous reverse factor (LPrF ) table
in three different settings. First, we take into account the case where we want
v to be limited by constants both as lower and upper bound. We are able to
compute the LPrF table in O(n) time and the LPF table in O(n log n) time in
this setting. In order to do so we use a mix of techniques from combinatorics
on strings to the union find problem, suffix arrays and we also make use of the
dictionary of basic factors. We then compute the two tables in the case where
the gap is limited only by a lower bound function. We are able to compute both
tables in linear time using similar technique as above but also an interesting
technique based on dynamic construction of trees combined with LCP queries.
The last case we settle is that of long armed repeats and palindromes. Obtaining
solutions of complexity O(n + |output|) time and O(n) time. The tool we use
in this section are: various existing results on runs and long armed repeats and
palindromes in words combined with the lemmas in section 2.4. The results in
this section have been published in [9].
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