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INTRODUCTION
In this thesis we study some classes of generalized Nash equilibrium problems.

Some characterizations of the solutions corresponding to players which share the

same Lagrange Multipliers are given. According to [29], this kind of Nash equilibria

concept was introduced by Rosen [93] in 1965 for �nite dimensional spaces. In order

to obtain the same property for the in�nite dimensional approach, we use recent

developments of a new duality theory. Regarding its usfulness new theorems are

proven and similar kinds of equilibrium for pay-o¤ interval type functions or their

extended versions are approached. We also want to apply this special type of Nash

Equlibrium conditions obtained above for interval functions to a particular class of

interval functions that are applied in economy.We also give some generalizations for

some particular problems from multi-period portfolio selection optimization mod-

els by using interval analysis. Other research direction consists in extending the

concepts of generalized relaxed alpha-monotone application and generalized relaxed

beta-monotone application to the generalized relaxed �� ��monotone application

and �nally, to generalized relaxed (r; s)� �� ��monotone application and to gen-

eralized ��mixed relaxed monotone application.

In [29] Faraci extended the Nash Equilibria concept de�ned by Rosen [93] in

1965 to in�nite dimensional spaces. We extend this type of equilibria obtained in

[29] to a class of functions, called interval functions.

Generalized Nash equilibrium problems (GNEP�s) are noncooperative games in

which the strategy of each player can depend on the rival players�strategies. These

problems have become popular recently because of their utility for modeling eco-

nomic problems, as well as routing problems in communication networks.

In the framework of this PhD thesis, by using the new theory, we are able to

prove the existence of Lagrange Multipliers for GNEP�s in general Banach spaces

and to extend the results to the in�nite dimension case.

In Chapter 1, Existence of Equilibrium. The Nash Equilibrium, the

three basic theorems of general equilibrium theory are introduced. Also, some Gen-
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eralized Nash Equilibrium Problems are presented.In Section 1.1 we establish equi-

librium existence results for a �generalized competitive�mechanism. In Section 1.2

we reveal the applications of this result to a ��xed allocation�mechanism. In Section

1.3 the welfare theorems are presentes and Nash equilibrium concept is discussed in

Section 1.4. Algorithms for the solution of GNEPs are presented in Section 1.5.

In Chapter 2, Generalized Nash Equilibrium Problems in in�nite di-

mension and semiin�nite optimization. An interval approach with ap-

plications, we study a special type of Nash equilibria, corresponding to the case

when the pay-o¤ functions associated to the players whose objective is to maximize

their winning chances are described by interval functions. We prove the existence

of optimum interval equilibrium point. The original concepts introduced in this

chapter are included in De�nitions 2.2, 2.3, 2.4. The original contributions obtained

in this chapter are included in Theorems 2.1, 2.2, 2.3, 2.4 and 2.5 and also in the

relationships obtained in Section 2.1 for the Gateaux Derivatives, which bring a new

approach based on interval modelling combined with the Lagrange Multipliers Rule.

The reformulation of some equilibrium problems under more general conditions in

Section 2.2 constitute also our original contributions in this �eld.

In Chapter 3, Generalized equilibrium problems with relaxed assump-

tions, we introduce the new following concepts: generalized relaxed (r; s) � � �

��monotone application and generalized ��mixed relaxed monotone application.

We extend the concept of relaxed ��monotonicity to mixed relaxed ����monotonicity.

Finally, this concept is applied with KKM-theory to solve a generalized equilib-

rium problem. The original contributions obtained in this Section 3.3 are included

in Theorems 3.1 and 3.2, regarding existence of the solution for generalized equi-

librium problems. The original contributions obtained in this Section 3.3 are in-

cluded in Theorems 3.3 and 3.4, which brings up new the concept of mixed relaxed

�� ��monotone application and the existence results regarding equilibrium prob-

lems associated to this new concept. The original contributions obtained in Sec-

tion 3.4 are included in Theorems 3.5 and 3.6, which brings up new the concept
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of ��mixed relaxed monotone application and ��convex application and also the

existence results regarding equilibrium problems associated to this new concept.

In Chapter 4, Generalized mixed equilibrium problems, some existence

theorems are obtained and iterative approximation methods for generalized mixed

equilibrium problems corresponding to a countable family of nonexpansive mappings

are developed. The original contributions obtained in this chapter are included in

Theorems 4.1, 4.2, 4.3 and 4.4. These results extend recent results obtained in this

�eld by Kamraksa and Wangkeeree in 2012.
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Chapter 1

The existence of equilibrium. The

Nash equilibrium

This chapter contains some general results regarding equilibrium problems and Nash

equilibrium problems.

1.1 Generalized Competitive Mechanisms

1.2 Application of the Existence Theorem

1.3 Welfare Theorems:

Theorem 1.2. (First Welfare Theorem). If the preferences are strictly monotone,

then any equilibrium of a GCM it is Pareto e¢ cient.

Theorem 1.4. (SecondWelfare Theorem). Assume that the preferences and the

production sets verify the hypotheses in Theorem 1. Then, if
��exh	 ;�eyf		 is Pareto

e¢ cient and exh is strictly positive for all h, there exist prices p and balanced transfers
fT hg (i.e., summing to zero) such that the pair

��exh	 ;�eyf		 is an equilibrium
allocation, with respect to the mechanism that, for each p, the consumer h will have

the income p � !h +
P
f

�hfp � eyf + T h.
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1.4 Nash Equilibrium

We shall now state Nash�s Equilibrium theorem in it�s original form, from 1950.

Let G = (S; u) be a �nite game of n players in its normal form.

S = S1 � S2 � : : :� Sn, S is non-empty, represents the set of feasible strategies,

(Sk)k=1;n are the sets of individual strategies, u : S ! R represents the pay-o¤

function.

