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Abstract - We study a class of evolutional variational inequalities of
parabolic type where we establish a general existence and uniqueness re-
sult. Then we apply the abstract result to solve a dynamic thermal sub-
differential contact problem with friction, for time depending nonlinear long
memory visco-elastic materials, with or without the clamped condition,
which can be put into a general model of system defined by a second or-
der evolution inequality, coupled with a first order evolution equation. We
present and state an existence and uniqueness of weak solution, by using
fixed point methods, monotonicity and convexity.
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1. Introduction

Since the years 1970, fruitful mathematical studies on deformable bodies,
for elastic or viscoelastic materials, within the weak formulation and varia-
tional inequalities framework, were initiated by Duvaut and Lions, followed
by Kikuchi, Oden and Martins, Panagiotopoulos, Ciarlet, in the pioneering
works [6, 7, 10, 11, 13]. By taking into account the parameter of the tem-
perature field, Panagiotopoulos studied unilateral boundary value problems
in linear thermo-elasticity, see [13]. Later further extensions to non convex
contact conditions with non-monotone and possible multi-valued constitu-
tive laws led to the domain of non-smooth mechanics, within the framework
of the so-called hemivariational inequalities, for a mathematical treatment
as well as mechanical modeling we refer to [12, 14].

This work is a continuation of the results obtained in [1]. In [1] the
authors studied a class of dynamic linear viscoelastic thermal problems,
without the clamped condition, where the contact is governed by a general
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sub-differential condition. An existence and uniqueness result of weak solu-
tion on the displacement and temperature fields has been proved, and some
numerical simulations have been performed.

Here the new feature in this paper is that we extend the mechanical prob-
lem to time depending nonlinear thermo-viscoelastic law, with or without
the clamped condition. We investigate a new approach to prove an exis-
tence and uniqueness result on the displacement and temperature fields, us-
ing monotonicity, convexity of the operators and fixed point methods widely
used in the contact literature, see e.g. [8].

The paper is organized as follows. In Section 2 we describe a key result
concerning the solvability of a class of time depending evolutional variational
inequalities of parabolic type. In Section 3 we give a typical application to
contact problems. We describe the mechanical problem, and derive the cor-
responding variational formulation. Then after specifying the assumptions
on the different data we state an existence and uniqueness of weak solution.
Finally in Section 4 we give the proof of the claimed result.

2. A parabolic differential inclusion

In the study of many contact problems, parabolic differential inclusions are
frequently useful. Various abstract formulations concerning the existence
and uniqueness result on parabolic variational inequalities of the second
kind could be found in the literature, depending on the assumptions on
the operators and data (see e.g. [3], [7], [9], [15]). Here for our purpose we
need an existence and uniqueness result for a special class of time depending
nonlinear evolutional inequalities of parabolic type. We give the statement
of the key result and provide the main steps of the proof. A similar result
could be found in [15, II/B p. 893].

Let H and V ⊂ H two Hilbert spaces, V ′ be the dual space of V . We
denote in the sequel by (·, ·)E the inner product and by ‖ · ‖E the associated
norm of any Hilbert space E . Identifying then H with its own dual, we
suppose a Gelfand evolution triple (see e.g. [15, II/A p. 416]):

V ⊂ H ≡ H ′ ⊂ V ′

where the inclusions are continuous and dense. Finally, we use the notation
〈·, ·〉V ′×V to represent the duality pairing between V ′ and V . Then we have

〈u,v〉V ′×V = (u,v)H , ∀u ∈ H, ∀v ∈ V.

Denote by C(0, T ;X) the class of continuous functions defined on (0, T );
and Cm(0, T ;X), m ∈ N∗ the set of m times continuously differentiable
functions defined on (0, T ) with values in some set X. Also Lp(0, T ;X),
Wm,p(0, T ;X) represent the classical Lp and Sobolev spaces defined on (0, T )
with values in X, where m ∈ N, 1 ≤ p ≤ +∞.
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We consider the following operators and data with the corresponding
assumptions.

