An Application of Euler's Equation

Silvia Monica OSNAGA

October 10, 2003

Abstract - This paper shows the simplest variational problem solved using finite differences method.

Key words and phrases: variational problem, finite differences method, Euler's equation

Mathematics Subject Classification (2000): 39A10

Let J[y] be a functional on a normed linear space C.

Definition 1. *J* has a local extremum for $y = \hat{y}$ if $J[y] - J[\hat{y}]$ does not change sign in a neighbourhood of \hat{y} .

Theorem 1. A necessary condition for a differentiable functional to have an extremum at $y = \hat{y}$ is that $\delta J \hat{y} = 0$, where δJ is the variation of J[y].

Proof. Let's suppose J has a local minum at \hat{y} . Then, by definition

$$\Delta J[y;h] = J[y+h] - J[y] \tag{1}$$

Then, this can be expressed as

$$\Delta J[y;h] = \delta J[\hat{y};h] + \epsilon \|h\| \tag{2}$$