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1. Introduction, definitions and notations

We denote by C the set of all finite complex numbers. Let f be a meromor-
phic function defined on C. We use the standard notations and definitions
in the theory of entire and meromorphic functions which are available in [22]
and [28].

Let f be a non-constant meromorphic function defined in the open
complex plane C. Also let n0j,n1j,...nkj(k ≥ 1) be non-negative integers such

that for each j,
k∑
i=0
nij ≥ 1. We call Mj [f ] = Aj (f)n0j

(
f (1)

)n1j
...
(
f (k)

)nkj

where T (r,Aj) = S (r, f) to be a differential monomial generated by f.

The numbers γMj =
k∑
i=0
nij and ΓMj =

k∑
i=0

(i + 1)nij are called respec-

tively the degree and weight of Mj [f ] (see [21], [26]). The expression

P [f ] =
s∑
j=1

Mj [f ] is called a differential polynomial generated by f . The

numbersγP = max
1≤ j≤ s

γMj and ΓP = max
1≤ j≤ s

ΓMj are called respectively the

degree and weight of P [f ] (see [21], [26]). Also we call the numbers γP
−

=

min
1≤ j≤ s

γMj and k (the order of the highest derivative of f) the lower degree
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and the order of P [f ] respectively. If γp
−

= γP , P [f ] is called a homoge-

neous differential polynomial. Throughout the paper we consider only the
non-constant differential polynomials and we denote by P0 [f ] a differential
polynomial not containing f i.e., for which n0j = 0 for j = 1, 2, ...s. We
consider only those P [f ] , P0 [f ] singularities of whose individual terms do
not cancel each other. We also denote by M [f ] a differential monomial
generated by a transcendental meromorphic function f.

In the sequel the following definitions are well known:

Definition 1.1. Let ‘a’ be a complex number, finite or infinite. The Nevan-
linna deficiency and the Valiron deficiency of ‘a’ with respect to a meromor-
phic function f are defined as

δ(a; f) = 1− lim sup
r→∞

Nf (r, a)

Tf (r)
= lim inf

r→∞

mf (r, a)

Tf (r)

and

∆(a; f) = 1− lim inf
r→∞

Nf (r, a)

Tf (r)
= lim sup

r→∞

mf (r, a)

Tf (r)
.

Definition 1.2. The quantity Θ(a; f) of a meromorphic function f is de-
fined as follows

Θ(a; f) = 1− lim sup
r→∞

−
Nf (r, a)

Tf (r)
.

Definition 1.3. (see [30]) For a ∈ C ∪ {∞}, we denote by nf |=1(r, a), the
number of simple zeros of f − a in |z| ≤ r. Nf |=1(r, a) is defined in terms of
nf |=1(r, a) in the usual way. We put

δ1(a; f) = 1− lim sup
r→∞

Nf |=1(r, a)

Tf (r)
,

the deficiency of ‘a’ corresponding to the simple a-points of f i.e., simple
zeros of f − a.

Yang proved in [29] that there exists at most a denumerable number
of complex numbers a ∈ C ∪ {∞} for which one has δ1(a; f) > 0 and∑
a∈C∪{∞}

δ1(a; f) ≤ 4.

Definition 1.4. (see [23]) For a ε C∪{∞} , let np(r, a; f) denote the number
of zeros of f − a in |z| ≤ r, where a zero of multiplicity < p is counted
according to its multiplicity and a zero of multiplicity ≥ p is counted exactly
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p times and Np(r, a; f) is defined in terms of np(r, a; f) in the usual way.
We define

δp(a; f) = 1− lim sup
r→∞

Np(r, a; f)

Tf (r)
.

Definition 1.5. (see [4]) P [f ] is said to be admissible if

(i) P [f ] is homogeneous, or

(ii) P [f ] is non homogeneous and mf (r) = Sf (r).

