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Vrănceanu liked to say that his fame comes from his discovery of nonholonomic
spaces. The Romanian ”Minerva” encyclopedia, published in the years 1930-1940,
mentions this achievement of the Romanian geometer.

1. Gh. Vrănceanu began his study on nonholonomic spaces under the guidance
of the famous Italian mathematician T. Levi Civita in 1926, but it is after he met
É. Cartan at the International Congress of Mathematicians, that took place in 1928
in Bologne, that Gh. Vrănceanu began a systematic research on that topic. The
concept of a nonholonomic space came from Analytic Mechanics: a mechanical
nonholonomic system S, consisting in a set of material points, is characterized by
a Lagrange function, defining a Riemannian metric, and a system of constraints,
consisting in a finite number of relations imposed to the positions and velocities of
the material points.

The most familiar case arises when these constraints are expressed through
linear equations in the velocities, which have the form

fα =
n∑

A=1

ωα
A(x) ẋA = 0 , (α = m + 1, ..., n),

where n is the dimension of the configurations space and ωα
A are differentiable

functions depending on the Lagrange coordinates xA.
We can suppose that the Lagrange function

L(x, ẋ) =
1
2

n∑

A,B=1

gAB(x) ẋA ẋB

has been written as a sum of n squares of linear forms

L =
1
2

n∑

A=1

(fA)2 , fA =
n∑

B=1

ωA
B ẋB ,

with the constraints fα = 0 , (α = m + 1, ..., n). The ranges of the indexes will be
as follows:

A,B, C = 1, ..., n ; i, j, k = 1, ..., m ; α, β, γ = m + 1, ..., n.
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Under these conditions, the equations of motion of the system S are due to
Lagrange and can be written in any of the two following equivalent forms:

d

dt

( ∂L

∂ẋA

)
=

∂L

∂xA
+

n∑
α=m+1

λα ωα
A , fα = 0

d

dt

( m∑

i=1

f i ωi
A

)
=

n∑

i=1

f i ∂ωi
D

∂xA
ẋD +

n∑
α=m+1

λα ωα
A , fα = 0,

where λα are functions to be determined.
Suppose that, in view of the constraints fα = 0, we have

ẋA =
m∑

i=1

πA
i f i. (1)

Then
n∑

A=1

ωi
A πA

j = δi
j ,

n∑

A=1

ωα
A πA

j = 0

and the equations of motion will be given by the system formed by the equations
(1) and by

ḟ i =
m∑

k,j=1

wk
ijf

kf j = −
m∑

k,j=1

γi
kjf

kf j (2)

where

wi
jk =

n∑

A,B=1

(∂ωi
A

∂xB
− ∂ωi

B

∂xA

)
πA

k πB
j

γi
jk =

1
2
(wi

jk + wj
ki − wk

ij).

Let us introduce the 1-forms, also named Pfaff forms:

ωA =
n∑

B=1

ωA
B dxB .

The French mathematician J. Hadamard had pointed out that the equations
of motion remain equivalent to themselves when one performs a transformation of
the form

ω
′i =

m∑

j=1

ci
j ωj , ω

′α =
n∑

β=m+1

cα
β ωβ , (3)

where cα
β , ci

j are functions of the xA such that

m∑

i=1

ci
jc

i
k = δjk . (4)
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The transformations of the form (3) were named by Cartan and Vrănceanu
separable transformations of Pfaff forms.

On the other side, the equations (2) are very similar to the equations of the
geodesic lines in a Riemannian manifold, written in the formalism of Ricci Calculus.

Inspired by these remarks, Gh. Vrănceanu defined a nonholonomic space [6] by
considering the structure, denoted V m

n and consisting in a system of n −m Pfaff
equations

ωα = 0 , (α = m + 1, ..., n)
and a quadratic differential form of rank m

ds2 =
∑m

i=1 (ωi)2,
such that the n forms ωA are linearly independent.

Vrănceanu’s theory of nonholonomic spaces starts with the problem of finding
necessary and sufficient conditions for the equivalence of two nonholonomic spaces
V m

n , V
′m
n with respect to the separable group of transformations of Pfaff forms

ω
′i = ci

j ωj , ω
′α = cα

β ωβ .

