Singular Lagrange Spaces with (α, β) -metrics. Euler-Lagrange Equations

Brânduşa NICOLAESCU

October 20, 2003

Abstract - We study in this paper the Euler-Lagrange equations in the singular Lagrange space SL^n with (α, β) -metrics.

Key words and phrases : singular Lagrange spaces, (α, β) -metrics, singular tensor, Euler-Lagrange equations

Mathematics Subject Classification (2000): 53C60

1 Singular Lagrange space with an (α, β) -metric

The singular Lagrange space with an (α, β) -metric is a particular case of a singular Lagrange space which is studied in [13]. The Lagrange spaces with (α, β) -metrics are studied in [11]. The singular Finsler space was studied by T. Nagano ([9]) and the case of singular Riemannian space was studied by Gr. Moisil ([8]) and V. Oproiu ([12]).

In the present paper we define the notion of singular Lagrange space with (α, β) -metrics. We study the Euler-Lagrange equations and apply this theory to the extremal curves of these spaces.

Let (TM, τ, M) be the tangent bundle of a C^{∞} -differentiable, real, n-dimensional manifold M. If (U, φ) is a local chart on M, then the coordinate of a point $u = (x, y) \in \tau^{-1}(U) \in TM$ will be denoted (x^i, y^i) . A differentiable Lagrangian on TM is a mapping

$$L:(x,y)\in TM\to L(x,y)\in \mathbf{R}, \ \forall u=(x,y)\in TM$$

of class C^{∞} on $TM\setminus\{0\}$ and continous on the null section of the projection $\tau:TM\to M$. We consider the function defined on TM

$$\alpha(x,y) = \sqrt{\gamma_{ij}(x)y^i y^j}$$
, $\beta(x,y) = A_i(x)y^i$