During the past decades, several authors (see [5]−[16], [25]) made closed
investigations on comparative study of the growth properties of composite
entire or meromorphic functions in different directions using order (lower
order) and differential polynomials and differential monomials generated by
one of the factors. The growth indicator such as order (lower order) of
entire or meromorphic function which is generally used in computational
purpose is defined in terms of the growth of that function with respect to
the exponential function is shown in the following definition:

Definition 1.6. The order ρf (the lower order λf ) of an entire function f
is defined as

ρf = lim sup
r→∞

log logMf (r)

log logMexp z (r)
= lim sup

r→∞

log logMf (r)

log (r)(
λf = lim inf

r→∞

log logMf (r)

log logMexp z (r)
= lim inf

r→∞

log logMf (r)

log (r)

)
.

When f is a meromorphic, one may easily prove that

ρf = lim sup
r→∞

log Tf (r)

log Texp z (r)
= lim sup

r→∞

log Tf (r)

log
(
r
π

) = lim sup
r→∞

log Tf (r)

log (r) +O(1)(
λf = lim inf

r→∞

log Tf (r)

log Texp z (r)
= lim inf

r→∞

log Tf (r)

log
(
r
π

) = lim inf
r→∞

log Tf (r)

log (r) +O(1)

)
.

Both entire and meromorphic function have regular growth if their order
coincides with thier lower order.

For a non-constant entire function f , Mf (r) and Tf (r) are both strictly
increasing and continuous functions of r and their inverses M−1f (r) :

(|f (0)| ,∞) → (0,∞) and T−1f : (Tf (0) ,∞) → (0,∞) respectively exist

where lim
s→∞

M−1g (s) = ∞ and lim
s→∞

T−1f (s) = ∞. In this connection we just

recall the following definition which is relevant to our study:

Definition 1.7. (see [3]) A non-constant entire function f is said have the
property (A) if for any σ > 1 and for all sufficiently large r, [Mf (r)]2 ≤
Mf (rσ) holds. For examples of functions with or without the Property (A),
one may see [3].
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Bernal (see [2], [3]) initiated the idea of relative order of an entire function
f with respect to another entire function g, symbolized by ρg (f) to keep
away from comparing growth just with exp z which is as follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1g Mf (r)

log r
.

The definition agrees with the classical one [27] if g (z) = exp z.

Similarly, one may define the relative lower order of an entire function
f with respect to another entire function g symbolized by λg (f) in the
following way:

λg (f) = lim inf
r→∞

logM−1g Mf (r)

log r
.

Extending this idea, Lahiri and Banerjee (see [24]) established the defi-
nition of relative order of a meromorphic function with respect to an entire
function which is as follows:

Definition 1.8. (see [24]) Let f be any meromorphic function and g be any
entire function. The relative order of f with respect to g is defined as

ρg (f) = inf {µ > 0 : Tf (r) < Tg (rµ) for all sufficiently large r}

= lim sup
r→∞

log T−1g Tf (r)

log r
.

Likewise, one may define the relative lower order of a meromorphic func-
tion f with respect to an entire function g in the following way:

λg (f) = lim inf
r→∞

log T−1g Tf (r)

log r
.

It is known (cf. [24]) that if g (z) = exp z then Definition 1.8 coincides
with the classical definition of the order of a meromorphic function f .

In the paper we prove some comparative growth properties of composite
entire or meromorphic functions in almost a new direction in the light of
their relative orders and relative lower orders and differential monomials,
differential polynomials generated by one of the factor.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. (see [1]) Let f be meromorphic and g be entire then for all
sufficiently large values of r,

Tf◦g (r) 6 {1 + o(1)} Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2.2. (see [7]) Let f be a meromorphic function and g be an entire
function such that λg < µ <∞ and 0 < λf ≤ ρf <∞. Then for a sequence
of values of r tending to infinity,

Tf◦g(r) < Tf (exp (rµ)) .

Lemma 2.3. (see [7]) Let f be a meromorphic function of finite order and
g be an entire function such that 0 < λg < µ < ∞. Then for a sequence of
values of r tending to infinity,

Tf◦g(r) < Tg (exp (rµ)) .

Lemma 2.4. (see [18]) Let f be an entire function which satisfy the Prop-
erty (A), β > 0, δ > 1 and α > 2. Then

βTf (r) < Tf

(
αrδ
)
.

