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INTRODUCTION
This thesis addresses the option pricing theory, which is a �eld of the highest importance in

the present research in �nance.
The Black-Scholes model (1973) assumes that the volatility of stock prices is a constant func-

tion. In practice, analysts always use the market option price to back out the volatility when they
use Black-Scholes model. The continuous time stochastic model has an inherent disadvantage to
assume that volatility is observable, but it is impossible to exactly �lter volatility from discrete
observations of spot asset prices in a continuous time stochastic volatility model (Heston and
Nandi, 2000). Consequently it is impossible to price an option solely on the basis of the history
of asset prices.
The GARCH option pricing model assumes that the conditional volatility of stock prices

depends on the past pricing errors. Duan (1995, 1996) argued that most of the existing bivariate
di¤usion models that had been used to model asset returns and volatility, could be represented as
limits of a family of GARCH models. On the other hand the GARCH model has an advantage
over the continuous time model that volatility is readily observable in the history of asset prices.
Thus the GARCH model is chosen over the continuous time model when comparing the empirical
performance of the stochastic option model and the discrete time model. Meaningfully Monte
Carlo simulation has performed to examine the empirical performance of the Black-Scholes model
and the GARCH option pricing model.
One of the well established facts in the �nancial modeling states that empirical distributions of

log-returns time series are skewed and leptokurtic (fat-tailed). Therefore there are various models
which have been introduced that resort to an alternative non-Gaussian assumption. Since the
skewness de�nes the asymmetry of the distribution, it has a signi�cant impact on the shape of
the tails. Kurtosis is another parameter of interest under the alternative non-Gaussian fat-tailed
assumption. As a result, it is crucial to model skewness and kurtosis as accurately as possible,
also considering changes over time.
Entropic reasoning applied to option pricing has been successfully developed mainly after 1999.

According to Gulko (1999), the Entropy Pricing Theory suggests that, in informational e¢ cient
markets, perfectly uncertain market beliefs must prevail. When the entropy functional is used to
index the market uncertainty, then the entropy-maximizing market beliefs must prevail. On opti-
mizing various entropic measures one can derive new stock option pricing models that are similar
to Black-Scholes with the log-normal distribution replaced by other probability distributions.
In the �rst part of the thesis (Chapter1-4) our original research consists in the evaluation of

kurtosis for several �nancial time series models. First we discuss the Black-Scholes model with
GARCH volatility, both for "In The Money" (ITM) and "At The Money" (ATM) options. Then
we extend the results to the case of doubly stochastic volatility models with asymmetric GARCH
innovations such as AGARCH and TGARCH. New results for the mean, variance and kurtosis
of the nonlinear volatility models are also obtained. An empirical study is performed in order
to compare �tting di¤erent models for various real-life stock indexes. We compare models with
GARCH, EGARCH, IGARCH, GJR-GARCH, or APARCH innovations.
In the second part of the thesis (Chapter 5-9) we take up the new framework of entropic

reasoning applied to option pricing. According to Stutzer (2000), the novelty of this approach lies
in the straightforward use to compute the Black-Scholes martingale measure as the product of
the relative entropy minimizing conditional risk-neutral probabilities in the return process. Using
the entropic reasoning Gulko (1996, 1997) prescribed the risk-free mean and the actual variance
to derive the risk-neutral log-normal price distribution, to derive the Black-Scholes formula as a
riskless discounted value of the option�s payo¤ at expiration.

3



We extend Gulko�s result by using several entropic measures such as Tsallis, Weighted Tsallis,
Kaniadakis, Weighted Kaniadakis, Renyi and Weighted Renyi as objective functions in the new
optimization problems de�ned. We use the obtained risk-neutral price distributions to evaluate
the European Call and Put options on a dividend protected stocks. We use some new entropic
measures Ubriaco (2009) and Shafee (2007) as optimization objectives subject to traditional con-
straints in order to construct new risk-neutral price distribution.
The entropic reasoning allows us to approach two di¤erent ways of quantifying the statistical

heterogeneity of risk-neutral price distribution: entropy-which measures the law�s randomness and
Gini�s index- which measures the law�s egalitarianism (or evenness). Two complementary problems
are addressed: entropy maximization for speci�ed Gini index value and Gini maximization for
speci�ed Shannon entropy. The solutions are presented in terms of Reccatii equations.
Finally, we take up the very recent approach of Hunt and Devolder (2011) for the semi-Markov

regime switching interest rate models. The authors discuss a discrete time regime switching
binormal-like model of the term structure where the regime switches are governed by a discrete
time semi-Markov process. Under market incompleteness, they give an explicit characterization
of the minimal entropy martingale measure. We extend the Hunt and Devolder results on using
Tsallis and Kaniadakis entropies, as well as Shafee entropy based on Lambert function-to inden-
tify the minimal entropy martingale measures and to �nd the corresponding risk-neutral price
distributions.
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Chapter 1

GARCH Modelling

1.1 GARCH Models and Volatility

1.1.1 Generalized Autoregressive Conditional Heteroskedastic Model

De�nition 1 [7]The simplest possibility to write ARCH/GARCH models mathematically is as
follows repectively.

�2t = ! +

pX
i=1

�i"
2
t�i ; ! > 0; �i � 0

"t = �tzt ; zt � N(0; 1)
In ARCH framework �t is a time varying, positive and measureable function of time t� 1. A

generalized form of ARCH model for a univariate time series Xt is called GARCH and it can be
written as follows.

�2t = ! +

pX
i=1

�i"
2
t�i +

qX
j=1

�j�
2
t�j ; ! > 0; �i � 0; �j � 0

"t = �tzt ; zt � N(0; 1)

1.1.2 IGARCH Model

De�nition 2 [7]Integrated GARCH or IGARCH processes are designed to model persistent changes

in the volatility. A GARCH process is stationary with a �nite variance if
pX
i=1

�i +

qX
j=1

�j < 1 . A

GARCH (p,q) process is called IGARCH process if
pX
i=1

�i +

qX
j=1

�j = 1.

1.1.3 EGARCH Model

De�nition 3 [109] An EGARCH model is de�ned by:

log �2t = ! +

pX
i=1

�ig(zt�i) +

qX
j=1

�j log �
2
t�j

g(zt�i) = �zt�i + �� (jzt�ij � E jzt�ij)

where !; �i; �j; � and �
� are real parameters and both zt�i and jzt�ij � E jzt�ij are zero mean

and identically independently distributed with continuous distributions. Therefore we can write
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E (g(zt�i)) = 0 .We may rewrite g(zt�i) as follows:

g(zt�i) =

�
(� + ��) zt�i � �� (E jzt�ij) if zt�i � 0

(� � ��) zt�i � �� (E jzt�ij) if zt�i � 0

1.1.4 GJR-GARCH Model

De�nition 4 [55; 165]The GJR-GARCH and TGARCH models are de�ned by.