1.5 Generalized Nash Equilibrium Problems

Let us consider a game of N players and � 2 1; N . Each player � controls his

strategy vector:

x� :=
�
x�1; :::; x

�
n�

�T 2 Rn� ,
of nv decision variables.The vector x :=

�
x1; :::; xN

�T 2 RN
contains the n =

NP
�=1

� decision variables of all players. To emphasize the ��th

player�s variables within x, we sometimes write (x� ; x��) instead of x, where: x�� :=

(x�)�=1;N; � 6=� .

Each player � has an objective function �� : RN ! R that may depend on both

the player�s decision variables x� and the decision variables x�� of the rival players.

With respect to the practical setting, the objective function of a player is sometimes

called utility function, payo¤ function or loss function. Moreover, each player�s

strategy x� has to belong to a set X� (x
��) � Rn� that is allowed to depend on the

rival players�strategies. The set X� (x
��) is called feasible set or strategy space of

player �. In many applications the feasible set is de�ned by inequality constraints,

i.e., for each � = 1; N , there is a continuous function g� : Rn ! Rn� so that:

X�

�
x��
�
=
�
x� 2 Rn� jg

�
x� ; x��

�
� 0
	
: (1.1)

For any given x 2 Rn, let us de�ne:

X(x) :=
NQ
�=1

X� (x
��) =

�
y 2 Rnjy� 2 X� (x

��) ; 8� = 1; N
	
:
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If we �x the rival players� strategies x�� , the aim of player � is to choose a

strategy x� 2 X� (x
��) which solves the optimization problem:

min
x�

��(x
� ; x��)

such that x� 2 X� (x
��)

The GNEP is the problem of �nding x� 2 X(x�) such that, for all � = 1; N , the

following property holds:

��(x
�;� ; x�;��) � ��(x

� ; x�;��) for all x� 2 X�(x
�;��):
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Chapter 2

Generalized Nash Equilibrium

Problems in in�nite dimension

and semiin�nite optimization. An

interval approach with

applications

2.1 A Lagrange multiplier approach using inter-

val functions for Generalized Nash Equilib-

rium Problems in in�nite dimensions

2.1.1 Preliminaries

De�nition 2.1. [3] We say that u = (u1; u2) is a generalized Nash equilibrium point

or a solution of the GNEP if u 2 K and the following conditions hold:

J1 (u
1; u2) = min fJ1 (u1; u2) ; u1 2 K1(u)g,

J2 (u
1; u2) = min fJ2 (u1; u2) ; u2 2 K2(u)g.
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Let J1 and J2 be two interval functions, J1; J2 : X !MI(R) the utility functions

or pay-o¤ functions so that J1(�; u2) is convex and Gateaux di¤erentiable for every

u2 2 X2 and J2(u1; �) is convex and Gateaux di¤erentiable, for every u1 2 X1.

De�nition 2.3. We say that u = (u1; u2) is an interval equilibrium point for

GNEP if the following conditions hold:

(1) J1 (u
1; u2) = min fJ1 (u1; u2) ; u1 2 K1(u)g, where u2 is �xed;

(2) J2 (u
1; u2) = min fJ2 (u1; u2) ; u2 2 K2(u)g, where u1 is �xed;

From well-known results of convex analysis (see e.g. Theorem 3.8 of [4]), u =

(u1; u2) is considered to be optimum interval for a GNEP interval game if and only

if:

D1J
L
1

�
u1; u2

� �
u1 � u1

�
� 0; 8u1 2 K1(u) \

�
u1 : JU1

�
u1; u2

�
� JU1

�
u1; u2

�	
,(2.2)

D1J
U
1

�
u1; u2

� �
u1 � u1

�
� 0; 8u1 2 K1(u) \

�
u1 : JL1

�
u1; u2

�
� JL1

�
u1; u2

�	
,(2.1)

D2J
L
2

�
u1; u2

� �
u2 � u2

�
� 0; 8u2 2 K2(u) \

�
u2 : JU2

�
u1; u2

�
� JU2

�
u1; u2

�	
,

D2J
U
2

�
u1; u2

� �
u2 � u2

�
� 0; 8u2 2 K2(u) \

�
u2 : JL2

�
u1; u2

�
� JL2

�
u1; u2

�	
,

whereD1 andD2 stand for the Gateaux derivative of JL1 (�; u2) ; JU1 (�; u2) and JU2 (u1; �) ; JL2 (u1; �),

respectively.

Denote by � : X ! X�
1 �X�

2 ,

�
�
u1; u2

�
=

0BBBBBB@
D1J

L
1 (u

1; u2)

D1J
U
1 (u

1; u2)

D1J
L
2 (u

1; u2)

D1J
U
2 (u

1; u2)

1CCCCCCA : (2.3)

De�nition 2.5. We say that L (�) = fx :  (x) � �g, where � 2 R is the

underlevel subset of the function  : X ! R.

Considering this, it is clear that (2.2) is equivalent with the following condition:

�(u)T (u� u) � 0;8u 2
�
K1 (u) \ LJU1

�
JU1 (u

1; u2)
�
\ LJL1

�
JL1 (u

1; u2)
��
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�
�
K2 (u) \ LJU2

�
JU2 (u

1; u2)
�
\ LJL2

�
JL2 (u

1; u2)
��
.

Since the convex sets Ki(u) depend on the solution, one obtains that GNEP for

interval games can be formulated equivalently as a quasi-variational inequality. The

nature of the optimal sets allows us to reduce the problem to variational inequalities.

Solving this associated to � and the set K (in short: V I(�; K)), means �nding a

point u = (u1; u2) 2 K such that we have the following inequality:

�(u)T (u� u) � 0;8u 2 K: (2.4)

Theorem 2.1. Every solution of the variational inequality V I(�; K) is a solu-

tion of GNEP interval game.