Lemma 2.5. (see [19]) Let f be a meromorphic function either of finite
order or of non-zero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and g be an entire function of regular growth

having non zero finite order and Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Then the relative order and relative lower order of P0 [f ]

with respect to P0 [g] are same as those of f with respect to g where P0 [f ]
and P0 [g] are homogeneous. i.e.,

ρP0[g] (P0 [f ]) = ρg (f) and λP0[g] (P0 [f ]) = λg (f) .

Lemma 2.6. (see [17]) Suppose f be a transcendental meromorphic func-
tion of finite order or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4. Also

let g be a transcendental entire function of regular growth having non zero
finite order and

∑
a∈C∪{∞}

δ1(a; g) = 4. Then the relative order and relative
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lower order of M [f ] with respect to M [g] are same as those of f with respect
to g. i.e.,

ρM [g] (M [f ]) = ρg (f) and λM [g] (M [f ]) = λg (f) .

3. Theorems

In this section we present the main results of the paper. It is needless to
mention that in the paper, the admissibility and homogenity of P0 [f ] for
meromorphic f will be needed as per the requirements of the theorems.

Theorem 3.1. Let g be an entire function and f be a meromorphic function
either of finite order and non-zero lower order with Θ (∞; f) =

∑
a6=∞

δp (a; f) =

1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Let also h be an entire function of regular

growth having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and 0 < λh (f) ≤ ρh (f) < ∞. Then for every

positive constant µ and each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1P0(h)

TP0(f) (exp (rµ))
= 0 if µ > λg.

Proof. If 1 + α ≤ 0, then the theorem is obvious. We consider 1 + α > 0.
Since T−1h (r) is an increasing function of r, it follows from Lemma 2.2 for a
sequence of values of r tending to infinity that

log T−1h Tf◦g(r) < log T−1h Tf (exp (rµ))

i.e., log T−1h Tf◦g(r) < (ρh (f) + ε) rµ. (3.1)

Again for all sufficiently large values of r, we get in view of Lemma 2.5 that

log T−1P0(h)
TP0(f) (exp (rµ)) ≥

(
λP0(h) (P0(f))− ε

)
rµ

i.e., log T−1P0(h)
TP0(f) (exp (rµ)) ≥ (λh (f)− ε) rµ. (3.2)

Therefore for a sequence of values of r tending to infinity, we obtain from
(3.1) and (3.2) that{

log T−1h Tf◦g(r)
}1+α

log T−1P0(h)
TP0(f) (exp (rµ))

≤ (ρh (f) + ε)1+α rµ(1+α)

(λh (f)− ε) rµ
. (3.3)

So from (3.3) we obtain that

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1P0(h)

TP0(f) (exp (rµ))
= 0.
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This proves the theorem. 2

In the line of Theorem 3.1 and with the help of Lemma 2.6, we may state
the following theorem without its proof.

Theorem 3.2. Let g be an entire function and f be a transcendental mero-
morphic function either of finite order and of non-zero lower order with∑
a∈C∪{∞}

δ1(a; f) = 4. Let also h be a transcendental entire function of

regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4 and

0 < λh (f) ≤ ρh (f) < ∞. Then for every positive constant µ and each
α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1M(h)TM(f) (exp (rµ))

= 0 if µ > λg.

Theorem 3.3. Let f be a meromorphic function with non zero finite or-
der and lower order, g be an entire function either of finite order or of
non-zero lower order such that Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1 and h be an entire function of regular growth having non zero

finite order and Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1.

Also let ρh (f) <∞ and λh (g) > 0. Then for every positive constant µ and
each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1P0(h)

TP0(g) (exp (rµ))
= 0 if µ > λg.

The proof is omitted as it can be carried out in the line of Theorem 3.1.

Theorem 3.4. Let f be a meromorphic function with non zero finite order
and lower order, g be a transcendental entire function either of finite order
or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a tran-

scendental entire function of regular growth having non zero finite order and∑
a∈C∪{∞}

δ1(a;h) = 4. Also let ρh (f) < ∞ and λh (g) > 0. Then for every

positive constant µ and each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1M(h)TM(g) (exp (rµ))

= 0 if µ > λg.