�2t = ! +

pX
i=1

(�i + 
It�i) "
2
t�i +

qX
j=1

�j�
2
t�j

where It = 1 if "t < 0 and It = 0 if "t � 0:

1.1.5 APARCH Model

De�nition 5 [35] The asymmetric power ARCH models are de�ned as follows.

��t = ! +

pX
i=1

�i (j"t�ij � 
"t�i)
� +

qX
i=1

�i�
�
t�i ; i = 1; 2; ::

"t = �tzt ; zt � N(0; 1)
g("t�i) = j"t�ij � 
"t�i

1.2 GARCH Models and Entropy Measures

1.2.1 Problem of Kaniadakis Entropy Measure

Theorem 6 Consider the optimization problem:

maxH (g) = Eg

�
g(X )k�1 � g(X )�k�1

2k

�
; k 6= 0

subject to

Eg (1 j Ft�1) = 1 (c-1)

Eg (X j Ft�1) = � (c-2)

Eg
�
(X � �)2 j Ft�1

�
= �2t (c-3)

Then the solution of the optimization problem is given by:

g = g (st) =

0BB@k (�0 + �1�+ �2�
2
t ) +

r
k2
�
(�0 + �1�+ �2�2t )

2 � 1
�
+ 1

k + 1

1CCA
1
k
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1.2.2 Problem of Renyi Entropy Measure

Theorem 7 Consider the optimization problem:

maxH (g) =
1

1� r
logEg

�
gr�1(X )

�
; r 6= 1

subject to c-1, c-2 and c-3 of previous problem. Then the solution of maximum entropy density in
functional form is given by:

g(st) =

�
1� 1�r

r
(�1 (�� st)� �2 (�

2
t � s2t ))

� 1
r�1R1

0

�
1� 1�r

r
(�1 (�� st)� �2 (�

2
t � s2t ))

� 1
r�1 dst

1.2.3 Problem of Shafee Entropy Measure

Theorem 8 Consider the optimization problem:

maxH (g) = �Eg
�
ga�1(X ) ln g(X )

�
; a > 0

subject to c-1, c-2 and c-3 of previous problem.
Then of solutions of g (st) is given by:

g (st) =

"
aW (
) (1� a) exp

�
�
�
1�a
a

�	

 (1� a)

# 1
1�a

where W is a Lambert function and 
 = �0 + �1� + �2�
2
t ; �0; �1; �2 are the Lagrange multipliers

which can be determined using some speci�ed constraints. An alternate solution can be written as:

g (st) = ( 
0)
�1 �

�0 + �1�+ �2�
2
t

�
1.2.4 Problem of Ubriaco Entropy Measure

Theorem 9 Consider the optimization problem:

maxH (g) = �Eg

�
ln

1

g(X )

�d
; d > 0

subject to c-1, c-2 and c-3 of previous problem.
Then the solution for g (x) can be written as:

g (st) = ( 
0)
�1 �

�0 + �1�+ �2�
2
t

�
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Chapter 2

Option Pricing and GARCH Volatility

2.1 Black-Scholes Model with GARCH Volatility

The call option for this model can be written as:

C = SE�t

"
�(
log( S

K
) + rT + 1

2
�2t

�t
)

#
�Ke�rTE�t

"
�(
log( S

K
) + rT � 1

2
�2t

�t
)

#
(2.9)

C = SE�t [�(d1)]�Ke�rTE�t [�(d2)] (2.10)

The put option for this model can be written as:

P = Ke�rTE�t [�(�d2)] � SE�t [�(�d1)] (2.11)

Theorem 10 [59]For any twice di¤erentiable functions f(x) and g(x); the call price (3.10) can
be written as:

C = S

�
f [E(�2t )] +

1

2
f 00[E(�2t )](

1

3
k(y) � 1)E2(�2t )

�
�Ke�rT

�
g[E(�2t )] +

1

2
g00[E(�2t )](

1

3
k(y) � 1)E2(�2t )

�
(2.12)

where k(y) = E(y4t )

E2(y2t )
;the kurtosis of the observed logreturn yt: We also have:

f [E(�2t )] = �

0@ log( SK ) + rT + 1
2
E(�2t )q

E(�2t

1A (2.13)

g[E(�2t )] = �

0@ log( SK ) + rT � 1
2
E(�2t )q

E(�2t

1A (2.14)
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2.2 Kurtosis in BS-Model with GARCH Volatility.

2.2.1 In The Money Option (ITM)

Theorem 11 For any twice di¤erentiable functions f(x) and g(x); the call price can be written
as:

C = S

�
f [E(�2t )] +

1

2
f 00[E(�2t )](

1

3
k(y) � 1)E2(�2t )

�
�Ke�rT

�
g[E(�2t )] +

1

2
g00[E(�2t )](

1

3
k(y) � 1)E2(�2t )

�
where k(y) = E(y4t )

E2(y2t )
;the kurtosis of the observed logreturn yt:We can �nd the kurtosis k(y) as:

k(y) =

 
1536

p
2�Cx3

p
x� 768(

p
2� + 2)(S �X)x4

F (x)

!
+ 3

where C is value of call option, x is volatiltiy, S is stock price, K is strike price, r is interest
rate, T is time to expiry, u = log

�
S
k

�
+ rT and

F (x) = [16u4(S �X)� 64u3(S +X)]x+ [
�
32u2 � 96u3

�
(S �X)]x2 +

[(196u� 8u2�)(S �X) + (16u+ 100u2)(S +X)]x3 �
[(32� 2u)(S +X) + (8 + 8u)(S �X)]x4 + [3(S �X)]x5 +

32u5(S +X)

2.2.2 At The Money Option (ATM)

Theorem 12 Consider case-2 when stock price S and strike price K are identical i.e. S = K
and r = 0 also if E(�2t ) = x , then we can write as follows:

f(x) = �(d1) = �

�p
x

2

�
; g(x) = �(d2) = �

�
�
p
x

2

�
Then we have following results:

1. f 00(x) = 1p
2�
e
�x
8

h
�1
8x
p
x
� 1

32
p
x

i
2. g00(x) = 1p

2�
e
�x
8

h
1

8x
p
x
+ 1

32
p
x

i
and we have the kurtosis k(y) given by:

k(y) =
96
�q

2�
x
C
S
� 1
�

(x� 4) (x+ 8) + 3
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2.2.3 A Simple Case for ATM and ITM Options