Let T > 0, A : (0, T )×V −→ V ′. Denoting by A(t) = A(t, ·) we suppose

(i) the measurability:

∀(x,y) ∈ V × V, t ∈ (0, T ) 7−→ (A(t)x,y)V ′×V is measurable;

(ii) the linearly increase:

∃c1 > 0, ∃c2 ∈ L2(0, T ;R+), ∀x ∈ V, for a.e. t ∈ (0, T ),

‖A(t)x‖V ′ ≤ c1 ‖x‖V + c2(t);

(iii) the hemicontinuity:

∀x, y, z ∈ V, for a.e. t ∈ (0, T ),

〈A(t) (x+ τ y), z〉V ′×V −→ 〈A(t)x, z〉V ′×V , as τ −→ 0;

(iv) the coerciveness:

∃α ∈ R, ∃β > 0, ∀(x,y) ∈ V × V, for a.e. t ∈ (0, T ),

〈A(t)x−A(t)y,x− y〉V ′×V + α ‖x− y‖2H ≥ β ‖x− y‖2V .
(2.1)

Let ψ : (0, T )× V −→ R satisfying
(i) ∀w ∈ V, t ∈ (0, T ) 7−→ ψ(t,w) is Lebesgue measurable;

(ii) ∃d > 0, ∃c ∈ L2(0, T ;R+), ∀w ∈ V, a.e. t ∈ (0, T ),

|ψ(t,w)| ≤ c(t) + d ‖w‖V ;

(iii) for a.e. t ∈ (0, T ), ψ(t, ·) is convex on V.

(2.2)

Let

F ∈ L2(0, T ;V ′). (2.3)

and

v0 ∈ V. (2.4)

The key theorem we will use is the following.

Theorem 2.1. Consider A, ψ, F , v0 verifying the hypotheses (2.1), (2.2),
(2.3) and (2.4). Then there exists an unique solution v satisfying:

v ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) ∩ C(0, T ;H);

〈v̇(t),w − v(t)〉V ′×V + 〈A(t)v(t),w − v(t)〉V ′×V + ψ(t,w)− ψ(t,v(t))

≥ 〈F(t),w − v(t)〉V ′×V , ∀w ∈ V, a.e. t ∈ (0, T );

and v(0) = v0.
(2.5)
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Proof. Let introduce the following mappings defined for all w ∈ V and
a.e. t ∈ (0, T ):

A1(t)w = e−αtA(t)(eαtw) + αw;

F1(t) = e−αtF(t);

ψ1(t,w) = e−2αtψ(t, eαtw).

After some algebraic manipulations we check that for a.e. t ∈ (0, T ),

∀v, w ∈ V, 〈A1(t)v −A1(t)w,v −w〉V ′×V ≥ β ‖v −w‖2V . (2.6)

The statement in Theorem 2.1 of an unique solution v satisfying (2.5) is
equivalent to prove that there exists an unique z verifying:
z ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) ∩ C(0, T ;H);

〈ż(t),w − z(t)〉V ′×V + 〈A1(t) z(t),w − z(t)〉V ′×V + ψ1(t,w)− ψ1(t, z(t))

≥ 〈F1(t),w − z(t)〉V ′×V , ∀w ∈ V, a.e. t ∈ (0, T );

and z(0) = v0,
(2.7)

where z and v are linked by the relation

for a.e. t ∈ (0, T ), v(t) = eαtz(t).

(1) Existence of z.

LetX = L2(0, T ;V ) andD(L) = {w ∈ L2(0, T ;V )∩W 1,2(0, T ;V ′),w(0) =
v0} a closed convex set ofX, it is well known that the mapping L : D(L) −→
X ′, w 7−→ dw

dt , is maximal monotone, see e.g. [15, II/B p. 855] or [9, p.
313].

Let Φ : X −→ R, w 7−→
∫ T

0
ψ1(t,w(t))dt. From (2.2) it follows that Φ

is well defined convex lsc 6≡ +∞, thus ∂Φ : X −→ 2X
′
is maximal monotone.

On the other hand, D(Φ) = X, then D(∂Φ) = X.