The proof of the above theorem is omitted as it can be carried out in
the line of Theorem 3.3 and with the help of Lemma 2.6.
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Theorem 3.5. Let f be a meromorphic function of finite order with Θ (∞; f)
=

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1, g be an entire func-

tion with non zero finite lower order and h be an entire function of regular
growth having non zero finite order with Θ (∞;h) =

∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let λh (f) > 0 and ρh (g) < ∞ . Then for

every positive constant µ and each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1P0(h)

TP0(f) (exp (rµ))
= 0 if µ > λg.

Theorem 3.6. Let f be a meromorphic function with finite order, g be an
entire function non zero finite lower order with Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1

or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 and h be an entire function of regular growth

having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =∑
a6=∞

δ (a;h) = 1. Also let 0 < λh (g) ≤ ρh (g) <∞ . Then for every positive

constant µ and each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1P0(h)

TP0(g) (exp (rµ))
= 0 if µ > λg.

We omit the proofs of Theorem 3.5 and Theorem 3.6 as those can be
carried out in the line of Theorem 3.1 and Theorem 3.3 respectively and
with the help of Lemma 2.3.

In the line of Theorem 3.5 and Theorem 3.6 and with the help of Lemma
2.6 we may state the following two theorems without their proofs :

Theorem 3.7. Let f be a transcendental meromorphic function of finite
order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be an entire function with non zero finite

lower order and h be a transcendental entire function of regular growth hav-
ing non zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let λh (f) > 0 and

ρh (g) <∞. Then for every positive constant µ and each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1M(h)TM(f) (exp (rµ))

= 0 if µ > λg.

Theorem 3.8. Let f be a meromorphic function with finite order, g be a
transcendental entire function non zero finite lower order with

∑
a∈C∪{∞}

δ1(a; g)
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= 4 and h be a transcendental entire function of regular growth having non
zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let 0 < λh (g) ≤ ρh (g) <∞.

Then for every positive constant µ and each α ∈ (−∞,∞) ,

lim inf
r→∞

{
log T−1h Tf◦g(r)

}1+α
log T−1M(h)TM(g) (exp (rµ))

= 0 if µ > λg.

Theorem 3.9. Suppose f be a meromorphic function either of finite or-
der or of non-zero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Also let h be an entire function of regular

growth having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and g be any entire function such that ρh (f) <∞

and λh (f ◦ g) =∞. Then

lim
r→∞

log T−1h Tf◦g (r)

log T−1P0[h]
TP0[f ] (r)

=∞.

Proof. Let us suppose that the conclusion of the theorem does not hold.
Then we can find a constant β > 0 such that for a sequence of values of r
tending to infinity,

log T−1h Tf◦g (r) ≤ β log T−1P0[h]
TP0[f ] (r) . (3.4)

Again from the definition of ρP0[h] (P0 [f ]) , it follows for all sufficiently large
values of r and in view of Lemma 2.5 that

log T−1P0[h]
TP0[f ] (r) ≤

(
ρP0[h] (P0[f ]) + ε

)
log r

i.e., log T−1P0[h]
TP0[f ] (r) ≤ (ρh (f) + ε) log r. (3.5)

Thus from (3.4) and (3.5) , we have for a sequence of values of r tending to
infinity that

log T−1h Tf◦g (r) ≤ β (ρh (f) + ε) log r

i.e.,
log T−1h Tf◦g (r)

log r
≤ β (ρh (f) + ε) log r

log r

i.e., lim inf
r→∞

log T−1h Tf◦g (r)

log r
= λh (f ◦ g) <∞.

This is a contradiction. Hence the theorem follows. 2
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Remark 3.1. Theorem 3.9 is also valid with “limit superior” instead of
“limit” if λh (f ◦ g) =∞ is replaced by ρh (f ◦ g) =∞ and the other condi-
tions remain the same.

Corollary 3.1. Under the assumptions of Theorem 3.9 and Remark 3.1,

lim
r→∞

T−1h Tf◦g (r)

T−1P0[h]
TP0[f ] (r)

=∞ and lim sup
r→∞

T−1h Tf◦g (r)

T−1P0[h]
TP0[f ] (r)

=∞

respectively hold.

The proof is omitted.
Analogously one may also state the following theorem and corollaries

without their proofs as those may be carried out in the line of Remark 3.1,
Theorem 3.9 and Corollary 3.1 respectively.