Theorem 13 Consider the call option of BS-model with GARCH volatiltiy as follows:

C = SE�t [�(d1)]�Ke�rTE�t [�(d2)]

where

E�t [ �(d1)] = �

24 log( SK ) + rT + 1
2
E(�2t )q

E(�2t )

35

E�t [ �(d2)] = �

24 log( SK ) + rT � 1
2
E(�2t )q

E(�2t )

35
Then we have following results:

1. In the case of BS-model with GARCH volatility for ITM i.e S 6= K,the implied volatiltiy
v = �b�

p
b2�4ac
2a

where a = (S + X), b =
p
2�[(S � X) � 2C] and c = 2H(S � X) and

X = Ke�rT , H = log( S
K
) + rT

2. In the case of ATM i.e S = K ,we have v = �b
a
; b =

p
2�[(S �X) � 2C]; a = (S +X),and

X = Ke�rT

3. We have same results for original Black-Scholes model for above two cases but the value of
call option in under GARCH volatiltiy is more signi�cant.
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Chapter 3

Doubly Stochastic Models with GARCH
process

3.1 Doubly Stochastic Models with AGARCH and TGARCH
Errors

Theorem 14 [132]Consider a doubly stochastic model of the following form with TGARCH(1,1)
errors

yt = (�+ bt)yt�1 + "t

bt+1 = abt + (1 + bt)�t+1

"t = �tzt

�t = ! + �1;+"
+
t�1 � �1;�"

�
t�1 + �1�t�j

Then we have following results.

1. E(y2t ) =
!2�2z(1+a1)(1�a2��2�)

(1�a1)(1�a2)(1�a2�2�2���2+�2a2+�2�2�)

2. E(y4t ) =

3�4z!
4 (1+3a1+5a2+3a1a2+3a3+5a1a3+3a2a3+a1a2a3)

(1�a1)(1�a2)(1�a3) +

+ 6!4�4z(1+a1)
2[�2(1�a2)+�2�(1��2)]

(1�a1)2(1�a2)2(1�a2�2�2���2+�2a2+�2�2�)

1� �4 � 3�4�[
(�1�a2�5�2�+a3+a5�16a3�2�+3a�2��9a�4�

(�1+a3+3a�2�)(�1+a2+�2�)(�1+6a2�2�+a4+3�4�)
]� 6�2[ �2�

(1�a2��2�)
]�

�4�6a[ �4�
(1�a3�3a�2�)(1�a2��2�)

]

3. The Kurtosis of the process follows the de�nition K(y) =
E(y4t )

[E(y2t )]
2

Theorem 15 [131]Consider the following doubly stochastic time series with conditions 1,2 and 3
as:

yt = (�+ bt)yt�1 + "t + �"t�1
bt+1 = abt + (1 + bt)�t+1

1.
�
�t
"t

�
� N

��
0
0

�
;

�
�2� 0
0 �2"

��
2. 1� a2 � �2� < 1

11



3. 1� a2 � 2�2� � �2 + �2a2 + �2�2� < 1

where "t is an identically distributed independent sequence of variables with mean zero and
variance �2" then we have results for E(y

2
t ); E(y

4
t ) and Kurtosis as follows.

1. E(y2t ) =
!2�2"(1+�

2)(1�a2��2�)
(1�a2�2�2���2+�2a2+�2�2�)

2. E(y4t ) =
3�4"(1+6�

2+�4)+6�2"(1+�
2)[(�2+E(b2t )]E(y

2
t�1)

1��4�E(b4t )�6�2E(b2t )�4�E(b3t )

3. The Kurtosis of the process follows the de�nition K(y) =
E(y4t )

[E(y2t )]
2

Theorem 16 [132]Consider a doubly stochastic model of the following form with TGARCH(1,1)
:

yt = (�+ bt)yt�1 + "t + �"t�1

bt+1 = abt + (1 + bt)�t+1

"t = �tzt

�t = ! + �1;+"
+
t�1 � �1;�"

�
t�1 + �1�t�j

Then we have following results.

1. E(y2t ) =
!2�2z(1+�

2)(1+a1)(1�a2��2�)
(1�a1)(1�a2)(1�a2�2�2���2+�2a2+�2�2�)

2. E(y4t ) =

3�4z!
4 (1+3a1+5a2+3a1a2+3a3+5a1a3+3a2a3+a1a2a3)

(1�a1)(1�a2)(1�a3) (1 + 6�2 + �4)+

+ 6!4�4z(1+�
2)2(1+a1)2[�

2(1�a2)+�2�(1��2)]
(1�a1)2(1�a2)2(1�a2�2�2���2+�2a2+�2�2�)

1� �4 � 3�4�[
(�1�a2�5�2�+a3+a5�16a3�2�+3a�2��9a�4�

(�1+a3+3a�2�)(�1+a2+�2�)(�1+6a2�2�+a4+3�4�)
]� 6�2[ �2�

(1�a2��2�)
]�

�4�6a[ �4�
(1�a3�3a�2�)(1�a2��2�)

]

3. The Kurtosis of the process follows from its de�nition K(y) =
E(y4t )

[E(y2t )]
2

Theorem 17 [132]Consider a doubly stochastic model of the following form with TGARCH(1,1)
errors as:

yt = (�+ bt + �st)yt�1 + "t + �"t�1

bt+1 = abt + (1 + bt)�t+1

"t = �tzt

�t = ! + �1;+"
+
t�1 � �1;�"

�
t�1 + �1�t�j

Then we have following results.

1. E(y2t ) =
!2�2z(1+�

2)(1+a1)(1�a2��2�)
(1�a1)(1�a2)(1�a2�2�2���2+�2a2+�2�2���2+�2a2+�2�2�)

2. E(y4t ) =

3�4z!
4(1 + �4 + 6�2)

(1+3a1+5a2+3a1a2+3a3+5a1a3+3a2a3+a1a2a3)
(1�a1)(1�a2)(1�a3) +

+
6�4z!

