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Abstract - The incremental deformation of a rectangular plate of compressible
isotropic hyperelastic material subjected to on underlying pure homogeneous strain
is considered. A new method for the deduction and analysis of the bifurcation
equations of the solutions for equilibrium system is given.
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1 Introduction

In the study of plane incremental deformations of a rectangular plate of com-
pressible hyperelastic material subjected to underlying pure homogeneous
strain, the following system is obtained (see [2], p.413, [6], [7])

{
a∂2

1v1 + β∂2
2v1 + (c + γ)∂1∂2v2 = 0

α∂2
1v2 + b∂2

2v2 + (c + γ)∂1∂2v1 = 0.
(1)

Above a, b, c, α, β, γ are real numbers depending on material constants and
the initially applied deformation and stress, and v1, v2 are components of
the incremental displacements.

In [1] Hill studied the system (1) assuming solutions of the form

v1 = n1f(m1x1 + m2x2), v2 = n2f(m1x1 + m2x2)

where f is a non-linear, twice differentiable function and n1, n2,m1, and m2

are constants. In addition m1 and m2 satisfy
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ab + αβ − (c + γ)2

]
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2 + bβm4

2 = 0.
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