Theorem 3.10. Let g be an entire function either of finite order or of
non-zero lower order such that Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =∑
a6=∞

δ (a; g) = 1. Also let h be an entire function of regular growth hav-

ing non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =∑
a6=∞

δ (a;h) = 1 and f be any meromorphic function such that ρh (g) < ∞

and ρh (f ◦ g) =∞. Then

lim sup
r→∞

log T−1h Tf◦g (r)

log T−1P0[h]
TP0[g] (r)

=∞.

Remark 3.2. Theorem 3.10 is also valid with “limit” instead of “limit supe-
rior” if ρh (f ◦ g) =∞ is replaced by λh (f ◦ g) =∞ and the other conditions
remain the same.

Corollary 3.2. Under the assumptions of Theorem 3.10 and Remark 3.2,

lim sup
r→∞

T−1h Tf◦g (r)

T−1P0[h]
TP0[g] (r)

=∞ and lim
r→∞

T−1h Tf◦g (r)

T−1P0[h]
TP0[g] (r)

=∞

respectively hold.

In the line of Theorem 3.9 and Theorem 3.10 and with the help of Lemma
2.6, we may state the following two theorems without their proofs.

Theorem 3.11. Suppose f be a transcendental meromorphic function ei-
ther of finite order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; f) = 4.
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Also let h be a transcendental entire function of regular growth having non
zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4 and g be any entire function such

that ρh (f) <∞ and λh (f ◦ g) =∞. Then

lim
r→∞

log T−1h Tf◦g (r)

log T−1M [h]TM [f ] (r)
=∞.

Remark 3.3. Theorem 3.11 is also valid with “limit superior” instead of
“limit” if λh (f ◦ g) =∞ is replaced by ρh (f ◦ g) =∞ and the other condi-
tions remain the same.

Corollary 3.3. Under the assumptions of Theorem 3.11 and Remark 3.3,

lim
r→∞

T−1h Tf◦g (r)

T−1M [h]TM [f ] (r)
=∞ and lim sup

r→∞

T−1h Tf◦g (r)

T−1M [h]TM [f ] (r)
=∞

respectively hold.

The proof is omitted.

Theorem 3.12. Let g be a transcendental entire function either of finite
order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; g) = 4. Also let h

be a transcendental entire function of regular growth having non zero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4 and f be any meromorphic function such

that ρh (g) <∞ and ρh (f ◦ g) =∞. Then

lim sup
r→∞

log T−1h Tf◦g (r)

log T−1M [h]TM [g] (r)
=∞.

Remark 3.4. Theorem 3.12 is also valid with “limit” instead of “limit supe-
rior” if ρh (f ◦ g) =∞ is replaced by λh (f ◦ g) =∞ and the other conditions
remain the same.

Corollary 3.4. Under the assumptions of Theorem 3.12 and Remark 3.4,

lim sup
r→∞

T−1h Tf◦g (r)

T−1M [h]TM [g] (r)
=∞ and lim

r→∞

T−1h Tf◦g (r)

T−1M [h]TM [g] (r)
=∞

respectively hold.

Theorem 3.13. Let f be a meromorphic function either of finite order or
of non-zero lower order with Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
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∑
a6=∞

δ (a; f) = 1, g be an entire function and h be an entire function of

regular growth having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1

or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and satisfy the Property (A). Also let λg <

λh (f) ≤ ρh (f) <∞. Then

lim inf
r→∞

log T−1h Tf◦g (r)

T−1P0[h]
TP0[f ] (r)

= 0.

Proof. Let β > 2 and δ > 1. Since T−1h (r) is an increasing function of r,
it follows from Lemma 2.1 and Lemma 2.4, for all sufficiently large values
of r that

T−1h Tf◦g (r) 6 T−1h [{1 + o(1)}Tf (Mg (r))]

i.e., T−1h Tf◦g (r) 6 β
[
T−1h Tf (Mg (r))

]δ
i.e., log T−1h Tf◦g (r) 6 δ log T−1h Tf (Mg (r)) +O(1).