Let M = L + ∂Φ, we have D(M) = D(L). As D(L) ∩ int(D(∂Φ)) =
D(L) 6= ∅, we deduce from Rockafeller’s Theorem (1970) that M : X −→
2X
′

is maximal monotone, see e.g. [15, II/B p. 888] or [2, p. 46].

Let T : X −→ X ′ defined by ∀w ∈ X, a.e. t ∈ (0, T ), T (w)(t) =
A1(t)w(t). From (2.1) and the definition of A1, we have that T is well de-
fined, monotone, hemicontinuous and bounded. Thus T is maximal mono-
tone with D(T ) = X. Then D(M) ∩ int(D(T )) = D(M) 6= ∅, we deduce
again from Rockafeller’s Theorem that S = T +M : X −→ 2X

′
is maximal

monotone.

Moreover as M is monotone and from (2.6) T is strongly monotone, then
S is strongly monotone and S−1 : X ′ −→ 2X is bounded.
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We conclude that S is surjective (see e.g. [4]). Thus there exists z ∈
D(S) = D(L) such that F1 ∈ S(z) = M(z)+T (z). From the last statement
it is well known that z satisfies (2.7), see details in [7, p. 57] .

(2) Uniqueness of z.

Let z1, z2 two solutions verifying (2.7). Taking w = z2 in the inequality
for z1, and w = z1 in the inequality for z2, then adding the two inequalities
we obtain∫ T

0
〈ż1(t)− ż2(t), z2(t)− z1(t)〉V ′×V dt

+

∫ T

0
〈A1(t) z1(t)−A1(t) z2(t), z2(t)− z1(t)〉V ′×V dt ≥ 0.

From (2.6) we deduce that

1

2
‖z2(T )− z1(T )‖2H + α

∫ T

0
‖z2(t)− z1(t)‖2V dt ≤ 0.

Thus z1 = z2. 2

3. Application to contact problem

In this section we study a class of thermal contact problems with sub-
differential conditions, for long memory visco-elastic materials. We describe
the mechanical problems, list the assumptions on the data and derive the
corresponding variational formulations. Then we state an existence and
uniqueness result on displacement and temperature fields, which we will
prove in the next section.

The physical setting is as follows. A visco-elastic body occupies a domain
Ω in Rd (d = 1, d = 2 or d = 3) with a Lipschitz boundary Γ that is
partionned into three disjoint measurable parts, Γ1, Γ2 and Γ3. Let [0, T ]
be the time interval of interest, where T > 0. The body is clamped on
Γ1 × (0, T ) and therefore the displacement field vanishes there. Here we
suppose that meas(Γ1) = 0 or meas(Γ1) > 0, which means that Γ1 may be
an empty set or reduced to a finite set of points. We assume that a volume
force of density f0 acts in Ω × (0, T ) and that surface tractions of density
f2 act on Γ2 × (0, T ). The body may come in contact with an obstacle, the
foundation, over the potential contact surface Γ3. The model of the contact
is specified by a general sub-differential boundary condition, where thermal
effects may occur in the frictional contact with the basis. We are interested
in the dynamic evolution of the body.

Let us recall now some classical notations, see e.g. [7] for further details.
We denote by Sd the space of second order symmetric tensors on Rd, while
“ · ” and | · | will represent the inner product and the Euclidean norm on
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Sd and Rd. Everywhere in the sequel the indices i and j run from 1 to
d, summation over repeated indices is implied and the index that follows a
comma represents the partial derivative with respect to the corresponding
component of the independent variable. We also use the following notation:

H =
(
L2(Ω)

)d
, H = {σ = (σij) | σij = σji ∈ L2(Ω), 1 ≤ i, j ≤ d},

H1 = {u ∈ H | ε(u) ∈ H}, H1 = {σ ∈ H | Div σ ∈ H }.

Here ε : H1 −→ H and Div : H1 −→ H are the deformation and the
divergence operators, respectively, defined by :

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j).

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the
canonical inner products given by :

(u,v)H =

∫
Ω
uivi dx, (σ, τ )H =

∫
Ω
σijτij dx,

(u,v)H1 = (u,v)H+(ε(u), ε(v))H, (σ, τ )H1 = (σ, τ )H+(Div σ,Div τ )H .