2.2 The Lagrange multipliers rule

A solution of the GNEP interval games can be obtained as a solution of the V I(�; K).

By adopting the reduction method, we can lose solutions of the GNEP interval game.

We want to see now which kind of solutions are preserved for a special set of

constraints. We follow the �nite dimensional case [5] and prove that a solution of the

GNEP interval game is a variational equilibrium i¤ the shared constraints have the

same multipliers. The result is true under any constraints quali�cation condition.

If f : X ! R and u 2 K, we say that u is a solution of the minimal problem

(Pf;K) [3] if:

f(u) = min ff(x)jx 2 Kg.

Theorem 2.3. (i) Let u be a solution of the V I(�; K) so that a suitable con-

straints quali�cation condition for the V I(�; K) takes place at u. Then u is a

solution of the GNEP�interval game such that both players have the same Lagrange

multipliers.

(ii) u is a solution of the GNEP-interval game such that a constraints quali�cation

condition takes place at u and both players have the same Lagrange multipliers.

Then u is a solution of the V I(�; K).
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2.3 Nonsmooth interval semi-in�nite optimization

problem using Limiting subdi¤erentials

2.3.1 Preliminaries

De�nition 2.6. At a point x� 2 X; � is said to be the subgradient of a convex

function f if

(x� x�)T � � f(x)� f(x�); 8x 2 X:

De�nition 2.7. At a point x� 2 X; � is said to be the subgradient of a strictly

convex function f if

(x� x�)T � < f(x)� f(x�); 8x 2 X; x 6= x�:

De�nition 2.8. The set of all subgradients of � at x� is called the subdi¤erential

of � at x� and is denoted by @�(x�):

We consider the following optimization problem:

min F (x)

subject to gi (x) � 0; i = 1;m;

x 2 C;

(P)

where F (x) =
�
fL (x) ; fU (x)

�
is an interval-valued function, fL (x) ; fU (x) and

gi (x) : X ! R are continuous convex real-valued functions, X is a real, locally

convex space and C is a convex subset of X.

Let us denote by

X0 =
�
x 2 X

��gi (x) � 0; i = 1;m; x 2 C	
the feasible set of primal problem (P ).

10



2.3.2 Necessary and su¢ cient optimality conditions

In this section we give some necessary and/or su¢ cient optimality conditions for a

nonsmooth interval optimization problem.

Lema 1 (2.1) (Sun & Yang, 2013) Let x be a feasible solution of problem (P ).

Then x is an optimal solution of problem (P ) i¤ x is an optimal solution of the

following deterministic optimization problems (P1) and (P2) :

min fL (x)

subject to fU (x) � fU (x)

g (x) � 0;

x 2 C;

(P1)

min fU (x)

subject to fL (x) � fL (x)

g (x) � 0;

x 2 C:

(P2)

Now we consider the following deterministic nonsmooth semiin�nite optimization

problem considered in [69]:

min ' (x)

subject to ai (x) � 0; i 2 I

x 2 Rn
; (SIP)

where ' and ai; i 2 I; are locally Lipschitz functions from Rn to R [ f+1g :

Theorem 2.4. Let x be an optimal solution for the problem M (SIP ) and

I0(x) = fi 2 I : gi (x) = 0g : We suppose that ' and gi; i 2 I0(x) are Lipschitz near

x and gi for i 2 InI0(x) is continuous at x: Then there exists a � = (�i)i2I ; where

�i � 0 and � �i 6= 0 for �nitely many i 2 I; such that

0 2 @L' (x) +
X
i2I

�i@Lgi (x)

11



and

�igi (x) = 0; i 2 I:

Now we give the following Karush-Kuhn-Yucker necessary optimality conditions

for the nonsmooth interval problem:

min F (x)

subject to gi (x) � 0; i 2 I

x 2 C

; (ISIP)

where F (x) =
�
fL (x) ; fU (x)

�
is an interval-valued function, fL (x) ; fU (x) and

gi (x) : X ! R are continuous convex real-valued functions, X is a real, locally

convex space and C is a convex subset of X.

Theorem 2.5. Let x be an optimal solution of the problem (ISIP ):We suppose

that fL; fU and gi; i 2 I(x) = fi 2 I jgi (x) = 0g are Lipschitz near x and gi for

i =2 I(x) is continuous at x: Then there exists �� =
�
�L

�
; �U

��
> 0 and �� =

(��i )i2I � 0; �
�
i 6= 0 for �nitely many i 2 I; such that

0 2 �L�@LfL (x) + �U
�
@Lf

U (x) +
X
i2I

��i@Lgi (x)

and

��i gi (x) = 0; i 2 I:

Theorem 2.6. Let x be a feasible solution of the problem (ISIP ); such that

there exists �L
�
> 0; �U

�
> 0,�� = (��i )i2I � 0; �

� 6= 0 with ��i 6= 0 for �nitely many

i 2 I; such that

0 2 �L�@LfL
�
(x) + �U

�
@Lf

U (x) +
X
i2I

��i@Lgi (x) ; (2.2)

��i gi (x) = 0; i 2 I:

12



If fL and fU are (�; �fL); (�; �fU ) strict pseudo invex, gi; i 2 I (x) are (�; �gi) qua-

siinvex at x and

�fL + �fU = 0; (2.3)

then x is an optimal solution for the problem (ISIP ):

De�nition 2.9. x is a local optimal solution of the problem (ISIP ) if there

exists � > 0 such that x is an optimal solution in B� (x) the admissible set for

(ISIP ):

Theorem 2.7. Let x be a feasible solution of the problem (ISIP ): Suppose

that fL; fUand gi; i 2 I (x) are invex near x: Also we assume DL = ?; DU = ?:

Then x is a local optimal solution of the problem (ISIP ):

