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Abstract - We consider a simplified problem describing the interaction be-
tween a viscous fluid (blood) and an elastic structure (vein walls). The aim
of this article is to propose a mathematical model that provides an exterior
compression which prevents the blood recirculation through an inelasic vein.
By means of a boundary control problem we determine some exterior forces
necessary for compensating the rigidity of the vein walls, in such a way that
medical complications such as leg edema and venous ulcers are attenuated
as much as possible. We prove the existence of an optimal control and we
establish the necessary conditions of optimality.
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1. Introduction

The interaction of a fluid with a deformable structure has important applica-
tions in medicine. The purpose of the present work is to optimize the blood
flow through a vein by means of a fluid-structure interaction model. The
blood motion in a leg vein has an anti-gravity sense. When the vein loses
its elasticity, from different reasons, the blood has no normal flow through
it; consequently, stagnation and recirculation may appear. These phenom-
ena lead to medical complications such as leg edema and venous ulcers. A
medical solution for attenuating these effects is the use of elastic stockings.
The compression determined by them compensates in a certain way the lack
of elasticity of the vein walls, realising an almost normal blood flow. We
propose in this article a mathematical model that allows us to determine
an optimal compression that prevents the blood recirculation through the
inelastic vein.

Due to its various applications, the fluid-structure interaction problem
has been studied extensively in the last years. For instance, some results
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concerning the existence of weak or strong solutions can be found in [3], [8].
An asymptotic analysis of the fluid-structure interaction was developed in
[1], [2], [10], [11], [12], [13], [14] and this list is non-exhaustive.

In all the previously cited papers the thickness of the elastic structure
was neglected. The present work represents a first part of a more exten-
sive approach. We consider the simplified model introduced in [10] slightly
modified, described in the next section. Section 3 deals with the variational
formulation of the problem which provides existence, uniqueness and reg-
ularity results. The main results of this article are contained in the next
section. We introduce the boundary control problem with its physical mo-
tivation. After proving the existence of an optimal control, we establish the
optimality conditions.

2. The physical problem

Recently, we published some results concerning the flow through the blood-
stream. In [5], [6], [7] we considered a more complicated model for the fluid
motion, but the flow domain was taken with rigid boundaries. The present
article deals with a fluid-structure interaction problem, but with simplified
geometry of the flow domain. Consider a cylindrical domain with lateral
elastic boundary (vein) filled with an incompressible viscous fluid (blood).
We suppose that in each axial section of the right circular cylinder the in-
teraction problem is the same; so we study it in the 2-dimensional domain

Ωf =
{

(x, y) ∈ R2
/
x ∈ (−a/2, a/2) , y ∈ (0, b)

}
, (2.1)

with the elastic boundaries

Γ± =
{

(± a/2, y)
/
y ∈ (0, b)

}
, (2.2)

where a and b are positive given constants. The anti-gravity blood flow
in the vein being slow, we describe it be means of the non-steady Stokes’
equations. For modeling the transversal deformation of the vein walls we use
the Koiter’s equations. This is in agreement with the reduced elasticity of the
vein wall that appears in venous insufficiency. The longitudinal deformation
is neglected. Supposing that on ∂Ωf\(Γ+ ∪ Γ−) the velocity is given and
considering the clamped ends condition for the elastic walls we are leaded
to the following coupled system
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

ρf
∂u

∂t
− µ ∆u +∇p = f in Ωf × (0, T ),

div u = 0 in Ωf × (0, T ),

u =
∂d±
∂t

i on Γ± × (0, T ),

ρh
∂2d±
∂t2

+
h3E

12(1− σ2)

∂4d±
∂y4

− σ

6(1− σ2)

h3E

a2

∂2d±
∂y2

+
hE

a2(1− σ2)

(
1 +

h2

12a2

)
d± = ±p/x=±a/2

+ g± on Γ± × (0, T ),

u = u0 on (∂Ωf\(Γ+ ∪ Γ−))× (0, T ),

d± =
∂d±
∂y

= 0 in {0, b} × (0, T ).

u(0) = 0 in Ωf , d±(0) = ∂d±
∂t (0) = 0 in (0, b),

(2.3)

with T a positive given constant defining the time interval and i, j the axes
versors. The data of the previous system are: ρf , ρ, µ, σ, h, E representing
positive given constants in connection with the properties of the materials
and the functions: f , the forces that act on the fluid, u0 a given velocity,
g± the forces that act from the exterior on the elastic boundaries. In our
particular problem, g± represent the compression determined by the elastic
stockings. Concerning the given velocity u0, it represents the trace of a
function denoted also by u0 that has the following properties:

u0 ∈ H2(0, T ; (H2(Ωf ))2),

u0 = 0 on Γ± × (0, T ),

div u0 = 0 in Ωf × (0, T ),

u0(0) = 0 in Ωf .