To solve this problem, Vrănceanu studied the linear connections which are in-
variantly associated with a given nonholonomic space.

It is this problem that was the starting point of a very interesting correspon-
dence between Vrănceanu and Cartan. This correspondence referred mainly to the
equivalence problem of two nonholonomic spaces and lead to a lot of important
results, which are contained in many articles.

But it is important to point out that Cartan had already published in 1910 a
large article on the continuous groups of transformations, depending on arbitrary
parameters and functions [1].

On the other side, E. Goursat had published an important book titled ”Leçons
sur le problème de Pfaff”. The works of Cartan and Vrănceanu rely significantly
on this book, which had to be developed. For instance, the notion of the class of a
Pfaff system had to be defined properly.

Most of the examples produced by Cartan and Vrănceanu concerned nonholo-
nomic spaces of types V 2

5 , V 3
5 .

2. It is interesting to note that, while studying under the guidance of Cartan
the problem of equivalence of two nonholonomic spaces, Vrănceanu was using Levi-
Civita and Ricci’s formalism of tensor calculus, almost ignoring the formalism of
exterior differential calculus used by Cartan. This explains to some extent the
isolation which characterized Vrănceanu’s activity for a long period of time.

Let us explain the relation between the two formalisms. We will use Einstein’s
summation convention. Suppose we have a Riemannian metric

ds2 =
n∑

i,j=1

gij(x) dxi dxj ,

which has been written as a sum of squares of 1-forms

ds2 =
n∑

A=1

(ωA)2 , ωA = ωA
i (x) dxi. (5)
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Let us introduce the dual objects

(πi
A) = (ωA

i )−1 , ∂i =
∂

∂xi
, πA =

n∑

i=1

πi
A∂i

so that the differential df of a function f can be written as follows:

df = πA(f) ωA.

When Ci
jk are Christoffel’s symbols, the covariant derivatives of the 1-forms ωA

are given by the formulas

∇πB
ωA = πj

B(∂j ωA
i − Ck

ij ωA
k )dxi = γA

CB ωC ,

where
γA

CB = πi
C πj

B (∂j ωA
i − Ck

ij ωA
k )

are the Ricci rotation coefficients. These coefficients have the properties

γA
CB + γC

AB = 0 , γA
CB − γA

BC = wA
BC ,

where the coefficients
wA

BC = πi
C πj

B(∂j ωA
i − ∂i ωA

j )

appear in the formulas giving the exterior derivatives, frequently used by Cartan:

dωA =
1
2
wA

BC ωB ∧ ωC .

As a consequence, we get

γA
BC =

1
2
(wA

BC + wB
CA − wC

AB).

Note that when we introduce the 1-forms

γA
B = γA

BC ωC ,

we get Cartan’s structure equations:

dωA = −γA
B ∧ ωB

dγA
B + γA

C ∧ γC
B =

1
2
γA

BCD ωC ∧ ωD

containing the curvature coefficients

γA
BCD = −πD(γA

BC) + πC(γA
BD) + γA

BF wF
CD + γA

FC γF
BD − γA

FD γF
BC .

When we perform a linear transformation of 1-forms

ω̃A = cA
B ωB , (6)
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the transformation laws of the coefficients γA
BC and wA

BC look as follows:

πA(cB′
B ) + cB′

D γD
BA = γ̃B′

D′A′ cD′
B cA′

A

πB(cA′
A )− πA(cA′

B ) + cA′
D wD

BA = w̃A′
B′D′ cB′

B cD′
A .

Suppose the transformation (6) has

cα
i = 0 , (1 ≤ i ≤ m < α ≤ n). (7)

Then the transformation laws above give

πi(c
j′
j ) + cj′

k γk
ji + cj′

α γα
ji = γ̃j′

ki′ ck
j ci′

i

cβ
λ γλ

ik = γ̃β
lj cl

i cj
k , cβ

λ γλ
i α = γ̃β

j µ cj
i cµ

α + γ̃β
jk cj

i ck
α

cβ
λ wλ

ik = w̃β
lj cl

i cj
k , cβ

λ wλ
i α = w̃β

jµ cj
i cµ

α + w̃β
jk cj

i ck
α.