4(1+�2)2(1+a1)2[(�2+�2)[(1�a2��2�)+�2�]
(1�a1)2(1�a2)2(1�a2�2�2���2+�2a2+�2�2���2+�2a2+�2�2�)

1� �4 � 3�4�[
(�1�a2�5�2�+a3+a5�16a3�2�+3a�2��9a�4�

(�1+a3+3a�2�)(�1+a2+�2�)(�1+6a2�2�+a4+3�4�)
]� 6(�2 + �2)[ �2�

(1�a2�2�2�)
]�

��4 � 6�2�2
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3. The Kurtosis of the process follows from its de�nition K(y) =
E(y4t )

[E(y2t )]
2

Theorem 18 [131]Consider the doubly stochastic volatility process with AGARCH(I)-(0,1) errors
of the following form:

yt = (�+ bt)yt�1 + "t

bt+1 = abt + (1 + bt)�t+1

"t = �tzt

�2t = ! + � ("t�1 + r)2

Then we have following results

1. E(y2t ) =
�2z(!+�r

2)(1�a2��2�)
[1���2z ](1�a2�2�2���2+�2a2+�2�2�)

2. E(y4t ) =
3�4zE(�4t)+6�2zE(�2t)(E(b2t)+�2)E(y2t�1)

1��4�E(b4t)�6�E(b2t)��4�E(b3t)

3. The Kurtosis of the process follows from its de�nition K(y) =
E(y4t )

[E(y2t )]
2

Theorem 19 [131]Consider the doubly stochastic volatility process with AGARCH(I)-(0,1) errors
of the following form:

yt = (�+ bt)yt�1 + "t + �"t�1

bt+1 = abt + (1 + bt)�t+1

"t = �tzt

�2t = ! + � ("t�1 + r)2

Then we have following results

1. E(y2t ) =
�2z(!+�r

2)(1�a2��2�)
[1�(��2z+�)](1�a2�2�2���2+�2a2+�2�2�)

2. E(y4t ) =
3�4zE(�4t)+6�2zE(�2t)(E(b2t)+�2)E(y2t�1)

1��4�E(b4t)�6�E(b2t)��4�E(b3t)

3. The Kurtosis of the process follows from its de�nition K(y) =
E(y4t )

[E(y2t )]
2

Theorem 20 [131]Consider the doubly stochastic volatility process with AGARCH(I)-(0,1) errors
of the following form:

yt = (�+ bt + �st)yt�1 + "t + �"t�1

bt+1 = abt + (1 + bt)�t+1

"t = �tzt

�2t = ! + � ("t�1 + r)2

Then we have following results:

1. E(y2t ) =
�2z(1+�

2)(!+�r2)(1�a2��2�)
(1���2z)(1�a2�2�2���2+�2a2+�2�2���2+�2a2+�2�2�)

2. E(y4t ) =
3"4t (1+6�

2+�4)+6"2t (1+�
2)[(�2+�2+E(b2t )]E(y

2
t�1)

1��4�3E(b4t )�6(�2+�2)E(b2t )��4�6�2�2

3. The Kurtosis of the process follows from its de�nition K(y) =
E(y4t )

[E(y2t )]
2
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Chapter 4

Data Analysis

4.1 Model Selection

In this section we provide our numerical results for the best �tted GARCH selected models for
the underlying indexes.

TABLE 4.1 Results for NL, AUS and SG Indexes Monthly (Weekly)
Index Model Distribution AIC BIC SIC HQIC L
NL APARCH SGED -3.140 -2.947 -3.147 -3.062 259.68

EGARCH JSU -3.091 -2.917 -3.020 -3.097 254.77
(EGARCH) SSTD -4.4193 -4.3603 -4.4197 -4.3965 1538.0
(APARCH) JSU -4.428 -4.362 -4.402 -4.428 1542.0

SG IGARCH SSTD -3.871 -3.697 -3.877 -3.800 316.74
IGARCH JSU -3.124 -2.989 -3.069 -3.128 255.40

AUS EGARCH SGED -3.121 -2.986 -3.124 -3.066 255.13
EGARCH JSU -3.856 -3.683 -3.786 -3.862 315.62

We use short notation for the models as APA for APARCH, EG is EGARCH, IG is IGARCH
and SGED for skew generalized error distribution, JSU for Johnson reparametrized distribution
and SSTD for skew student-t distribution[133].

TABLE 4.2 Parametric Estimations Results NL, SG and AUS Monthly (Weekly)
Index Model Dist � ! �1 �1 
1 � Skew AR-1 MA-1
NL APA SGED -0.002 0.0 0.05 0.84 0.99 0.09 0.40 0.9 0.9

EG JSU -0.000 -0.4 -0.33 0.92 0.13 -18.7 0.8 -0.7
(EG) SSTD 0.000 -0.5 -0.24 0.93 0.16 0.72 -0.8 0.8
(APA) JSU 0.000 0.0 0.11 0.87 1.00 0.62 -2.29 -0.8 0.8

SG IG SSTD 0.006 0.0 0.22 0.77 0.66 0.5 -0.4
IG JSU 0.006 0.0 0.22 0.77 -0.80 0.5 -0.4

AUS EG SGED 0.004 -0.7 -0.18 0.88 0.10 0.52 0.7 -0.6
EG JSU 0.003 -0.7 -0.19 0.89 0.07 -19.7 0.7 -0.6

14



4.1.1 The Nyblom Test Statistics

TABLE 4.3 Nyblom Statistics Results NL, SG and AUS Monthly (Weekly)
Index Model Dist � ! �1 �1 
1 � Skew AR-1 MA-1
NL APA SGED 1.05 0.16 0.16 0.16 0.16 0.16 0.27 1.6 1.7

EG JSU 0.17 0.15 0.06 0.14 0.65 0.45 0.09 0.11
(EG) SSTD 0.27 0.18 0.06 0.18 0.07 0.02 0.14 0.14
(APA) JSU 0.19 0.11 0.13 0.12 NA 0.11 0.02 0.14 0.16

SG IG SSTD 0.10 0.06 0.22 0.05 0.05 0.25 0.23
IG JSU 0.13 0.06 0.23 0.05 0.29 0.27

AUS EG SGED 0.08 0.24 0.17 0.22 0.06 0.22 0.20 0.27
EG JSU 0.11 0.25 0.15 0.23 0.07 0.31 0.18 0.27

Index Model Dist A.C (J.S) A.C (I.S) J.S
10% 5% 1% 10% 5% 1%

NL APA SGED 2.29 2.54 3.05 0.35 0.47 0.75 4.4
EG JSU 2.1 2.32 2.82 0.35 0.47 0.75 1.03
(EG) SSTD 2.1 2.32 2.82 0.35 0.47 0.75 0.93
(APA) JSU 2.29 2.54 3.05 0.35 0.47 0.75 NA

SG IG SSTD 1.69 1.9 2.35 0.35 0.47 0.75 0.88
IG JSU 1.69 1.9 2.35 0.35 0.47 0.75 0.91

AUS EG SGED 2.1 2.32 2.82 0.35 0.47 0.75 1.42
EG JSU 2.1 2.32 2.82 0.35 0.47 0.75 1.01

4.1.2 Distribution of Simulated Parameters

TABLE 4.4 True vs Simulation Mean EGARCH (SGED) Parameter Distribution
� AR-1 MA-1 ! �1