Recall that D(Ω) denotes the set of infinitely differentiable real functions
with compact support in Ω; and Wm,p(Ω), Hm(Ω) := Wm,2(Ω), m ∈ N,
1 ≤ p ≤ +∞ for the classical real Sobolev spaces; Lp(U ;X) the classical Lp

spaces defined on U with values in X.

To continue, the mechanical problem is then formulated as follows.

Problem Q : Find a displacement field u : Ω× (0, T ) −→ Rd and a stress
field σ : Ω × (0, T ) −→ Sd and a temperature field ξ : Ω × (0, T ) −→ R+

such that for a.e. t ∈ (0, T ):

σ(t) = A(t)ε(u̇(t))+G(t)ε(u(t))+

∫ t

0
B(t−s) ε(u(s)) ds−ξ(t)Ce(t) in Ω

(3.1)

ü(t) = Divσ(t) + f0(t) in Ω (3.2)

u(t) = 0 on Γ1 (3.3)

σ(t)ν = f2(t) on Γ2 (3.4)

u(t) ∈ U, ϕ(t,w)− ϕ(t, u̇(t)) ≥ −σ(t)ν · (w − u̇(t)) ∀w ∈ U on Γ3

(3.5)

ξ̇(t)− div(Kc(t)∇ξ(t)) = −cij(t)
∂ u̇i
∂ xj

(t) + q(t) on Ω (3.6)

− kij(t)
∂ ξ

∂ xj
(t)ni = ke(t) (ξ(t)− θR(t)) on Γ3 (3.7)
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ξ(t) = θa(t) on Γ1 ∪ Γ2 (3.8)

ξ(0) = ξ0 in Ω (3.9)

u(0) = u0, u̇(0) = v0 in Ω (3.10)

Here, (3.1) is the Kelving Voigt’s time-dependent long memory thermo-
visco-elastic constitutive law of the body, σ(t) the stress tensor, A(t) is
the time-dependent viscosity operator, G(t) for the time-dependent elastic
operator, Ce(t) := (cij(t)) represents the thermal expansion tensor, and B
is the so called tensor of relaxation which defines the long memory of the
material, as an important particular case, when B ≡ 0, we find again the
usual visco-elasticity of short memory. In (3.2) is the dynamic equation of
motion where the mass density % ≡ 1. The equation in (3.3) is the clamped
condition and in (3.4) is the traction condition. On the contact surface, the
general relation (3.5) is a sub-differential boundary condition such that

D(Ω)d ⊂ U,

where U represents the set of contact admissible test functions and D(Ω)d

is the distribution space. We denote by σν the Cauchy stress vector on the
contact boundary and ϕ : (0, T )× Γ3 ×Rd −→ R is a given function. Vari-
ous situations may be modeled by such a condition, see e.g. the monograph
[13] or the PHD thesis [5, p. 92]. The differential equation (3.6) describes
the evolution of the temperature field, where Kc(t) := (kij(t)) represents
the thermal conductivity tensor, q(t) the density of volume heat sources.
The associated temperature boundary condition is given by (3.7) and (3.8),
where θR(t) is the temperature of the foundation, ke(t) is the heat exchange
coefficient between the body and the obstacle, and θa(t) represents the am-
bient temperature. Finally, u0, v0, ξ0 represent the initial displacement,
velocity and temperature, respectively.

One may remark that since ϕ is assumed real-valued, then unilateral
contact, defined by indicator functions taking infinite values, is excluded.
So the body is in fixed contact with the foundation of the body according
to a friction law. This is consistent with the linear heat conduction modeled
in (3.6).

We insist that the new feature here is that we may have the absence of
the usual claimed condition. However, there is coerciveness with regard to
the temperature by (3.7).

To derive the variational formulation of the mechanical problems (3.1)–
(3.10) we need additional notations. Thus, let consider V the closed sub-
space of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1 } ∩ U.

We remark that the subspace V may be different or not to the whole space
H1, depending on the set U of admissible contact conditions.
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On V we consider the inner product given by

(u,v)V = (ε(u), ε(v))H + (u,v)H ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖2V = ‖ε(v)‖2H + ‖v‖2H ∀v ∈ V.