2.3.3 Duality. A Wolfe-type interval dual problem

Theorem 2.8. (Weak Duality) Let x be feasible solution for (SIP ) and
�
u; �L; �U ; �

�
be a feasible solution for (??):We suppose that fL; fU and gi; i 2 I are

�
�; �L

�
;
�
�; �U

�
and (�; �i) ; i 2 I invex respectively, with �L�L + �U�U +

P
i2I
�igi � 0: If gi for i =2

I (x) = fi : gi (x) = 0g is continuous at x, then

f (x) � f (u) +
X
i2I

�igi (u) :

Theorem 2.9. (Strong duality) Let x be an optimal solution for the (ISIP );

fL; fU and gi; i 2 I satisfy the hypothesis of the weak duality theorem. If the

problems PL(x) and PU(x) [107] satisfy a suitable constraint quali�cation, then

there exists � =
�
�i
�
i2I ; �

L
; �
U
> 0 so that

�
x; �

L
; �
U
; �
�
is an optimal solution for

(??) and the respective objective values are equal.

Theorem 2.10. (strict convex duality) Let ex and �x; �L; �U ; �� be an optimal
solution for (ISIP ) and (??) respectively. We suppose that fL; fU and gi; i 2 I are

(�; �L); (�; �U) and (�; �i); i 2 I respectively convex functions and for any feasible

solution x for (ISIP ); gi is continuous at x for any i 2 I (x) = fi : gi (x) = 0g. If

some constraint quali�cations are satis�ed by the problems
�
PL(x); PU(x)

�
and fL

13



is (�; �L) strict convex or fU is (�; �U) strict convex or there exists � 2 fL;Ug such

that f� is (�; ��) strict convex at x w.r.t. �, then ex = x:

Theorem 2.11. Let ex and �x; �L; �U ; �� be feasible solutions for (ISIP ) and
(??) respectively, such that �

L
fL (ex) + �UfU (ex) � �

L
fL (x) + �

U
fU (x) +

P
i2I
�igi (x)

and the application x  �
L
fL + �

U
fU +

P
i2I
�igi is (�; �) strict convex at x; with

� > 0: Then ex = x and x is an optimal solution for (ISIP ):

2.4 Interval Functions And Applications To Econ-

omy of Interval GNEP

2.4.1 The Mathematical Model

Let X and Y be two Banach spaces and let Z = X � Y the product space and let

z = (x; y) an element of Z. The variable x corresponds to the �rst player and the

variable y corresponds to the second one. Let C � Z a non-empty convex set and let

f; g : X ! R be two functionals, also known as the utility functions or the pay-o¤

functions so that f(�; y) it is convex and Gateaux di¤erentiable for every y 2 Y and

g(x; �) is convex and Gateaux di¤erentiable, for every x 2 X.

For every z = (x; y) the sets of the feasible strategies of the two players are of

the following type:

C1(z) = fx0 2 X : (x0; y) 2 Cg � X,

C2(z) = fy0 2 Y : (x; y0) 2 Cg � Y .

The purpose of each player, given the strategy of the rival, it is to choose a

strategy which minimizes the function f or g on its feasible set.

2.4.2 The Economic Model

The aim of this section is to prove that, if a trader has a moment in time when

he usually enters in a period when he has positive pro�t (WT (x) > 0)or negative

pro�t (WT (x) < 0) , this moment in time can be modeled as an equilibrium point

14



and can be determined given the interval variables from below [62]. So as there,

we consider the following economic model for which if WT has a continuous form

and it is Gateaux-Di¤erentiable we can apply conditions (??) and Theorem 2.1 in

order to obtain an optimum interval point. The model introduced in [62] considers

a �nancial market with n risky assets for trading. An investor intends to invest his

wealth W0 among the n risky assets at the beginning of period 1 for constructing

a T�period investment. The investor can reallocate his wealth at the beginning of

each of the following T �1 consecutive time periods. It is assumed that the returns,

risk and turnover rates of assets are interval numbers and the returns of portfolios

in T di¤erent periods are independent of each other. We denote by:

rt;i the return of risky asset i at period t, where rt;i =
�
rLt;i; r

D
t;i

�
, obviously:

rLt;i � rDt;i;

�i;j;t =
�
�Li;j;t; �

D
i;j;t

�
the covariance between rt;i and rt;j, where �

L
i;j;t � �Di;j;t;

ct;i =
�
cLt;i; c

D
t;i

�
the transaction cost rate of risky asset i at period t;

xt;i the investment proportion of risky asset i at period t;

dt;i =
�
dLt;i; d

D
t;i

�
is given;

Ct =
nP
i=1

ct;ixt;i+dt;i the transaction cost rate, Ct =
�
CL
t ; C

D
t

�
=

�
nP
i=1

cLt;ix
L
t;i + dLt;i;

nP
i=1

cUt;ix
U
t;i + dUt;i

�
�t =

�
�Lt ; �

D
t

�
the preset maximum risk tolerance interval of the portfolio at the

period t, where �Lt � �Dt ;

lt;i =
�
lLt;i; l

D
t;i

�
the interval turnover rate of risky asset i, where lLt;i � lDt;i;

lt =
�
lLt ; l

D
t

�
the preset minimum expected interval valued turnover rate of the

porfolio at period t, with lLt � lDt ;

et the preset minimum diversi�cation degree of the t�th period portfolio;

WT (x) =

"
W0

TY
t=1

 
nX
i=1

xt;ir
L
t;i � CL

t

!
;W0

TY
t=1

 
nX
i=1

xt;ir
D
t;i � CD

t

!#
the available wealth at the end of the period t; t = 1; T .

LetWT (x)
L = W0

TY
t=1

 
nX
i=1

xt;ir
L
t;i � CL

t

!
;WT (x)

L = W0

TY
t=1

 
nX
i=1

xt;ir
D
t;i � CD

t

!
.