Supposing that no linear combination of the Pfaff forms ωα has vanishing exte-
rior derivative modulo these forms, excepting the combination with zero coefficients,
Cartan tried to prove, at the Bologna Congress, that it is possible, in an invariant
way, to get, besides the relations (7), the relations

ci
α = 0. (8)

At the beginning of his research, Vrănceanu was looking for linear connections,
associated with two complementary Pfaff systems; such a structure is invariant
under a group (6) with ci

α = cα
i = 0.

In a letter dated May 9, 1932, he wrote to Vrănceanu acknowledging that an
example given by Vranceanu contradicted this statement, so that he was, generally
speaking, wrong.

Vranceanu had shown, at the same Congress, this:

Proposition. Given a metric of the form (5) and a separable group (6-8), it is
possible to get an invariant connection having

γi
βA = γi

Aβ = γα
Ai = γα

iA = 0.

In a letter dated April 27, 1934, Cartan pointed out that, as far as concerns
Vrănceanu’s problem, it is important to obtain just one linear connection, that is
canonically associated to a given nonholonomic mechanical system.

3. One gets nonholonomic spaces when one considers a second order elliptic
PDE

F (z, x, p, q) = 0,

with n independent variables x1, ..., xn and just one unknown function z =
f(x1, ..., xn). Using the notations

pi =
∂z

∂xi
, qij =

∂2z

∂xi∂xj
, F ij =

∂F

∂qij
, (Fij) = (F ij)−1,
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ellipticity means that the matrix (Fij) is positive definite.
Under these conditions, one gets a metric of rank n:

ds2 =
n∑

i,j=1

Fijdxidxj

with coefficients Fij depending on all the variables xi, z, pi, qij = qji . The
solutions of the equation F = 0 will be those integral manifolds of the Pfaff system

dz =
n∑

i=1

pi dxi , dpi =
n∑

j=1

qij dxj ,

which are contained in the hypersurface defined by the equation F = 0.
4. In the year 1969, Vrănceanu organized a Symposium dedicated to the cen-

tenary of É. Cartan’s birthday.
We mention that this commemoration provided the participation of prominent

mathematicians such as G. de Rham, A. Lichnerowicz, J. Koszul and M. Kuranishi,
who offered deep analyses on Cartan’s work. Their contributions are contained in
a volume which was published by the Romanian Academy, in 1975 [5].

The same volume also contains a short contribution by Vrănceanu, in which
the Romanian geometer asserts that his work on nonholonomic spaces is due to the
influence of Cartan.

The volume [5] contains a set of letters written by Cartan to Vrănceanu. These
letters reflect the immense influence that Cartan had on Vrănceanu’s work concern-
ing the nonholonomic spaces.

From his side, Vrănceanu produced an example which allowed Cartan to make
precise one of his results exposed at the Bologne Congress on nonholonomic me-
chanical systems. In the same time, it was Cartan who invented a lot of interesting
examples, that allowed Vrănceanu to develop his theory on nonholonomic spaces.

5. The author of these lines obtained an interesting example of a nonholonomic
space, showing that the complex and quaternionic projective spaces, endowed with
the Fubini-Study metrics, can be viewed as nonholonomic spaces in the spheres
S2p+1, S4p+3 [3]. This result extends to a large class of homogeneous Riemann
spaces discovered by É. Cartan and named symmetric spaces.

6. As far as concerns the general concept of nonholonomic space in the sense
of Vrănceanu, we mention that, in a more modern language, it is referred to as a
structure consisting in two complementary distributions on a differentiable manifold
[4]. We also mention that this concept is studied in a fundamental article by H.
Guggenheimer and D. Spencer from the viewpoint of the theory of pseudo-groups
of transformations.