It follows that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V and therefore
(V, ‖ · ‖V ) is a real Hilbert space. Moreover, by the Sobolev’s trace theorem,
we have a constant C0 > 0 depending only on Ω, and Γ3 such that

‖v‖L2(Γ3) ≤ C0 ‖v‖V ∀v ∈ V.

For functional reason, it is convenient to shift the ambient temperature to
zero on Γ1 ∪ Γ2. We introduce for this propose θ = ξ − θa, by assuming
θa ∈ H1(0, T ;H1(Ω)). Thus we have ∀t ∈ [0, T ]:

ξ(t) = θa(t) =⇒ θ(t) = 0 on Γ1 ∪ Γ2.

In what follows, we use the following change of variables:

ξ = θ + θa, ξ0 = θ0 + θa(0).

Consider then the following spaces for the temperature field:

E = {η ∈ H1(Ω), η = 0 on Γ1 ∪ Γ2}; F = L2(Ω).

The spaces E and F , endowed with their respective canonical inner product,
are Hilbert spaces.

Identifying then H and F with their own duals, we obtain two Gelfand
evolution triples (see e.g. [15, II/A p. 416]):

V ⊂ H ≡ H ′ ⊂ V ′, E ⊂ F ≡ F ′ ⊂ E′

where the inclusions are continuous and dense.
In the study of the mechanical problem (3.1)-(3.10), we assume that the

viscosity operator A : (0, T )×Ω×Sd −→ Sd, (t,x, τ ) 7−→ A(t,x, τ ) satisfies

(i) A(·, ·, τ ) is measurable on (0, T )× Ω, ∀τ ∈ Sd;

(ii) A(t,x, ·) is continuous on Sd for a.e. (t,x) ∈ (0, T )× Ω;

(iii) there exists mA > 0 such that
(A(t,x, τ 1)−A(t,x, τ 2)) · (τ 1 − τ 2) ≥ mA |τ 1 − τ 2|2,

∀τ 1, τ 2 ∈ Sd, for a.e. (t,x) ∈ (0, T )× Ω;

(iv) there exists cA0 ∈ L2((0, T )× Ω;R+), cA1 > 0 such that
|A(t,x, τ )| ≤ cA0 (t,x) + cA1 |τ |, ∀τ ∈ Sd, for a.e. (t,x) ∈ (0, T )× Ω.

(3.11)
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In this paper for every t ∈ (0, T ), τ ∈ Sd we denote by A(t) = A(t, ·, ·) a
functional which is defined on Ω× Sd and A(t) τ = A(t, ·, τ ) some function
defined on Ω.

The elasticity operator G : (0, T )× Ω× Sd −→ Sd satisfies:

(i) there exists LG > 0 such that
|G(t,x, ε1)− G(t,x, ε2)| ≤ LG |ε1 − ε2|
∀ε1, ε2 ∈ Sd, a.e. (t,x) ∈ (0, T )× Ω ;

(ii) (t,x) 7−→ G(t,x, ε) is Lebesgue measurable on (0, T )× Ω, ∀ε ∈ Sd ;

(iii) the mapping G(·, ·,0) ∈ H.
(3.12)

We put again G(t)τ = G(t, ·, τ ) some function defined on Ω for every t ∈
(0, T ), τ ∈ Sd.
The relaxation tensor B : (0, T )×Ω×Sd −→ Sd, (t,x, τ ) 7−→ (Bijkh(t,x) τkh)
satisfies 

(i) Bijkh ∈ L∞((0, T )× Ω);

(ii) B(t)σ · τ = σ · B(t)τ
∀σ, τ ∈ Sd, a.e. t ∈ (0, T ), a.e. in Ω

(3.13)

where we denote by B(t)τ = B(t, ·, τ ) which is defined on Ω for every t ∈
(0, T ), τ ∈ Sd.