Then, the optimality conditions from (2.2) are:
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8>>>>>>>>>>>><>>>>>>>>>>>>:

0 �
TX
t=1

nX
i=1

WT (x)
L

rLt;i � cLt;i
nX
i=1

xt;irLt;i � CL
t

�
rLt;i � rLt;i

�

0 �
TX
t=1

nX
i=1

WT (x)
D

rDt;i � cDt;i
nX
i=1

xt;irDt;i � CD
t

�
rDt;i � rDt;i

�
h
rLt;i; r

D
t;i

i
� 0

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(6)

An interval multi-period selection model is now ready to be formulated as follows:

max WT (x)

s.t.

"
nX
i=1

xt;ir
L
t;i � CL

t ;

nX
i=1

xt;ir
D
t;i � CD

t

#
�
�
RL
t ; R

D
t

�
"

nX
i=1

nX
k=1

xt;ixt;k�
L
i;k;t;

nX
i=1

nX
k=1

xt;ixt;k�
D
i;k;t

#
� �t"

nX
i=1

xt;il
L
t;i;

nX
i=1

xt;il
D
t;i

#
� lt

�
nX
i=1

xt;i ln(xt;i) � et

nX
i=1

xt;i = 1

xt;i � 0; i = 1; n; t = 1; T

(7)

Problem (P1) can be reformulated like:

max WT (x)
L

max WT (x)
D

s.t. x 2 


(8)

Conditions from (8) represent problem (P2). Again, the above problem can be

rewriten like:
max f(x) = �WT (x)

L + (1� �)WT (x)
D

s.t. x 2 

(9)

Conditions (9) above, are called problem (P3) can also be transformed, adding

the restrictions from [62], into a crisp form nonlinear programming problem:
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max f(x) = �WT (x)
L + (1� �)WT (x)

D

s.t.
nX
i=1

xt;ir
D
t;i �

 
nX
i=1

cDt;ixt;i + dDt;i

!
� RL

t

nX
i=1

nX
k=1

xt;ixt;k�
L
i;k;t � �Dt

nX
i=1

xt;il
D
t;i � lLt

�
nX
i=1

xt;i ln(xt;i) � et; t = 1; T

nX
i=1

xt;i = 1; t = 1; T

xt;i � 0; i = 1; n; t = 1; T

(10)

Conditions (10) form problem (P4), and it can be rewritten into the following

form nonlinear programming problem (P5):

max f(x) = �WT (x)
L + (1� �)WT (x)

D

s.t. RL
t �

 
nX
i=1

xt;ir
D
t;i �

 
nX
i=1

cDt;ixt;i + dDt;i

!!
� 0; t = 1; T

nX
i=1

nX
k=1

xt;ixt;k�
L
i;k;t � �Dt � 0; t = 1; T

lLt �
nX
i=1

xt;il
D
t;i � 0; t = 1; T

et +
nX
i=1

xt;i ln(xt;i) � 0; t = 1; T
nX
i=1

xt;i � 1 = 0; t = 1; T

�xt;i � 0; i = 1; n; t = 1; T
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Chapter 3

Generalized equilibrium

problems with relaxed

assumptions

3.1 Mathematical Background

Let K be a non-empty subset of a real Banach space X. Let � : K � K ! R

be a real valued function and let f : K � K ! R be an equilibrium function, i.e.

f(x; x) = 0, for all x 2 K.

We will now consider the following generalized equilibrium problem: �nd x 2 K

in order to have the folllowing relation:

f(x; y) + �(x; y)� �(x; x) � 0;8y 2 K (3.1)

De�nition 3.1. A real valued function f de�ned on a convex subset K of X is

said to be hemicontinuous if

lim
t!0+

f (tx+ (1� t)y) = f(y); for each x; y 2 K: (3.3)

De�nition 3.2. Let f : X ! 2X be a multivalued mapping.Then f is said to

18



be a KKM-mapping if, for any �nite subset fy1; y2; :::; yng of K, cofy1; y2; :::; yng �
n[
i=1

f(yi), where co denotes the convex hull.

Lemma 3.1. Let K be a nonempty subset of a topological vector space X and

let f : X ! 2X be a KKM mapping. If f(y) is closed in X for all y 2 K and

compact for at least one y 2 K, then
k\
i=1

f(y) = ?.

De�nition 3.3. Let X be a Banach space. A mapping f : X ! R is said to be

weakly lower semicontinuous at x0 2 X, if the following stands as true:

f(x0) � lim
n!1

inf f(xn); (3.4)

for any sequence fxng of X such that xn ! x0.

De�nition 3.4. Let X be a Banach space. A mapping f : X ! R is said to be

weakly upper semicontinuous at x0 2 X, if the following stands as true:

f(x0) � lim
n!1

inf f(xn); (3.5)

for any sequence fxng of X such that xn ! x0.

De�nition 3.5. A mapping f : K � K ! R is said to be mixed relaxed

� � ��monotone, if there exist the mappings � : K ! R with �(tx) = tp�(x), for

all t > 0 and � : K �K ! R, such that

f(x; y) + f(y; x) � �(y � x) + �(x; y);8x; y 2 K; (3.6)

where

lim
t!0

�
tp�(y � x)

t
+
�(x; ty + (1� t)x)

t

�
= 0 (3.7)

and p > 1 is a constant.