T.C 0.0040000 0.71000 -0.63300 -0.75000 -0.18300
W-2000 0.0039572 0.68829 -0.60967 -0.75081 -0.18497
W-3000 0.0041476 0.69091 -0.61623 -0.73718 -0.18094
W-4000 0.0040695 0.68661 -0.60867 -0.76338 -0.18158
W-5000 0.0040683 0.69241 -0.61360 -0.76100 -0.18428
W-6000 0.0040396 0.70784 -0.63199 -0.74960 -0.18142

�1 
1 Skew Shape
T.C 0.88800 0.10500 0.52400 2.0390
W-2000 0.88783 0.10236 0.51917 2.0366
W-3000 0.89002 0.10102 0.52286 2.0335
W-4000 0.88605 0.10444 0.52339 2.0266
W-5000 0.88645 0.10317 0.52229 2.0293
W-6000 0.88809 0.10512 0.52203 2.0326
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TABLE 4.5 True vs Simulation Mean EGARCH (JSU) Parameter Distribution
� AR-1 MA-1 ! �1

T.C 0.030000 0.70000 -0.60000 -0.70000 -0.19000
W-2000 0.029809 0.68811 -0.58914 -0.73930 -0.19644
W-3000 0.029827 0.69376 -0.59494 -0.73098 -0.19529
W-4000 0.029933 0.69632 -0.59644 -0.72082 -0.19436
W-5000 0.029930 0.69762 -0.59781 -0.70821 -0.19210
W-6000 0.029919 0.69821 -0.59782 -0.70318 -0.19180

�1 
1 Skew Shape
T.C 0.89000 0.070000 19.700 3.0100
W-2000 0.88381 0.063163 12.186 2.9261
W-3000 0.88510 0.066076 11.275 2.9253
W-4000 0.88669 0.067522 11.395 2.9278
W-5000 0.88868 0.067741 11.597 2.9494
W-6000 0.88942 0.068208 10.742 2.9469

4.1.3 GARCH Bootstrap Forecast

TABLE 4.6(a) Australia-EGARCH (SGED) Series Forecast
Min q-25 Mean q-75 Max Forecast

t+1 -0.10496 -0.013616 0.005360 0.031588 0.061136 0.005335
t+2 -0.18354 -0.014950 0.003275 0.029843 0.083109 0.004969
t+3 -0.15659 -0.014547 0.003647 0.029316 0.076743 0.004708
t+4 -0.20544 -0.014769 0.004507 0.030786 0.080975 0.004523
t+5 -0.15899 -0.014632 0.004043 0.030524 0.093746 0.004392
TABLE 4.6(b) Australia-EGARCH (SGED) �� Forecast

Min q-25 Mean q-75 Max Forecast
t+1 0.030701 0.030701 0.030701 0.030701 0.030701 0.030701
t+2 0.027746 0.028807 0.031345 0.032568 0.050103 0.031078
t+3 0.025524 0.027889 0.032027 0.034610 0.077433 0.031417
t+4 0.024239 0.027899 0.032845 0.035573 0.077865 0.031722
t+5 0.023149 0.027899 0.032845 0.036182 0.096704 0.031995

TABLE 4.7(a) Australia-EGARCH (JSU) Series Forecast
Min q-25 Mean q-75 Max Forecast

t+1 -0.10604 -0.012826 0.004877 0.029199 0.061208 0.005456
t+2 -0.12329 -0.015332 0.003577 0.028795 0.074161 0.005036
t+3 -0.13957 -0.016986 0.002740 0.029779 0.077403 0.004731
t+4 -0.15453 -0.015119 0.003808 0.030384 0.078566 0.004510
t+5 -0.16100 -0.016734 0.003271 0.030902 0.086115 0.004350
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TABLE 4.7(b) Australia-EGARCH (JSU) �� Forecast
Min q-25 Mean q-75 Max Forecast

t+1 0.031578 0.031578 0.031578 0.031578 0.031578 0.031578
t+2 0.027834 0.029617 0.032166 0.033552 0.050118 0.031921
t+3 0.025096 0.028957 0.032800 0.035172 0.056148 0.032229
t+4 0.023325 0.029132 0.033446 0.036440 0.061437 0.032507
t+5 0.022963 0.029023 0.033787 0.037145 0.070204 0.032756

17



Chapter 5

Entropy Measures and Stock Options

5.1 Maximum Entropy Problem and Risk-Neutral Den-
sity

Theorem 21 [66] If the prior information set is I = fþ; S; P; �2gthen risk-neutral density f( ST )
solves the following maximum-entropy problem

max
g

� Eg [log g(YT )] (P�1)

subject to

Eg
h
IfYT>0g

i
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg
�
Y 2
T

�
= �2 +

�
S

P

�2
(C-3)

where g(ST ) > 0 on the price space þ. Then the unique solution of the optimization problem
P-1 with constranits C-1, C-2 and C-3 is given by:

f(ST ) =
exp (�1ST + �2S

2
T )R

þ exp (�1ST + �2S2T ) dST

where �1; �2 are chosen so that f(ST ) satis�es the price and variance constraints and f(ST ) > 0
on the price space þ.

Theorem 22 Consider the maximum entropy problem for the case of weighted entropy, u > 0
with constraints C-1, C-2 and C-3 of theorem 52,then we look for the solution of the following
problem:

max
g

� Eg [u(YT ) log g(YT )]

Then the unique solution of the optimization problem is given by:

f(ST ) =
exp

�
�0+�1ST+�2S

2
T

u(ST )

�
R
exp

�
�0+�1ST+�2S

2
T

u(ST )

�
where�0; �1; �2 are chosen so that f(ST ) satis�es the price and variance constraints.
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Theorem 23 Consider the case of Tsallis entropy maximization problem with the constraints
of the previous theorem, and we look for the solution of risk neutral denstiy f(ST ) of following
problem:

max
g

� Eg
�
logfqg g(YT )

�
Then the unique solution of the optimization problem is given by:

f(ST ) =

�
1 + q�0 + q (�1ST + �2S

2
T )

q + 1

� 1
q

where�0; �1; �2 are chosen so that f(ST ) satis�es the price and variance constraints.