We suppose the body forces and surface tractions satisfy

f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)d) (3.14)

For the thermal tensors and the heat sources density, we suppose that

Ce(t) = (cij(t)), cij = cji ∈W 1,∞(O, T ;L∞(Ω)), q ∈ L2(0, T ;L2(Ω))
(3.15)

The boundary thermal data satisfy

ke ∈ L∞((0, T )× Ω; R+), θR ∈ L2(0, T ;L2(Γ3)) (3.16)

The thermal conductivity tensor verifies the usual symmetry end ellipticity:
for some ck > 0 independent on time and for all (ξi) ∈ Rd,

Kc(t) = (kij(t)), kij = kji ∈W 1,∞(O, T ;L∞(Ω)), kij ξiξj ≥ ck ξiξi.
(3.17)

We assume that the initial data satisfy the conditions

u0 ∈ V, v0 ∈ V, θ0 ∈ E. (3.18)

On the contact surface, the following frictional contact function

ψ(t,w) :=

∫
Γ3

ϕ(t,w) da
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verifies
(i) ψ : (0, T )× V −→ R is well defined;

(ii) t ∈ (0, T ) 7−→ ψ(t,w) is Lebesgue measurable ∀w ∈ V ;

(iii) |ψ(t,w)| ≤ c(t) + d ‖w‖V , ∀w ∈ V, a.e. t ∈ (0, T );

(iv) ψ(t, ·) is convex on V a.e. t ∈ (0, T ),

(3.19)

where d > 0 is some constante and c ∈ L2(0, T ;R+).

To continue, using Green’s formula, we obtain the variational formulation
of the mechanical problem Q in abstract form as follows.

Problem QV : Find u : [0, T ]→ V , θ : [0, T ]→ E satisfying a.e. t ∈ (0, T ):

〈ü(t) +A(t) u̇(t) +B(t)u(t) + C(t) θ(t), w − u̇(t)〉V ′×V

+ (

∫ t

0
B(t− s) ε(u(s)) ds, ε(w)− ε(u̇(t)))H + ψ(t,w)− ψ(t, u̇(t))

≥ 〈f(t), w − u̇(t)〉V ′×V ∀w ∈ V ;

θ̇(t) +K(t) θ(t) = R(t)u̇(t) +Q(t) in E′;

u(0) = u0, u̇(0) = v0, θ(0) = θ0.

Here, the operators and functions A(t), B(t) : V −→ V ′, C(t) : E −→ V ′,
K(t) : E −→ E′, R(t) : V −→ E′, f : [0, T ] −→ V ′, and Q : [0, T ] −→ E′

are defined by ∀v ∈ V , ∀w ∈ V , ∀τ ∈ E, ∀η ∈ E, a.e. t ∈ (0, T ):

〈A(t)v,w〉V ′×V = (A(t) εv, εw)H; (3.20)

〈B(t)v,w〉V ′×V = (G(t) εv, εw)H; (3.21)

〈C(t)τ,w〉V ′×V = −(τ Ce(t), εw)H; (3.22)

〈f(t),w〉V ′×V = (f0(t),w)H +(fF (t),w)(L2(Γ2))d−(θa(t)Ce, εw)H; (3.23)

〈Q(t), η〉E′×E =

∫
Γ3

ke(t) (θR(t)− θa(t)) η dx+

∫
Ω

(q(t)− θ̇a(t)) η dx

−
d∑

i,j=1

∫
Ω
kij(t)

∂θa(t)

∂xj

∂η

∂xi
dx;

(3.24)

〈K(t) τ, η〉E′×E =

d∑
i,j=1

∫
Ω
kij(t)

∂τ

∂xj

∂η

∂xi
dx+

∫
Γ3

ke(t) τ · η da; (3.25)

〈R(t)v, η〉E′×E = −
∫

Ω
cij(t)

∂vi
∂xj

η dx. (3.26)
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Theorem 3.1. Assume that (3.11)–(3.19) hold, then there exists an unique
solution {u, θ} to problem QV with the regularity :{

u ∈W 1,2(0, T ;V ) ∩W 2,2(0, T ;V ′) ∩ C1(0, T ;H)

θ ∈ L2(0, T ;E) ∩W 1,2(0, T ;E′) ∩ C(0, T ;F ).
(3.27)

4. Proof of Theorem 3.1

The idea is to bring the second order inequality to a first order inequality,
using monotone operator, convexity and fixed point arguments, and will be
carried out in several steps.