Therefore from above, we get for a sequence of values of r tending to infinity
that

log T−1h Tf◦g (r) ≤ δ (ρh (f) + ε) logMg (r) +O(1) (3.6)

i.e., log T−1h Tf◦g (r) ≤ δ (ρh (f) + ε) rλg+ε +O(1). (3.7)

Again from the definition of relative order, we obtain in view of Lemma 2.5
for all sufficiently large values of r that

T−1P0[h]
TP0[f ] (r) > r(λP0(h)

(P0(f))−ε)

i.e., T−1P0[h]
TP0[f ] (r) > r(λh(f)−ε). (3.8)

Thus in view of (3.7) and (3.8) , we get for a sequence of values of r tending
to infinity,

log T−1h Tf◦g (r)

T−1P0[h]
TP0[f ] (r)

<
δ (ρh (f) + ε) rλg+ε +O(1)

r(λh(f)−ε)
. (3.9)

Now as λg < λh (f) , we can choose ε (> 0) in such a way that λg + ε <
λh (f)− ε and the theorem follows from (3.9) . 2

Remark 3.5. If we take ρg < λh (f) ≤ ρh (f) <∞ instead of λg < λh (f) ≤
ρh (f) < ∞ and the other conditions remain the same, the conclusion of
Theorem 3.13 remains valid with “limit inferior ” replaced by “ limit ”.
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Theorem 3.14. Let f be a transcendental meromorphic function either of
finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be an

entire function and h be a transcendental entire function of regular growth
having non zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4 and satisfy the Prop-

erty (A). Also let λg < λh (f) ≤ ρh (f) <∞. Then

lim inf
r→∞

log T−1h Tf◦g (r)

T−1M [h]TM [f ] (r)
= 0.

The proof of the above theorem is omitted as it can be carried out in
the line of Theorem 3.13 and with the help of Lemma 2.6.

Remark 3.6. If we consider ρg < λh (f) ≤ ρh (f) < ∞ instead of λg <
λh (f) ≤ ρh (f) <∞ and the other conditions remain the same, the conclu-
sion of Theorem 3.14 remains valid with “limit inferior”replaced by “limit”.

Theorem 3.15. Let f be a meromorphic function, g be an entire function
either of finite order or of non-zero lower order with Θ (∞; f) =

∑
a6=∞

δp (a; f)

= 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and h be an entire function of regular

growth having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let ρh (f ◦ g) <∞ and λh (g) > 0. Then

lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1P0(h)

TP0(g) (exp r) · log T−1P0(h)
TP0(g) (r)

= 0.

Proof. For any arbitrary positive ε, we have in view of Lemma 2.5 for all
sufficiently large values of r that

log T−1h Tf◦g (r) ≤ (ρh (f ◦ g) + ε) log r (3.10)

and

log T−1P0(h)
TP0(g) (r) ≥

(
λP0(h) (P0(g))− ε

)
log r

i.e., log T−1P0(h)
TP0(g) (r) ≥ (λh (g)− ε) log r. (3.11)

Similarly, for all sufficiently large values of r we have

log T−1P0(h)
TP0(g) (exp r) ≥

(
λP0[h] (P0[g])− ε

)
r

i.e., T−1P0(h)
TP0(g) (exp r) ≥ exp [(λh (g)− ε) r] . (3.12)
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From (3.10) and (3.11) , we have for all sufficiently large values of r that

log T−1h Tf◦g (r)

log T−1P0(h)
TP0(g) (r)

≤ (ρh (f ◦ g) + ε) log r

(λh (g)− ε) log r
.

As ε (> 0) is arbitrary, we obtain from above that

lim sup
r→∞

log T−1h Tf◦g (r)

log T−1P0(h)
TP0(g) (r)

≤ ρh (f ◦ g)

λh (g)
. (3.13)

Again from (3.10) and (3.12) , we get for all sufficiently large values of r that

log T−1h Tf◦g (r)

T−1P0(h)
TP0(g) (exp r)

≤ (ρh (f ◦ g) + ε) log r

exp [(λh (g)− ε) r]
.

Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log T−1h Tf◦g (r)

T−1P0(h)
TP0(g) (exp r)

= 0

i.e., lim
r→∞

log T−1h Tf◦g (r)

T−1P0(h)
TP0(g) (exp r)

= 0. (3.14)

Thus the theorem follows from (3.13) and (3.14) . 2

In view of Theorem 3.15, the following two theorems can be carried out.
Hence their proofs are omitted.