Theorem 24 Consider the case of Weighted Tsallis entropy maximixation problem ,u > 0;with
the constraints C-1, C-2 and C-3 of the previous theorem, and we look for the solution of risk
neutral density f(ST ) of following problem as:

max
g

� Eg
�
u(YT ) logfqg g(YT )

�
Then the unique solution of the optimization problem is given by:

f(ST ) =

�
u (ST ) + q�0 + q (�1ST + �2S

2
T )

u(ST ) (q + 1)

� 1
q

where �0; �1; �2 are choosen so that f(ST ) satis�es the price and variance constraints.

Theorem 25 Consider the case of Kaniadakis entropy maximization problem with the constraints
C-1, C-2 and C-3 of the previous theorem, and we look for the solution of risk neutral denstiy f(ST )
of following problem as:

max
g

� Eg
�
logfkg g (YT )

�
Then the unique solution of the optimization problem is given by:

f(ST ) =

 
k (�0 + �1ST + �2S

2
T ) +

p
k2 (�0 + �1ST + �2S2T � 1) + 1
k + 1

! 1
k

where �0; �1; �2 are choosen so that f(ST ) satis�es the price and variance constraints.

Theorem 26 Consider the case of Weighted Kaniadakis entropy, u > 0 with the constraints C-1,
C-2 and C-3 of the previous theorem, and we look for the solution of risk neutral denstiy f(ST ) of
following problem:

max
g

� Eg
�
u (YT ) logfkg g (YT )

�
Then the unique solution of the optimization problem is given by:

f(ST ) =

0@k (�0 + �1ST + �2S
2
T ) +

q
k2
�
�0 + �1ST + �2S2T � (u (ST ))

2�+ (u (ST ))2
(k + 1)u(ST )

1A
1
k

where �0; �1; �2 are choosen so that f(ST ) satis�es the price and variance constraints.
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5.2 Pricing European Call and Put Options

Theorem 27 [Sheraz] If time to expiry is T , a call option pays max (0; ST �K) and put option
pays max (0; K � ST ), where K is the strike price. Then using the linear pricing rule and the risk
neutral density g(ST ); the price of European Call and Put are given by:

Call = S � PK [G(K)� g(K) + g(0) + 1] + P

Z K

0

G (ST ) dST

Put = P

Z K

0

G (ST ) dST
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Chapter 6

Statistical Heterogeneity

6.1 Gini�s Index and Risk Neutral Density of Maximum
Entropy

6.1.1 Shannon�s Entropy Problem:

Theorem 28 We consider the risk-neutral density g(ST ) which solves the following maximization
problem P-2 subject to conditions C-1, C-2 and C-4 as:

max
g

� Eg [log g (YT )] (P�2)

subject to

Eg
�
IfYT>0g

�
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg

�����YT � S

P

����r� = � , r > 0 (C-4)

Then we have risk neutral density as follows:

g(ST ) = exp

�
�1� �1 � �2ST � �3

����ST � S

P

����r�
where �1; �2; �3 are to be determined by using given constraints.

6.1.2 Gini�s Maximization Problems

Theorem 29 Consider the following problem P-3 for:

G(ST ) = Eg
�
IfYT>ST g

�
Then entropy maximization problem is equivalent to the convex optimization problem:

min

Z 1

0

�
G(YT )

2 dYT (P�3)

subject to C-1, C-2 and C-4 as given the previous theorem then the solution is :

g(ST ) =
�3
2
r(r � 1)

����ST � S

P

����r
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Theorem 30 Consider the following Entropy-Gini-Maximizarion problem P-4 :

max Eg [ln g (YT )] (P�4)
subject to

Eg
�
IfYT>0g

�
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)Z 1

0

G
�
Y 2
T

�
dYT = � , r > 0 (C-5)

Then G satis�es the following di¤erential equation and c is a constant of integration:

G0(ST ) = c� �2G(ST )� �3G(ST )
2

The solution of this di¤erential equation is as follows:

G(ST ) =
1

c3 exp (�c1ST ) + (1� c3)

where c1 and c3 are positive valued parameters, c1 =
 (c3)
S
P

;  (c3) =
ln(c3)
c3�1 ; c1 = ��2; c3 = ��

Theorem 31 Consider the following Entropy-Gini-Maximizarion problem P-5 :

max

Z 1

0

G(YT )
2 dYT (P�5)

subject to

Eg
�
IfYT>0g

�
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg [ln g (YT )] = � (C-6)

Then solution satis�es the following di¤erential equation:

G0(ST ) =
c

�3
� �2
�3
G(ST )�

1

�3
G(ST )

2

Theorem 32 Consider the optimization problem P-6 :

maxD(g) (P-6)

subject to

Eg
�
If�1<YT<1g

�
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg

�����YT � S

P

����r� = � , r > 0 (C-4)

Then we have

g (ST ) = �r (r � 1)�3
����ST � S

P

����r�2 ; r > 2
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6.1.3 Shannon�s Entropy and Gini�s Index

Theorem 33 Consider the optimization problem P-7 :

minEg [ln g (YT )] (P-7)

subject to

Eg
�
If�1<YT<1g

�
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

D (g) = 
 (C-3)

Then solution satis�es the Riccati equation :

G0� (ST ) =
c

2
� 2�2 + �3

2
G�(ST ) +

�3
2
G�(ST )

2

Theorem 34 Consider the following optimization problem:

maxD(g) (P-8)

subject to

Eg
�
If�1<YT<1g

�
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg [ln g (YT )] = � (C-6)

Then G� is the solution of following di¤erential equation:

y0 (ST ) =
c

2�3
� 1 + 2�2

2�3
G>(ST ) +

1

2�3
G>(ST )

2
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Chapter 7

Renyi Entropy Problems for Risk
Neutral Densities

7.1 Renyi Entropy for Risk Neutral Density Problems

Theorem 35 Consider the case of following Renyi -entropy maximization problem:

max IRr [g (ST )] =
1

1� r
lnEg

�
gr�1(YT )

�
subject to

Eg
�
If�1<YT<1g

�
= 1 (C�1)

Eg ['i (YT )] = ci , i = 1; ::n (C�2)

where ' :þ! R and c1; c2:::cn are given real values and þ is state space of real line R:
Then the soultion of problem is:

g (ST ) =

"
1� 1�r

r

 
nX
i=1

�i (ci � 'i (ST ))

!# 1
r�1

R1
�1

"
1� 1�r

r

 
nX
i=1

�i (ci � 'i (ST ))

!# 1
r�1

dST

where �1; �2:::�n are to be determined by given constraints.