Let us introduce the velocity variable

v = u̇.

The system in Problem QV is then written for a.e. t ∈ (0, T ):

u(t) = u0 +

∫ t

0
v(s) ds;

〈v̇(t) +A(t)v(t) +B(t)u(t) + C(t) θ(t), w − v(t)〉V ′×V

+ (

∫ t

0
B(t− s) ε(u(s)) ds, ε(w)− ε(v(t)))H + ψ(t,w)− ψ(t,v(t))

≥ 〈f(t), w − v(t)〉V ′×V ∀w ∈ V ;

θ̇(t) +K(t) θ(t) = R(t)v(t) +Q(t) in E′;

v(0) = v0, θ(0) = θ0,

with the regularity{
v ∈ v ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) ∩ C(0, T ;H)

θ ∈ L2(0, T ;E) ∩W 1,2(0, T ;E′) ∩ C(0, T ;F ).

To continue, we assume in the sequel that the conditions (3.11)–(3.19) of
the Theorem 3.1 are satisfied. Let define

W := L2(0, T ;H).

We begin by

Lemma 4.1. For all η ∈ W, there exists an unique

vη ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) ∩ C(0, T ;H)

satisfying
〈v̇η(t) +A(t)vη(t), w − vη(t)〉V ′×V + (η(t), ε(w)− ε(vη(t)))H

+ ψ(t,w)− ψ(t,vη(t)) ≥ 〈f(t),w − vη(t)〉V ′×V ,
∀w ∈ V, a.e. t ∈ (0, T );

vη(0) = v0.

(4.1)
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Moreover, ∃c > 0 such that ∀η1, η2 ∈ W:

‖vη2(t)−vη1(t)‖2H+

∫ t

0
‖vη1−vη2‖2V ≤ c

∫ t

0
‖η1−η2‖2H, ∀t ∈ [0, T ]. (4.2)

Proof. Let η ∈ W. The existence and uniqueness of vη follows straightly
from Theorem 2.1, where we apply F defined by for all t ∈ [0, T ],

〈F(t),w〉V ′×V := 〈f(t),w〉V ′×V − (η(t), ε(w))H, ∀w ∈ V.

The assumptions in (3.14) imply that F ∈ L2(0, T ;V ′).
Now let η1, η2 ∈ W. In (4.1) we take (η = η1, w = vη2(t)), then

(η = η2, w = vη1(t)). Adding the two inequalities, we deduce that for a.e.
t ∈ (0;T ):

〈v̇η2(t)− v̇η1(t),vη2(t)− vη1(t)〉V ′×V
+ 〈A(t)vη2(t)−A(t)vη1(t),vη2(t)− vη1(t)〉V ′×V
≤ −(η2(t)− η1(t), ε(vη2(t))− ε(vη1(t)))H.

Then integrating over (0, t), from (3.11)(iii) and from the initial condition
on the velocity, we obtain:

∀t ∈ [0, T ], ‖vη2(t)− vη1(t)‖2H +mA

∫ t

0
‖vη2(s)− vη1(s)‖2V ds

≤ −
∫ t

0
(η2(s)− η1(s), ε(vη2(s))− ε(vη1(s)))H ds

+mA

∫ t

0
‖vη2(s)− vη1(s)‖2H ds.

We conclude that ∃c > 0 such that ∀η1, η2 ∈ W, ∀t ∈ [0, T ]:

‖vη2(t)− vη1(t)‖2H +

∫ t

0
‖vη1(s)− vη2(s)‖2V ds

≤ c
∫ t

0
‖η1(s)− η2(s)‖2Hds+ c

∫ t

0
‖vη2(s)− vη1(s)‖2H ds.

(4.3)

Now let fix τ ∈ [0, T ]. We have ∀t ∈ [0, τ ]:

‖vη2(t)− vη1(t)‖2H ≤ c
∫ τ

0
‖η1(s)− η2(s)‖2H + c

∫ t

0
‖vη2(s)− vη1(s)‖2H ds.

