Preface

The researchers in Aerodynamics know that there is not a unitary method
of investigation in this field. The first mathematical model of the air-
plane wing, the model meaning the integral equation governing the phe-
nhomenon, was proposed by L. Prandtl in 1918. The integral equation
deduced by Prandtl, on the basis of some assumptions which will be
specified in the sequel, furnishes the circulation C(y) (see Chapter 6).
Using the circulation, one calculates the lift and moment coéﬂicients,
which are very important in Aerodynamics. The first hypothesis made
by Prandtl consists in replacing the wing by a distribution of vortices
on the plan-form D of the wing (i.e. the projection of the wing on the
plane determined by the direction of the uniform stream at infinity and
the direction of the span of the wing). Since such a distribution leads
to a potential flow in the exterior of D and the experiences show that
downstream the flow has not this character, Prandtl introduces as a sup-
plementary hypothesis another vortices distribution on the trace of the
domain D in the uniform stream. The first kind of vortices are called
tied vortices and the second kind of vortices are called free vortices. On
the basis of this model one developed later the main theories of Aero-
dynamics namely the lifting surface theory (after 1936, more precisely
in 1950, when Multhopp gave the equation of this theory), the lifting
surface theory for the supersonic flow (after 1946) and the lifting theory
for oscillatory wings and surfaces for the subsonic, sonic and supersonic
flow (after 1950). In the framework of the last theory the wing is re-
placed by doublets distributions. From a physical point of view, there is
no reason for replacing the wing with vortices or doublets distributions.
It is true that the vortices are detaching from the wing, but these are
effects , not causes of the presence of the wing. The fact that these
replacements lead to correct results shows how subtle was Prandt]’s in-
tuition. We specify that the distributions on I} and its trace do not
result from the equations of motion (they have been introduced outside
the mathematical model). Taking into account this inconvenient, we
have shown in [5.7] how it can be removed. We have to consider that
the wing and the fluid constitute an interacting material system. If we
want to study the fluid flow, then according to Cauchy’s stress principle
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(the principle of the internal forces; see for example [1.11], p.35), we
have to assume that there exists a forces distribution on the boundary,
which has against the fluid the same action like the wing itself. We shall
replace therefore the wing with a forces distribution instead of a vor-
tices, sources or doublets distribution and we shall find out the density
of this distribution such that it should have the same action against the
fluid like the wing itself. We shall proceed by imposing to the fluid flow
determined by the forces distribution to satisfy the slipping condition
on the wing, condition which is also satisfied by the flow determined by
the wing. In this way it follows an integral equation for determining
the forces density. This equation constitutes the mathematical model
for the wing we have in view. This method is an unitary one and it
is based only on the classical principles of mechanics (in fact, Cauchy’s
stress principle). It may be applied to all configurations: see {5.7] for
the wing in a subsonic stream, [8.4} for the wing in a supersonic stream,
[10.15], [10.16], [10.17] for the oscillatory wings in subsonic, sonic or
supersonic stream etc. All these results are given in this book (see chap-
ters 5, 8, 10, 11}, We called this method (in[5.7]): the fundamental
solutions method. It may be utilized to all cases in which one can calcu-
late the fundamental solutions of the equations of motion. We have to
notice that in the framework of this method, the existence of the vortices
downstream the wing follows from the model (i.e. from the equations
of motion) and it must not be introduced artificially. In the sequel we
shall present some of the models of aerodynamics. For two-dimensional
configurations, in a subsonic stream, the models are one-dimensional
singular integral equations considered in the sense of Cauchy’s principal
value. One may integrate analytically only the equation of thin pro-
files in a free stream. For other geometries one determines numerical
solutions with the aid of Gauss-type quadrature formulas (see Chapter
3). For three-dimensional wings in a subsonic stream, the models are
two-dimensional integral equations with strong singularities, which are
defined in the sense of Finite Part (see Chapter 5). For other geome-
try (for example the wing in ground effects) the models are generalized
equations. All these models are solved only numerically. For the wing
in a free stream, Multhopp’s method is available. In this book we intro-
duce a more general method — the quadrature formulas method. In the
last part of Chapter 5 one presents the theory of low aspect wings which
was extended by the author to the general case of asymmetrical wings.
The lifting line theory may be deduced from the lifting surface theory
with the aid of Prandtl’s assumptions (6). This theory is developed
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by presenting analytical and numerical methods for solving Prandtl’s
equation; one considers also extensions of this theory, all the methods
representing one-dimensional integral-differential equations. The author
shows how these equations may be reduced to integral equations with
strong singularities and for this type of singularities he gives a Gauss-
type quadrature formula, which allows the equation to be reduced to a
linear algebraic system which is solved numerically. This method, which
is very general, allows to obtain numerical solutions both in the case of
the lifting line (Chapter 6) and the case of the lifting surface (Chapter
5). In the case of supersonic flow, the integral equations are solved ana-
lytically. For the three-dimensional wing (the lifting surface) we present
in Chapter 8 a nice solution given by D. Homentcovschi in [8.16]. The
integral equations describing the flow past oscillatory wings and profiles
(chapter 10) have the same nature like the equations utilized in the case
of steady flow but the kernels are more complicated. However for. the
sonic and supersonic flows these equations may be solved exactly by
means of the Laplace transform, as it is shown in [10.17]. Chapter 9,
devoted to the transonic motions, begins with a new asymptotic deduc-
tion of the equations of motion. The two and three-dimensional integral
equations are obtained following the papers of the author and D. Ho-
mentcovschi. The theory of subsonic and supersonic flow past slender
bodies (in Chapter 11) relies also on the fundamental solutions theory.
In Chapter 2 one deduces the equations of the linear aerodynamics, on
the basis of an asymptotic analysis, assuming that the small parameter
depends on the thickness of the profile. In the classical aerodynamics
this deduction is performed under the assumption that the unknowns
and their derivatives have the same order of magnitude, but this fact
cannot be a priori assumed. Then one calculates the fundamental solu-
tions for the equation of the potential (paper [2.11]) and the fundamental
solutions for the systems of equations of aerodynamics : the steady sys-
tem[2.8], the oscillatory system {10.17}, the unsteady system [2.6], [2.7].
On these solutions will rely the theories from the forthcoming chapters.
The models we have already presented are the so called classical or linear
models. They are suitable for the thin wings and thin profiles because
they rely on the following assumptions: 1) one uses a linear bound-
ary condition, 2) the boundary condition is imposed on the support of
the wing (the segment [—1, 1] for the profile, the plan-form D for the
three-dimensional wing), 3) the equations of motion are linearized. The
development of the scientific computing allows us to develop more ex-
act methods. Indeed we can give up to the first two assumptions using
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the boundary integral equations method {(BIEM), also called the bound-
ary element method (BEM), which was employed for the first time by
Hess and Smith [7.9], [7.10]. The integral equations on the boundary
are obtained imposing the exact boundary condition on the boundary
of the wing. The integral equation is discretized using, for example, the
collocation method. One obtains an algebraic system which is solved nu-
merically. The linearization of the equations of motion is necessary only
in the case of compressible fluids. The theory that we have developed is
thus valid for every body in an incompressible fluid and for a thin body
in a compressible fluid. Two chapters from this book, Chapter 4 for the
2d airfoil and Chapter 7 for the 3d airfoil are based on our papers (L.
Dragos and A. Dinu). The comparison between the known analytical
results and the numerical results shows a very good agreement. In the
Appendices we give some results concerning The Distributions Theory,
The Singular Integral Equations Theory, The Principal Value and The
Finite Part, Gauss-type Quadrature Formulas, etc.
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