Theorem 3.16. Let f a meromorphic function either of finite order or of
non-zero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1, g be any entire function and h be an entire function of

regular growth having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1

or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let ρh (f ◦ g) <∞ and λh (f) > 0. Then

lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1P0(h)

TP0(f) (exp (r)) · log T−1P0(h)
TP0(f) (r)

= 0.

Theorem 3.17. Let f be a meromorphic function either of finite order or
of non-zero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1, g be an entire function either of finite order or of non-

zero lower order such that
∑
a6=∞

Θ (a; g) = 2 and h be an entire function of
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regular growth having non zero finite order and Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1

or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1. Also let ρh (f ◦ g) < ∞, λh (g) > 0 and

λh (f) > 0. Then

(i) lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1P0(h)

TP0(g) (exp r) · log T−1P0(h)
TP0(f) (r)

= 0 and

(ii) lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1P0(h)

TP0(f) (exp r) · log T−1P0(h)
TP0(g) (r)

= 0.

In the line of Theorem 3.15, Theorem 3.16 and Theorem 3.17 and with
the help of Lemma 2.6 we may state the following three theorems without
their proofs.

Theorem 3.18. Let f be a meromorphic function, g be a transcenden-
tal entire function either of finite order or of non-zero lower order with∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a transcendental entire function of regular

growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4. Also let

ρh (f ◦ g) <∞ and λh (g) > 0. Then

lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1M(h)TM(g) (exp r) · log T−1M(h)TM(g) (r)

= 0.

Theorem 3.19. Let f a transcendental meromorphic function either of fi-
nite order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; f) = 4, g

be any entire function and h be a transcendental entire function of regu-
lar growth having non zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4. Also let

ρh (f ◦ g) <∞ and λh (f) > 0. Then

lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1M(h)TM(f) (exp r) · log T−1M(h)TM(f) (r)

= 0.

Theorem 3.20. Let f be a transcendental meromorphic function either of
finite order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; f) = 4, g be

a transcendental entire function either of finite order or of non-zero lower
order such that

∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a transcendental entire func-

tion of regular growth having non zero finite order and
∑

a∈C∪{∞}
δ1(a;h) = 4.
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Also let ρh (f ◦ g) <∞, λh (g) > 0 and λh (f) > 0. Then

(i) lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1M(h)TM(g) (exp r) · log T−1M(h)TM(f) (r)

= 0 and

(ii) lim
r→∞

[
log T−1h Tf◦g (r)

]2
T−1M(h)TM(f) (exp r) · log T−1M(h)TM(g) (r)

= 0.

Theorem 3.21. Let f be a meromorphic function either of finite order or
of non-zero lower order with Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1, g be an entire function with finite order and h be an entire

function of regular growth having non zero finite order with Θ (∞;h) =∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and satisfying the Property

(A). Also let 0 < λh (f) ≤ ρh (f) <∞. Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (r)

≤ ρg
λh (f)

.

Proof. From (3.6) and in view of Lemma 2.5, it follows for all sufficiently
large values of r that

log[2] T−1h Tf◦g (r) ≤ log[2]Mg (r) +O(1)

i.e.,
log[2] T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (r)

≤ log[2]Mg (r) +O(1)

log r
· log r

log T−1P0(h)
TP0(f) (r)

i.e., lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (r)

≤ lim sup
r→∞

log[2]Mg (r) +O(1)

log r

· lim sup
r→∞

log r

log T−1P0(h)
TP0(f) (r)

i.e., lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (r)

≤ ρg.
1

λP0(h) (P0(f))
=

ρg
λh (f)

.

This proves the theorem. 2

Theorem 3.22. Let f be a meromorphic function, g be an entire function
of finite order with Θ (∞; g) =

∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1

and h be an entire function of regular growth having non zero finite order
with Θ (∞;h) =

∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and satisfy-

ing the Property (A). Also let ρh (f) <∞ and λh (g) > 0. Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1P0(h)
TP0(g) (r)

≤ ρg
λh (g)

.
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The proof of Theorem 3.22 is omitted as it can be carried out in the line
of Theorem 3.21.