De�nition 3.6. A function f is said to be (r; s)�(�; �)monotone if the following

holds:
1

r

�
erf(x;y) � 1

�
+
1

r

�
erf(x;y) � 1

�
� �(y � x) + �(x; y), r � s; meaning:

fr(x; y) + fs(y; x) � �(y � x) + �(x; y), r � s.
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De�nition 3.7. A mapping � : K � K ! R [ f�1,+1g is said to be 0-

diagonally convex if, for any �nite subset fx1; x2; :::; xng of K and �i � 0; i = 1; n

with
nX
i=1

�i = 1 and x =
nX
i=1

�ixi, one has :

nX
i=1

�i�(x; xi) � 0: (3.13)

3.2 Existence of Solution for Generalized Equilib-

rium Problem

Theorem 3.1. Suppose f : K � K ! R is mixed relaxed � � ��monotone,

hemicontinuous in the �rst argument with f(x; x) = 0, for all x 2 K. Let � :

K �K ! R be convex in the second argument. Then, the generalized equilibrium

problem (3.1) is equivalent with the following problem. Find x 2 K such that:

f(y; x) + �(x; x)� �(x; y) � �(y � x) + �(x; y);8y 2 K; (3.14)

where �(tx) = tp�(x) and p > 1 is a constant.

Theorem 3.2. Let K be a nonempty bounded closed subset of a real Banach

space X. Let f : K�K ! R be a mixed relaxed ����monotone, hemicontinuous

in the �rst argument, convex in the second argument with f(x; x) = 0, 0-diagonally

convex and lower semicontinuous. Let �;  : K�K ! R, � be convex in the second

argument,  (x; y) = �(x; y) � �(x; x) and  be 0-diagonally convex, and lower

semicontinuous; � : K ! R is weakly upper semicontinuous and � : K �K ! R is

weakly upper semicontinuous in the second argument.Then the mixed equilibrium

problem (4.2) admits a solution.
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3.3 Existence of Solution for Generalized Equi-

librium Problem for (r; s) � � � ��monotone

functions

De�nition 3.8. A mapping � : K�K ! R [ f�1,+1g is said to be 0-diagonally

convex if, for any �nite subset fx1; x2; :::; xng of K and �i � 0; i = 1; n with
nX
i=1

�i =

1 and x =
nX
i=1

�ixi, one has :

nX
i=1

�i�(x; xi) � 0: (3.13)

Theorem 3.3. Suppose fr : K � K ! R is mixed relaxed � � ��monotone,

hemicontinuous in the �rst argument with fr(x; x) = 0, for all x 2 K. Let � :

K � K ! R be convex in the second argument. Then, generalized equilibrium

problem (3.1) is equivalent with the following problem. Find x 2 K such that:

1

r

�
erf(y;x) � 1

�
+ �(x; x)� �(x; y) � �(y � x) + �(x; y);8y 2 K; (3.14)

where �(tx) = tp�(x) and p > 1 is a constant.

Theorem 3.4. Let K be a nonempty bounded closed subset of a real Banach

space X. Let fr : K�K ! R be a mixed relaxed ����monotone, hemicontinuous

in the �rst argument, convex in the second argument with fr(x; x) = 0, 0-diagonally

convex and lower semicontinuous. Let �;  : K�K ! R, � be convex in the second

argument,  (x; y) = �(x; y) � �(x; x) and  be 0-diagonally convex, and lower

semicontinuous; � : K ! R is weakly upper semicontinuous and � : K �K ! R is

weakly upper semicontinuous in the second argument.Then the mixed equilibrium

problem (4.2) admits a solution.
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3.4 On relaxed monotonicity using ��mixed re-

laxed monotone functions

De�nition 3.9. ' : K � K ! R is called ��diagonally convex, if for any �nite

subset fx1; x2; :::; xng on K and �i � 0, i = 1; n, with
nP
i=1

�i = 1 and x =
nP
i=1

�ixi,

we have
nP
i=1

�i'(x; xi) � ��min
i=1;n

d(x; xi).

Theorem 3.5. Let f : K � K ! R be �1�mixed relaxed monotone, in �rst

argument, �2�convex in the second argument, with f(x; x) = 0;8x 2 X.

Let ' : K �K ! R be �3�convex in the second argument.

Then, the generalized equilibrium problem (3.1) from Section 3.1 is equivalent

with the following problem: �nd x 2 K such that:

f(y; x) + �(x; x)� �(x; y) � �0d(x; y);8y 2 K, where �0 2 R.

Theorem 3.6. Let K be a nonempty bounded closed subset of a real Banach

spaceX. Let f : K�K ! R; be �1�mixed relaxed monotone, hemicontinuous in the

�rst argument, �2�convex in the second argument with f(x; x) = 0, �3�diagonally

convex and weakly lower semicontinuous. Let �;  : K �K ! R, � be �4�convex

in the second argument,  (x; y) = �(x; y)��(x; x) and  be �5�diagonally convex,

and weakly lower semicontinuous. Let d : K � K ! R, d � 0 be weakly upper

semicontinuous in the second argument, and �1 � �0, �3 + �5 � 0.

Then the mixed equilibrium problem (3.1) admits a solution.
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Chapter 4

Generalized mixed equilibrium

problems

4.1 Problem statement and state of the art

Let � 2 R:

De�nition 4.1. A mapping T : C ! E� is said to be relaxed (�; � � �)

monotone if there exist a mapping � : C � C ! E� and a function � : E � E ! R

such that

(Tx� Ty; �(x; y)) � ��(x; y); x; y 2 C

4.2 Preliminaries

Let E be a real Banach space and let U = fx 2 E : jjxjj = 1g be the unit sphere of

E.

De�nition 4.2. A Banach space E is said to be strictly convex if for any

x; y 2 U ,

x 6= y implies jjx+ yjj < 2
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De�nition 4.3. A Banach space E is said to be uniformly convex if and only

if �(�) > 0 for all � 2 (0; 2], where � : [0; 2]! [0; 1] called the modulus of convexity

of E is de�ned as follows

�(�) = inf

(
1� kx+ y

2
k : x; y 2 E; jjxjj = jjyjj = 1; jjx� yjj � 1

)

De�nition 4.4. A Banach space E is said to be smooth if the limit

lim
t!0

jjx+ tyjj � jjxjj
t

(4.1)

exists for all x; y 2 U .