7. Differential Geometry is traditionally connected to Mathematical Physics,
especially to Analytic Mechanics and Relativity Theory. Riemann himself suggested
that the spaces that he introduced should be used to explain the gravitational
phenomena. This idea was successfully developed many years after by A. Einstein,
who used the notions of pseudo-Riemannian manifolds and Levi-Civita parallelism.
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At the same time, Einstein posed the problem of finding a geometric model
capable to explain both the electro-magnetic and gravitational phenomena, using a
unitary framework. Einstein himself offered the first essay of such an unitary theory,
in which the electro-magnetic and the gravitational fields were represented by skew-
symmetric, respectively by symmetric tensor fields of type (0, 2), on differential
manifolds of dimension four.

Though Einstein’s problem remains just a dream, it gave rise to a lot of arti-
cles and books written by a large number of mathematicians and physicists, who
developed interesting new mathematical and physical theories.

Gh. Vrănceanu was among the first authors who contributed to Einstein’s
problem.

Before Vrănceanu, H. Weyl had produced an unitary theory, in which the grav-
itational field was represented by a pseudo-Riemannian metric of Lorentz type,
defined on a four-manifold M , while the electro-magnetic vector potential was rep-
resented by a differentiable 1-form

Φ = dl − ϕ l , ϕ =
4∑

i=1

ϕi(x) dxi

on M × R , where xi are local coordinates on M and l is a coordinate on R rep-
resenting length. In this formula, the 1-form ϕ represents the electro-magnetic
vector-potential and dl represents a change of lengths due to the electro-magnetic
field, whose strength is represented by dϕ. Weyl’s theory has been refuted by Ein-
stein, but it became the corner stone of modern Electro-magnetism, when a small
but significant modification was introduced. Namely the pair (M × R , Φ) has
been replaced by the pair(

M ×C , ψ = dz −√−1 ϕ z
)
.

This pair represents, in modern Differential Geometry, a linear unitary connection
in a complex unitary line fibre bundle over M . The curvature of this connection is
proportional to the tensor representing the strength of the electro-magnetic field.

Weyl’s model is the origin of modern gauge theories used in Differential Topol-
ogy and also in Mathematical Physics.

Vrănceanu’s unitary theory consists in a nonholonomic space V 4
5 defined by a

pair (M × R , ω5), where M is a four manifold and
ω5 = dx5 −∑4

i=1 ϕi(x1, x2, x3, x4) dxi.

It was É. Cartan who invented an inspired, general geometric differential struc-
ture [2], which was and continues to be frequently used, not only in Theoretical
Physics, but also in Differential Geometry and Differential Topology. Cartan’s gen-
eral structure consists in an infinitesimal connection in a differentiable fibre bundle.

According to Cartan’s definition, an infinitesimal connection in a differentiable
fibre bundle p : E → M is a so called horizontal distribution H on E, that is
complementary to the vertical distribution V , formed by the vectors tangent to the
fibres p−1(x) , x ∈ M .

The horizontal distribution determines a vector fibre bundle on M , which is
isomorphic to the tangent bundle of M . Therefore, when M is endowed with
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a Riemannian structure, we can lift the metric of M to H and then we get a
nonholonomic space V m

n in Vrănceanu’s sense, where n is the dimension of E and
m is the dimension of M .

Linear connections, projective connections and conformal connections are par-
ticular cases of infinitesimal connections.

Gh. Vrănceanu recognized the great influence played by É. Cartan on his own
work, by dedicating his monumental Treatise on Differential Geometry, published
in France in 1967, to the great French mathematician.

Vrănceanu has the merit of making known in our country a large part of the
work of É. Cartan; moreover, he enriched Cartan’s work with many original con-
tributions to many important chapters of Differential Geometry, such as geometric
equivalence theory, Riemannian geometry, theory of Lie groups and Lie algebras,
transformation groups and homogeneous spaces, theory of linear, projective and
conformal connections, space forms, the geometric theory of PDE, holonomy groups,
etc.

A final remark is perhaps worthwhile to be made. Following the tradition
respected until the end of World War II, Vrănceanu was writing all formulas using
local coordinates. Most of the formulas obtained by Vrănceanu are complicated
enough and are not easy to be read by modern scholars and students. A review of
the results obtained by the Romanian mathematician, using the modern, invariant
and global formalism, is necessary and would be very useful.
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