Theorem 3.23. Let f be a transcendental meromorphic function either of
finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be an

entire function with finite order and h be a transcendental entire function
of regular growth having non zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4 and

satisfy the Property (A). Also let 0 < λh (f) ≤ ρh (f) <∞. Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1M(h)TM(f) (r)
≤ ρg
λh (f)

.

Theorem 3.24. Let f be a meromorphic function, g be a transcendental
entire function of finite order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a transcen-

dental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4 and satisfy the Property (A). Also let ρh (f) < ∞ and

λh (g) > 0. Then

lim sup
r→∞

log[2] T−1h Tf◦g (r)

log T−1M(h)TM(g) (r)
≤ ρg
λh (g)

.

The proof of the above two theorems are omitted as those can be carried
out in the line of Theorem 3.21 and Theorem 3.22 respectively and with the
help of Lemma 2.6.

Theorem 3.25. Let f be a meromorphic function either of finite order or
of non-zero lower order such that Θ (∞; f) =

∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =∑
a6=∞

δ (a; f) = 1, g be an entire function with finite order and h be an entire

function of regular growth having non zero finite order with Θ (∞;h) =∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and satisfy the Property (A).

Also let 0 < λh (f) ≤ ρh (f) <∞. Then

lim
r→∞

log T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (exp rµ)

=∞,

where ρg < µ <∞.

Proof. Let us consider β > 2 and δ > 1. As T−1h (r) is an increasing
function of r, in view of Lemma 2.1 we get from(3.6) for all sufficiently large
values of r,

log T−1h Tf◦g (r) ≤ δ (ρh (f) + ε) rρg+ε +O(1). (3.15)
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Also from the definition of the relative lower order and in view of Lemma
2.5, we obtain for all sufficiently large values of r that

log T−1P0(h)
TP0(f) (exp (rµ)) ≥

(
λP0(h) (P0(f))− ε

)
log {exp (rµ)}

i.e., log T−1P0(h)
TP0(f) (exp rµ) ≥ (λh (f)− ε) rµ. (3.16)

Now from (3.15) and (3.16), it follows for all sufficiently large values of r
that

log T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (exp rµ)

≤ δ (ρh (f) + ε) rρg+ε +O(1)

(λh (f)− ε) rµ
. (3.17)

As ρg < µ, we can choose ε (> 0) in such a way that

ρg + ε < µ. (3.18)

Thus from (3.17) and (3.18), we obtain that

lim
r→∞

log T−1h Tf◦g (r)

log T−1P0(h)
TP0(f) (exp rµ)

= 0.

Thus the theorem follows. 2

In the line of Theorem 3.25, we may state the following theorem without
its proof.

Theorem 3.26. Let f be a meromorphic function, g be an entire function
either of finite order or of non-zero lower order with Θ (∞; g) =

∑
a6=∞

δp (a; g) =

1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 and h be an entire function of regular

growth having non zero finite order with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or

δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and satisfy the Property (A). Also let λh (g) > 0

and ρh (f) <∞. Then for every µ with ρg < µ <∞,

lim
r→∞

log T−1h Tf◦g (r)

log T−1P0(h)
TP0(g) (exp rµ)

= 0.

In the line of Theorem 3.25 and Theorem 3.26 and with the help of
Lemma 2.6, we may state the following two theorems without their proofs.

Theorem 3.27. Let f be a transcendental meromorphic function either of
finite order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; f) = 4, g be

an entire function with finite order and h be a transcendental entire function
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of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4 and

satisfy the Property (A). Also let 0 < λh (f) ≤ ρh (f) <∞. Then

lim
r→∞

log T−1h Tf◦g (r)

log T−1M(h)TM(f) (exp rµ)
=∞,

where ρg < µ <∞.

Theorem 3.28. Let f be a meromorphic function, g be a transcenden-
tal entire function either of finite order or of non-zero lower order with∑
a∈C∪{∞}

δ1(a; g) = 4 and h be a transcendental entire function of regular

growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4 and satisfy the

Property (A). Also let λh (g) > 0 and ρh (f) < ∞. Then for every µ with
ρg < µ <∞,

lim
r→∞

log T−1h Tf◦g (r)

log T−1M(h)TM(g) (exp rµ)
= 0.
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