Theorem 4.1. [1] Let C be a nonempty convex subset of a smooth Banach

space E and let x 2 E and y 2 C. Then the following are equivalent:

1. y is a best approximation to x : y = PCx

2. y is a solution of the variational inequality:

< y � z; J(x� y) >� 0 8z 2 C

where J is a duality mapping and PC is the metricprojection from E onto C.

For solving the mixed equilibrium problem, let us assume the following conditions

for a bifunction f :

(i1) f(x; x) = 0, 8x 2 C

(i2) f is �1-monotone, i.e. f(x; y) + f(y; x) � �1d(x; y), for all x; y 2 C, d :

C � C ! R+ and �1 2 R.

(i3) For all y 2 C, f(�; y) is weakly upper semicontinuous

(i4) For all x 2 C, f(x; �) is �2�convex, �2 2 R.

Lemma 4.1. [125] Let E be a uniformly convex Banach space, let f�ng be a

sequence of real numbers such that 0 < b � �n � c < 1 for all n � 1, and let fxng
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and fyng be sequences in E such that lim sup
n!1

jjxnjj � d sup, lim sup
n!1

jjynjj � d and

lim
n!1

jj�nxn + (1� �n)ynjj = d. Then lim
n!1

jjxn � ynjj = 0.

Lemma 4.2. [16] Let C be a bounded, closed and convex subset of a uniformly

convex Banach space E. Then there exists a strictly increasing,convex and continuous

function 
 : [0;1)! [0;1) such that 
(0) = 0 and




 
kS
 

nX
i=1

�ixi

!
�

nX
i=1

�iSxik
!
� max

1�j�k�n
(jjxj � xkjj � jjSxj � Sxkjj)

for all n 2 N, fx1; x2; :::; xng � C, f�1; �2; :::; �ng � [0; 1] with
Pn

i=1 �i = 1 and

nonexpansive mapping S of C into E.

Lemma 4.3. [50] Let C be a nonempty, closed and convex subset of a uniformly

convex Banach space E and let [Sn] be a family of nonexpansive mappings of C into

itself such that F =
1T
n=1

F (Sn) 6= ;. Let [�kn] be a family of nonnegative numbers

with indices n:k 2 N with k � n such that

1.
nP
k=1

�kn = 1 for every n 2 N

2. lim
n!1

�kn > 0 for every k 2 N

and let Tn = �nI + (1� �n)
nP
k=1

�knSk for all n 2 N, where f�ng � [a; b] for some

a; b 2 (0; 1) with a � b. Then, fTng is a family of nonexpansive mappings of C into

itself with
1T
n=1

F (Sn) = F and satis�es the NST-condition.

De�nition. [44] Let B be a subset of topological vector space X. A mapping

G : B ! 2X is called a KKM mapping if cofx1; x2; :::; xmg �
mS
i=1

G(xi) for xi 2 B

and i = 1;m, where coA denotes the convex hull of the set A.

Lemma 4.4. [27] Let B be a nonempty subset of a Hausdor¤ topological vector

space X and let G : B ! 2X be a KKM mapping. If G(x) is closed for all x 2 B

and is compact for at least one x 2 B, then
T
x2B

G(x) 6= ;.
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4.3 Existence results of generalized mixed equi-

librium problem

Theorem 4.1. Let B be a smooth, strictly convex and re�exive Banach space, with

a nonempty, bounded, closed and convex subset C of E.

Also, we consider:

(j1) a mapping T : C ! E� �� hemicontinuous and � � � relaxed monotone

(j2) a bifunction f : C � C ! R satisfying (i1)�(i4).

(j3) a lower semicontinuous �3-convex function, ' : C ! R

Let r > 0 and z 2 C and we supppose that

(j4) �(x; x) = 0;8x 2 C

(j5) For any �xed u; v 2 C, the mapping x!< Tv; �(x; u) > is �4�convex

(j6) lim
t!0

�(x; (1� t)x+ ty)

t
= 0 for all x; y 2 C

If �2 + �3 + �4 � 0, then the following problems 4.2 and 4.3 are equivalent:

Find x 2 C such that f(x; y)+'(y)+ < Tx; �(y; x) > +
1

r
< y�x; J(x�z) � '(x);8y 2 C

(4.2)

Find x 2 C such thatf(x; y)+ < Ty; �(y; x) > +'(y)+
1

r
< y�x; J(x�z) >� '(x)+�(x; y);8y 2 C

(4.3)

Theorem 4.2. Let C be a nonempty, bounded, closed and convex subset of

a smooth, strictly convex and re�exive Banach space E, let T : C ! E� be an

�-hemicontinuous and relaxed � � � monotone mapping. Let f be a bifunction from

C � C to R satisfying (a),(c) and (d) and let ' be a lower semicontinuous and

�3-convex function from C to R. Let r > 0 and z 2 C. Assume that

1. �(x; y) + �(y; x) = 0;8x; y 2 C
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2. for any �xed u; v 2 C, the mapping x!< Tv; �(x; u) > is �4-convex and lower

semicontinuous

3. � : E ! R is weakly lower semicontinuous; that is ,for any net fx�g, x�
converges to x in �(E;E�) which implies that �(x) � lim inf �(x�)

Then, the solution set of the problem (4.2) is nonempty: that is, there exists

x0 2 C such that

Find x 2 C such that f(x; y)+'(y)+ < Tx; �(y; x) > +
1

r
< y�x; J(x�z) � '(x);8y 2 C

(4.4)

Theorem 4.3. Let C be a nonempty bounded, closed and convex subset of

a smooth, strictly convex and re�exive Banach space E, let T : C ! E� be a

�-hemicontinuous and relaxed � � � monotone mapping. Let f be a bitfunction

from C �C to R satisfying (a)-(d) and let ' be a lower semicontinuous and convex

function from C to R. Let r > 0 and de�ne a mapping �r : E ! C as follows:

�r(x) =

(
z 2 C : f(z; y)+ < Tz; �(y; z) > +'(y)+

1

r
< y�z; J(z�x) >� '(z);8y 2 C

)
(4.5)

for all x 2 E. Assume that

1. �(x; y) + �(y; x) = 0, for all x; y 2 C

2. for any �xed u; v 2 C, the mapping x!< Tv; �(x; u) > is �4-convex and lower

semicontinuous and the mapping x!< Tu; �(v; x) > is lower semicontinuous

3. � : E ! R is weakly lower semicontinuous

4. for any x; y 2 C, �(x; y) + �(y; x) � 0

Then, the following holds:
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1. �r is single valued

2. < �rx� �ry; J(�rx� x) >�< �rx� �ry; J(�ry � y) > for all x; y 2 E

3. F (�r) = EP (f; T )

4. EP (f; T ) is closed and convex

4.4 A hybrid projection algorithm

Let E be a uniformly convex and smooth Banach space and let C be a nonempty,

bounded, closed and convex subset of E. Also let f be a bifunction from C � C to

R and the mapping T : C ! E�.

Theorem 4.4. We suppose that the bifunction f satisfy the (a)-(d) assumption

and T is a � � � relaxed monotone mapping.

If fSngn�0 is a sequence of nonexpansive mappings with the NST-condition,

Sn : E ! C, such that 
 6= ;, where 
 = \n�0F (Sn) \ EP (f; T ), and fxngn�0 is

the sequence from C, given by8>>>>>>>>>>>><>>>>>>>>>>>>:

x0 2 C;D0 = C;

Cn = �cofz 2 C : jjz � Snzjj � tnjjxn � Snxnjjg; n � 0

un 2 C such that

f(un; y) + '(y)+ < Tun; �(y; un) > +
1
rn
< y � un; J(un � xn) >� '(un);8y 2 C; n � 0;

Dn = fz 2 Dn�1 :< un � z; J(xn � un) >� 0g; n � 1;

xn+1 = PCn\Dnx0; n � 0;
(4.6)

0 < tn < 1; 0 < rn < 1 for any n and limn!1 tn = 0, lim infn!1 rn > 0, then the

sequence fxngn converges strongly to PS0x0 sau P
x0.

We suppose f; T and 
 are as in Theorem 4.1. Let f�kngn;k; n; k � 1; k � n; �nk �

0 such that lim
n!1

�kn > 0 for any k � 1 and an = 1, for any n � 1, where an =
nP
k=1

�kn.
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Let us construct a sequence fGngn�1, Gn = �nI + (1 � �n)bn, with bn =
nP
k=1

�knSk,

a0 < �n < b0 for n � 1, for some 0 < a0 � b0 < 1, where fSngn�0 is a sequence of

nonexpansive mappings of C into itself.

If ftngn; frngn are two sequences with 0 < tn < 1; 0 < rn < 1 for any n � 1 and

limn!1 tn = 0, lim infn!1 rn > 0, then the sequence fxngn�0 given by

8>>>>>>>>>>>><>>>>>>>>>>>>:

x0 2 C;D0 = C;

Cn = �cofz 2 C : jjz �Gnzjj � tnjjxn �Gnxnjjg; n � 0;

un 2 C such that

f(un; y) + '(y)+ < Tun; �(y; un) > +
1
rn
< y � un; J(un � xn) >� '(un);8y 2 C; n � 0;

Dn = fz 2 Dn�1 :< un � z; J(xn � un) >� 0g; n � 1;

xn+1 = PCn\Dnx0; n � 0

converges strongly to P
x0.

We suppose f and T as in Theorem 4.1. Let 
 6= ;, 
 = F (S) \ EP (f; T ) and

fxngn � C a sequence given by

8>>>>>>>>>>>><>>>>>>>>>>>>:

x0 2 C;D0 = C;

Cn = �cofz 2 C : jjz � Szjj � tnjjxn � Sxnjjg; n � 0;

un 2 Csuch that

f(un; y) + '(y)+ < Tun; �(y; un) > +
1
rn
< y � un; J(un � xn) >� '(un);8y 2 C; n � 0;

Dn = fz 2 Dn�1 :< un � z; J(xn � un) >� 0g n � 1;

xn+1 = PCn\Dnx0; n � 0;

where ftngn and frngn are two sequences as in Theorem 4.1. Then, the sequence

fxngn converges strongly to P
x0.

We suppose that f is as in Theorem 4.1. For ftngn and frngn as in Theorem 4.1

and the sequence fxngn�0 given by
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8>>>>>>>>>>>><>>>>>>>>>>>>:

x0 2 C;D0 = C;

Cn = �cofz 2 C : jjz � Snzjj � tnjjxn � Snxnjjg; n � 0;

un 2 Csuch that

f(un; y) +
1
rn
< y � un; J(un � xn) >� 0;8y 2 C; n � 0;

Dn = fz 2 Dn�1 :< un � z; J(xn � un) >� 0g; n � 1;

xn+1 = PCn\Dnx0; n � 0

we have that fxngn converges strongly to P
x0.

Let E be a uniformly convex and smooth Banach space, C 6= ; a bounded, closed

and convex subset of E. Also let fSngn�0 be a sequence of nonexpansive mappings,

Sn : C ! C, satis�es the NST-condition and 
 6= ;, 
 = \n�0F (Sn).

If fxngn is a sequence given by8>>><>>>:
x0 2 C;D0 = C;

Cn = �cofz 2 C : jjz � Snzjj � tnjjxn � Snxnjjg; n � 0;

xn+1 = PCnx0; n � 0;

where 0 < tn < 1 for any n and lim
n!1

tn = 0, then fxngn converges strongly to P
x0.
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