Using then Gronwall’s inequality, we obtain ∀τ ∈ [0, T ]:

‖vη2(τ)− vη1(τ)‖2H ≤
(
c

∫ τ

0
‖η1(s)− η2(s)‖2H

)
ecT .

Finally, integrating the last inequality and reporting the result in (4.3), we
get (4.2). 2

Here and below, we denote by c > 0 a generic constant, which value may
change from lines to lines.
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Lemma 4.2. For all η ∈ W, there exists an unique

θη ∈ L2(0, T ;E) ∩W 1,2(0, T ;E′) ∩ C(0, T ;F )

satisfying{
θ̇η(t) +K(t) θη(t) = R(t)vη(t) +Q(t), in E′, a.e. t ∈ (0, T ),

θη(0) = θ0.
(4.4)

Moreover, ∃c > 0 such that ∀η1, η2 ∈ W:

‖θη1(t)− θη2(t)‖2F ≤ c
∫ t

0
‖vη1 − vη2‖2V , ∀t ∈ [0, T ]. (4.5)

Proof. The existence and uniqueness result verifying (4.4) can be seen
as a particular case of Theorem 2.1. Indeed we verify that the operator
K(t) : E −→ E′ is linear continuous and strongly monotone, and from the
expression of the operator R(t),

vη ∈ L2(0, T ;V ) =⇒ R vη ∈ L2(0, T ;E′),

as Q ∈ L2(0, T ;E′) then R vη +Q ∈ L2(0, T ;E′).
Now for η1, η2 ∈ W, we have for a.e. t ∈ (0;T ):

〈θ̇η1(t)− θ̇η2(t), θη1(t)− θη2(t)〉E′×E
+ 〈K(t) θη1(t)−K(t) θη2(t), θη1(t)− θη2(t)〉E′×E
= 〈R(t)vη1(t)−R(t)vη2(t), θη1(t)− θη2(t)〉E′×E .

Then integrating the last property over (0, t), using the strong monotonicity
of K(t) and the Lipschitz continuity of R(t) : V −→ E′, we deduce the
relation (4.5). 2

Proof of Theorem 3.1. We have now all the ingredients to prove the
Theorem 3.1. Consider the operator Λ : W →W defined by for all η ∈ W:

Λ η (t) = G(ε(uη(t))) +

∫ t

0
B(t− s) ε(uη(s)) ds− θη(t)Ce(t), ∀t ∈ [0, T ],

where

uη(t) = u0 +

∫ t

0
vη(s) ds,

∀t ∈ [0, T ]; uη ∈W 1,2(0, T ;V ) ∩W 2,2(0, T ;V ′) ∩ C1(0, T ;H).

Then from (3.12), (3.13), and Lemma 4.2, we deduce that for all η1, η2 ∈ W,
for all t ∈ [0, T ]:

‖Λ η1 (t)− Λ η2 (t)‖2H ≤ c ‖θη1(t)− θη2(t)‖2F + c

∫ t

0
‖vη1(s)− vη2(s)‖2V ds

≤ c
∫ t

0
‖vη1(s)− vη2(s)‖2V ds.

(4.6)
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Now using (4.6), after some algebraic manipulations, we have for any β > 0:∫ T

0
e−βτ ‖Λ η1 (τ)− Λ η2 (τ)‖2Hdτ ≤

c

β

∫ T

0
e−βτ ‖η1(τ)− η2(τ)‖2H dτ.

We conclude from the last inequality by contracting principle that the oper-
ator Λ has a unique fixed point η∗ ∈ W. We verify then that the functions

u(t) := u0 +

∫ t

0
vη∗ , ∀t ∈ [0, T ], θ := θη∗

are solutions to problem QV with the regularity (3.27), the uniqueness fol-
lows from the uniqueness in Lemma 4.1 and Lemma 4.2. 2
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[12] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivaria-
tional Inequalities. Models and Analysis of Contact Problems, Advances in Mechan-
ics and Mathematics 26, Springer, New York, 2013, http://dx.doi.org/10.1007/978-
1-4614-4232-5.

[13] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications,
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