Theorem 36 Consider the case of following weighted- Renyi- entropy maximization problem:

max IRr [g (ST )] =
1

1� r
lnEg

�
u (YT ) g

r�1(YT )
�

subject to

Eg
�
If�1<YT<1g

�
= 1 (C�1)

Eg [u (YT )'i (YT )] = ci , i = 1; ::n (C�2)
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where ' :þ! R and c1; c2:::cn are given real values and þ is state space of real line R: Then the
solution is:

g (ST ) =

26664
1� 1�r

r

0@ nX
i=1

�i(ci�'i(ST ))

1A
u(ST )

37775
1

r�1

R1
�1

26664
1� 1�r

r

0@ nX
i=1

�i(ci�'i(ST ))

1A
u(ST )

37775
1

r�1

dST

where �1; �2:::�n are to be determined by given constraints.

Theorem 37 Consider the case of following Renyi-Entropy maximization problem:

max IRr [g (ST )] =
lnEg [u (YT ) g

r�1(YT )]� lnEg [YT ]

1� r

subject to C�1 and C�2 of Theorem 60, then thesoluti on of problem is:

g (ST ) =

26664 1
rEg [u(ST )]

�
1�r
r

0@ nX
i=1

�i(ci�'i(ST ))

1A
u(ST )

37775
1

r�1

R1
�1

26664
1� 1�r

r

0@ nX
i=1

�i(ci�'i(ST ))

1A
u(ST )

37775
1

r�1

dST

where �1; �2:::�n are to be determined by given constraints.

Theorem 38 Consider the case of following Renyi-entropy maximization problem:

max IRr [g (ST )] = Eg [u (YT )] +
1

1� r

�
lnEg

�
u (YT ) g

r�1(YT )
�
� lnEg [u (YT )]

�
subject to C�1 and C�2 of Theorem 60, then the solution of problem is:

g (ST ) =

26664 1

r

0@1+ nX
i=1

�i+�

1A �
1�r
r
+ 1�r

r

0@�+ nX
i=1

�i'i(ST )

1A
u(ST )

37775
1

r�1

R1
�1

26664 1

r

0@1+ nX
i=1

�i+�

1A �
1�r
r
+ 1�r

r

0@�+ nX
i=1

�i'i(ST )

1A
u(ST )

37775
1

r�1

dST

where �1; �2:::�n are to be determined by given constraints.

25



Theorem 39 Consider the case of following Weighted-Tsallis -Entropy maximizationProblem

max IT;uq [g (ST )] =
1

1� q
Eg
�
u (YT )

�
gq�1(YT )� 1

��
subject to C�1 and C�2 of Theorem 60, thenthe solution of problem is:

g (ST ) =

2666641q + 1� q

q

�+

nX
i=1

�i'i (ST )

u (ST )

377775
1

q�1

where �1; �2:::�n are to be determined by given constraints.

Theorem 40 Consider the case of following Weighted utility-Tsallis Entropy maximization Prob-
lem:

max IT;uq [g (ST )] = Eg [u (YT )] +
1

1� q
Eg
�
u (YT )

�
gq�1(YT )� 1

��
subject to C�1 and C�2 of Theorem 60, then the solution of problem is:

g (ST ) =

2666641� 1� q

q

�+
nX
i=1

�i'i (ST )

u (ST )

377775
1

q�1

Theorem 41 Consider the case of following Weighted-Kanidakis -Entropy maximization Prob-
lem:

max IK;uk [g (ST )] = �Eg

�
u (YT )

gk(YT )� g�k(YT )

2k

�
subject to C�1 and C�2 of Theorem 60, then the solution of problem is:

g (ST ) =

26666664
�2
 
�+

nX
i=1

�i'i (ST )

!
+

vuut"k �+ nX
i=1

�i'i (ST )

!#2
+ (u (ST ))

2 (1� k2)

u (ST ) (1 + k)

37777775

1
k

Theorem 42 Consider the case of following Weighted utility-Kanidakis Entropy maximization
Problem

max IK;uk [g (ST )] = Eg [u(YT )]� Eg

�
u (YT )

gk(YT )� g�k(YT )

2k

�
subject to C�1 and C�2 of Theorem 60, then the solution of problem is:

g (ST ) =

24�2 (u (ST )� 
) +
q
[k (u (ST )� 
)]2 + (u (ST ))

2 (1� k2)

u (ST ) (1 + k)

35
1
k

where ��
nX
i=1

�i'i (ST ) = 
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7.2 Pricing European Call and Put Options

Theorem 43 If time to expiry is T , a call option pays max (0; ST �K) and put option pays
max (0; K � ST ), Where K is the strike price. Then using the linear pricing rule and the risk
neutral density g(ST ); the price of European Call and Put are given by:

Call = S � PK [G(K)� g(K) + g(0) + 1] + P

Z K

0

G (ST ) dST

Put = P

Z K

0

G (ST ) dST
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Chapter 8

Risk Neutral Densities with New
Approaches

8.1 Ubriaco Entropy Measure and Risk-Neutral Densities

8.1.1 New Approach-The Discrete Case

Theorem 44 Consider the following problem with Ubriaco entropy measure

maxHU(p) =
X
i

pi

�
ln
1

pi

�d
subject to

nX
i=1

pi = 1

nX
i=1

'i;pi = ai

where i = 1; :::n , ; d > 0 , pi � 0 and 'i 2 R and a1; a2::an are given real values. Then the
solution of the above problem is:

pi = ( 
0)
�1
 
�+

nX
i=1

�i'i

!

Theorem 45 For a weighted entropy with ui > 0 8 i then we write the new problem :

maxHU(p) =
X
i

uipi

�
ln
1

pi

�d
subject to constranits

nX
i=1

pi = 1

nX
i=1

'i;pi = ai
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where i = 1; :::n , ; d > 0 , pi � 0 and 'i 2 R and a1; a2::an are given real values. Then the
solution of the above problem is:

pi = ( 
0)
�1

0BBBB@
�+

nX
i=1

�i'i

ui

1CCCCA
where �; �1; �2; ::�n are Lagrange multipliers and can be determined using given constraints.

8.1.2 Main Results with Ubriaco Entropy Measure

Theorem 46 Consider the the following maximum-entropy problem for the case of Ubriaco en-
tropy measure :

maxHU(g (ST )) = Eg

"�
ln

�
1

g (YT )

��d#
subject to

Eg
h
IfYT>0g

i
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg
�
Y 2
T

�
= �2 +

�
S

P

�2
= 
 (C-3)

Then the risk neutral density g(ST ) is:

g(ST ) = ( 
0)
�1 �

�+ �1ST + �2S
2
T

�
where �; �1; �2 are to be determined using C-1, C-2 and C-3.

