Preface

The aim of this book is to present in a systematic manner a collection of
relatively recent concepts and results that could be summarized in ,,theoret-
ical algorithms” for solving, in the framework of Dynamic Prograinming, not
only simple ,,class-room” examples but also more complicated (even some
wreal-life”) optimal control problems; in the later case, the computer results
(mainly on numerical integration of certain ,,constrained” differential sys-
tems) should be accompanied and supported by solid theoretical arguments
to decide the optimality and the real nature of the solution.

In particular, the content of this book is intended to fill the (unfortu-
nately) ever increasing gap between the tremendous development of the , the-
ory” of optimal control problems and, on the other side, the rather , heuris-
tical procedures” used lately by many authors to ,,solve” (very often using
just ,,computer simulations” and very little or no theory at all) particular
examples of optimal control problems.

In view of the vast experience accumulated along the years in Calculus of
Variations and Optimal Control (e.g., Berkovitz (1974), Bliss (1925), (1946),
Boltyansky (1964,1968), Bolza (1946), Cesari (1983), Fleming and Rishel
(1975), Hestenes (1966), Lee and Markus (1967), Tonelli (1923), Young
(1969), etc.), a reasonable way of using the latest developments of Dynamic
Programming to solve concrete problems seems to be the following:

. first, compute (describe, characterize, etc.) a ,,feasible” selection of
(possibly optimal, for instance, ,,extremal”) trajectories which, using a
generic term, may be called a ,,generalized field of extremals”;

o secondly, compute (describe, characterize, etc.) the corresponding value
function of the field of extremals (i.e. the value of the cost-functional
along each trajectory of the field) and use a suitable ,,verification the-
orem” to decide the optimality of the chosen trajectories.

In more precise terms, this approach is described in the introductory Chapter
1 which contains also detailed formulations and classifications of optimal
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control problems, several illustrative ezamples, some basic properties of the
value functions and an ,,outline” of the Dynamic Programming Method.

In this setting, the first main ,,theoretical challenge” of Dynamic Pro-
gramming consists in finding verifiable sufficient conditions for the mono-
tonicity along admissible trajectories of a given real function with scarce reg-
ularity properties.

In order to obtain in Ch.3 an ,,almost comprehensive” list of such results,
that are applicable to very large classes of (autonomous) optimal control ‘
problems, we present in Ch.2 the following necessary ,,tools” from Nons-
mooth Analysis:

~ extensions of some Calculus concepts and results on open sets and on
differentiable submanifolds of R™ (Section 2.1), to stratified sets and map-
pings (Section 2.2) and to arbitrary sets and mappings (Section 2.3) where the
classical derivative is replaced by ,,generalized derivatives” defined, mainly,
by the contingent and by the quasitangent cones;

~ the proofs in Section 2.4 of some very general monotonicity theorems
for real functions, that go far beyond the classical Lebesgue’s theorem for
AC functions or the so called ,,Corollary of the Zygmund’s Lemma” for
continuous functions;

- some ,,upper estimates” in Section 2.5 of certain sets of generalized
tangent directions to the trajectories of a differential inclusion;

— the proofs in Section 2.6 of certain general results concerning invari-
ant sets and monotonic functions along solutions of autonomous differential
inclusions which, in particular, ,,produce” two very general ,,verification the-
orems” for semicontinuous value functions;

— several estimates in Section 2.7 of the generalized (,,extreme contin-
gent”) derivatives of some types of marginal functions.

Using these ,,auxiliary” results, we prove in Sections 3.1-3.3 a rather
large number of ,,verification theorems” (for autonomous optimal control
problems) containing sufficient optimality conditions for generalized fields of
extremals whose value functions have different types of regularity properties
and satisfy corresponding differential inequalities; the multitude of verifica-
tion theorems is justified by the necessity of careful choices of the ,,best” dif-
ferential inequality for each type of regularity property (i.e., Lipschitzianity,
continuity, semicontinuity) of the value function, since this is rarely found
in explicit form and the differential inequalities are difficult to ,,check” in
particular examples. '

In Section 3.4 we obtain in the same way several results concerning the set-
valued optimal feedback control in the framework of Dynamic Programming.
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The second main ,,theoretical challenge” of Dynamic Programming seems
to consist in finding the most efficient ways of computing (describing, char-
acterizing, etc.) generalized fields of extremals to which the verification the-
orems in Ch.3 could easily be applied.

Chapter 4 contains in the first two sections some extensions of the clas-
sical results concerning smooth Hamiltonian and Characteristic flows and
Cauchy’s Method of Characteristics for autonomous Hamilton-Jacobi equa-
tions; aimed as ,tools” to be used in a ,,piecewise” manner, in the next
sections, these concepts and results suggest the introduction in Sections 4.3,
4.4, of two concepts (of ,,stratified” type and, respectively, of ,,contingent”
type) of generalized characteristic flows that may be associated to an opti-
mal control problem; next, these objects are used in a ,,finite-dimensional”
minimization problem to define simultaneously both, a generalized field of
ertremals and its value function. The main advantage of this procedure is
that the value function satisfies already certain differential inequalities that
are very close to the ones needed in the verification theorems in Ch.3.

In Section 4.5 we analyze the apparently more natural way of describing a
»proper” field of extremals using Pontryagin’s Minimum Principle (PMP) as
a necessary optimality condition; however, besides the restrictive hypotheses
under which PMP is proved, in this case the differential inequalities needed
in the verification theorems seem more difficult to check ,,directly” due to
the absence of the basic properties of the characteristic flows in Sections
4.1-4.4; this shortcoming may be avoided by the proof of the fact that the
»extremal pairs” satisfying PMP are solutions of a certain ,,Pontryagin-
type Hamiltonian inclusion” which is contained in the more general one in
Sections 4.3, 4.4.

The theoretical results in Ch.3 and Ch.4 will then be summarized in Ch.5
in the form of several ,,theoretical Dynamic Programming Algorithms” whose
efficiency will be illustrated in Ch.6 on some significant examples of Calculus
of Variations and Optimal Control problems.

In particular, we present complete theoretically justified solutions to the
classical problems of the Brachistochrone and, respectively, to the Euler-
Plateau problem on minimal surfaces of revolution; perhaps it is interesting
to note here that the later problem has been studied on some 35 pages in
Bliss(1925), using not only the whole ,,arsenal” of the classical theory of
Calculus of Variations but also a large number of intuitive-geometric and
ad-hoc arguments.
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