Remark 47 Similarly we can write solution of the above problem for the case of Weighted-Ubriaco
entropy ,u(ST ) > 0 as follows:

g(ST ) = ( 
0)
�1
�
�+ �1ST + �2S

2
T

u(ST )

�
Theorem 48 Consider the case of Ubriaco entropy maximization problem :

maxHU(g (ST )) = Eg

"�
ln

�
1

g (YT )

��d#
subject to

Eg
h
IfYT>0g

i
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg

�����YT � S

P

����r� = � , r > 0 (C-3)
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Then the risk-neutral density g(ST ) as follows:

g(ST ) = ( 
0)
�1
�
�+ �1ST + �2

����ST � S

P

����r�
where �; �1; �2 are to be determined using C-1,C-2 and C-3.

Theorem 49 Consider the case of following Ubriaco entropy problem:

maxHU(g (ST )) = Eg

"�
ln

�
1

g (YT )

��d#
subject to

Eg
�
If�1<YT<1g

�
= 1 (C�1)

Eg ['i (YT )] = ci , i = 1; ::n (C�2)

where 'i 2 R and c1; c2; :::cn are real given values. Then we have solution:

g(ST ) = ( 
0)
�1
(�+ �1'i (ST ))

where �; �1; �2 are to be determined using C-1,C-2 and C-3

Theorem 50 Consider the case of Ubriaco entropy maximization problem:

maxHU(g (ST )) = Eg

"�
ln

�
1

g (YT )

��d#
subject to

Eg
h
IfYT>0g

i
= 1 (C-1)

Eg [YT ] = S0e
rT (C-2)

Eg
�
(ST �K0)

+� = C0e
rT (C-3)

where K0 is the strike price, T is the time to expiry and r is risk-free interest rate. Then the
risk-neutral density g(ST ) is:

g(ST ) = ( 
0)
�1 �

�+ �1ST + �2 (ST �K0)
+�

where �; �1; �2 are to be determined using C-1,C-2 and C-3

8.2 Shafee Entropy Measure and Risk-Neutral Densities

Theorem 51 Consider the following entropy maximization problem:

max�Eg
�
g (YT )

a�1 ln g (YT )
�
; a > 0

subject to

Eg
�
If�1<YT<1g

�
= 1 (C�1)

Eg ['i (YT )] = ci , i = 1; ::n (C�2)
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where 'i 2 R and c1; c2; :::cn are real given values Then the solution is :

g(ST ) =

266664
aW

�

(1�a)

a
e�(

1�a
a )
�

 
�+

nX
i=1

�i'i (ST )

!
(1� a)

377775
1

1�a

where �; �1;�2:::�n are Lagrange multipliers and W is a Lambert function.

8.2.1 New Approach

Theorem 52 Consider the case of Shafee entropy problem:

max�Eg
�
g (YT )

a�1 ln g (YT )
�
; a > 0

subject to

Eg
�
If�1<YT<1g

�
= 1 (C�1)

Eg ['i (YT )] = ci , i = 1; ::n (C�2)

where 'i 2 R and c1; c2; :::cn are real given values. Then the solution is:

g(ST ) = ( 
0)
�1
 
�+

nX
i=1

�i'i(ST )

!

Theorem 53 Consider the case of Shafee -entropy problem:

max�Eg
�
g (YT )

a�1 ln g (YT )
�
; a > 0

subject to

Eg
h
IfYT>0g

i
= 1 (C-1)

Eg [YT ] =
S

P
(C-2)

Eg
�
Y 2
T

�
= �2 +

�
S

P

�2
= 
 (C-3)

Then the risk-neutral densities can be written using Lambert function and new approach as
follows respectively:

g(ST ) =

24aW
�

(1�a)

a
e�(

1�a
a )
�


 (1� a)

35
1

1�a

g(ST ) = ( 0)
�1 �

�+ �1ST + �2S
2
T

�
where �; �1; �2 are to be determined usingC-1 and C-2 and 
 = �+ �1ST + �2S

2
T
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Theorem 54 Consider the case of Weighted-Shafeef entropy problem:

max�Eg
�
u (YT ) g (YT )

a�1 ln g (YT )
�
; q > 0

subject to

Eg
�
If�1<YT<1g

�
= 1 (C�1)

Eg [u (YT )'i (YT )] = ci , i = 1; ::n (C�2)

where 'i 2 R and c1; c2; :::cn are real given values. Then the solution is:

g(ST ) =

24au (ST )W
�

(1�a)
au(ST )

e�(
1�a
a )
�


 (1� a)

35
1

1�a

where 
 = � +
nX
i=1

�iu (ST )'i (ST ) and �1; �2; :::�n are Lagrange multipliers and to be deter-

mined using C-1, C-2.
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Chapter 9

Semi-Markov Regime Switching Interest
Rate Models

9.1 Measure selection: Tsallis entropy

Proposition 55 In the one-period model, the minimal entropy martingale measure is given by

pj0 =
(1� dY0)�

j
0

(uY0 � dY0)
mX
j=1

�j0

;

qj0 =
(1� uY0) k

j
0

(dY0 � uY0)
mX
j=1

kj0

Theorem 56 [137]The minimal Tsallis entropy martingale measure is given by:

pjt =
(1� dYt)�

j
t

(uYt � dYt)
mX
j=1

�jt

qjt =
(1� uYt) k

j
t

(dYt � uYt)

mX
j=1

kjt

9.2 Measure selection: Kaniadakis entropy

Theorem 57 [137]The minimal Kaniadakis entropy martingale measure is given by

pjt =
(1� dYt)�

j
t

(uYt � dYt)

mX
j=1

�jt

qjt =
(1� uYt) k

j
t

(dYt � uYt)

mX
j=1

kjt

:
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9.3 Risk-Neutral Probabilities

Theorem 58 Consider the following problem where Pand Q are two probability measures:

S(P;Q) = EP
�
dQ
dP

�v
ln(

dQ
dP
); ifQ� P; v > 0

subject to

mX
j=1

�
pj0 + qj0

�
= 1

u
Y0

mX
j=1

pj0 + dYo

mX
j=1

qj0 = 1

where u is an up movement and d is a down movement in the binomial option pricing model
and Yo is a semi-markov process. Also we de�ne:

 1(x) = x ln
x

�j0

 2(x) = x ln
x

Kj
0

Then we have the following results:

pj0 = ( 01)
�1
(��� 
uYo)

qj0 = ( 02)
�1
(��� 
dYo)

and

pj0 = �j0

24vW
��

1�v
�v

� �
�j0
�1�v � e( 1�vv )�

�(1� v)
�
�j0
�1�v

35
1

1�v
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