(2.4)

There may exist several functions u0 satisfying (2.4). We choose one of these
functions that will be fixed throughout the paper.

The unknowns of the previous system are: the velocity and the pres-
sure of the fluid, u and p, respectively and the displacement of the elastic
boundaries Γ±, d±.

As a consequence of the properties (2.3)2,3,5,8 and (2.4)2,3 we obtain the
following compatibility condition∫ b

0
(d+(y, t)− d−(y, t)) dy = 0. (2.5)

Denoting

F = f − ρf
∂u0

∂t
+ µ ∆u0,
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we replace the non homogeneous boundary value problem (2.3) by the ho-
mogeneous one

ρf
∂v

∂t
− µ ∆v +∇p = F in Ωf × (0, T ),

div v = 0 in Ωf × (0, T ),

v =
∂d±
∂t

i on Γ± × (0, T ),

ρh
∂2d±
∂t2

+
h3E

12(1− σ2)

∂4d±
∂y4

− σ

6(1− σ2)

h3E

a2

∂2d±
∂y2

+
hE

a2(1− σ2)

(
1 +

h2

12a2

)
d± = ±p/x=±a/2

+ g± on Γ± × (0, T ),

v = 0 on (∂Ωf\(Γ+ ∪ Γ−))× (0, T ),

d± =
∂d±
∂y

= 0 in {0, b} × (0, T ).

v(0) = 0 in Ωf ,

d±(0) =
∂d±
∂t

(0) = 0 in (0, b),

(2.6)

where v = u− u0.

3. The variational problem

In order to obtain the weak formulation of the coupled system (2.6) we
choose for the data the regularity

f ∈ H1(0, T ; (L2(Ωf ))2), g+, g− ∈ H1(0, T ;L2(0, b)). (3.1)

The properties (2.4)1 and (3.1) give for F the same regularity as for f , i.e.

F ∈ H1(0, T ; (L2(Ωf ))2). (3.2)

We consider the spaces

V={v∈(H1(Ωf))
2/divv=0 in Ωf , vy=0 on Γ±,v=0 on ∂Ωf\(Γ+∪Γ−)},

B = {β = (β+, β−)/β+, β− ∈ H2
0 (0, b),

∫ b

0
(β+(y)− β−(y)) dy = 0}.

(3.3)

Here and in what follows we denote by vx, vy the two components of a
vector v. For simplifying the writing we introduce the notations A1 =

h3E

12(1− σ2)
, A2 =

σh3E

6a2(1− σ2)
, A3 =

hE

a2(1− σ2)

(
1 +

h2

12a2

)
. Standard

techniques lead to the following variational formulation of the coupled prob-
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lem (2.6)

Find (v,d) ∈ L2(0, T ;V )×H1(0, T ;B) with(
dv

dt
,
d2d

dt2

)
∈ L2(0, T ;V ′)× L2(0, T ;B′);d = (d+, d−) s. t.

ρf
d

dt

∫
Ωf

v(t) ·w + µ

∫
Ωf

∇v(t) : ∇w + ρh
d

dt

∫ b

0

∂d(t)

∂t
· β

+A1

∫ b

0

∂2d(t)

∂y2
·β′′+A2

∫ b

0

∂d(t)

∂y
·β′+A3

∫ b

0
d(t)·β =

∫
Ωf

F(t)·w

+

∫ b

0
g(t) · β a.e. in (0, T ), ∀w∈V, ∀β∈B, wx = β± on Γ±,

v =
∂d±
∂t

i a.e. on Γ± × (0, T ),

v(0) = 0 in Ωf , d(0) =
∂d

∂t
(0) = 0 in (0, b).

(3.4)

Remark 3.1. In what follows we shall obtain further regularity for the
unknowns v and d; the regularity stated in (3.4) for the functions and for
their derivatives is the lowest that is necessary in order to give sense to the
expressions appearing in (3.4).

We prove next the main result of this section.

Theorem 3.1. The variational problem (3.4) has a unique solution (v,d),
with v ∈ W 1,∞(0, T ; (L2(Ωf ))2) ∩ H1(0, T ;V ) ∩ L2(0, T ; (H2(Ωf ))2), d ∈
W 2,∞(0, T ; (L2(0, b))2) ∩ W 1,∞(0, T ;B). Moreover, there exists a unique
function p ∈ L2(0, T ;H1(Ωf )) such that (v, p,d) is a classical solution for
(2.6).

Proof. The uniqueness of the pair (v,d) is obtained in a classical way; so
we skip this proof. The existence and regularity are established by means
of the Galerkin’s method. The main ideas are similar with those from [10].
However, here the regularity results for the unknown functions rely on the
regularity of the data, unlike in [10] where an additional ”viscous” term was
added in the equation for the elastic structure in order to ensure the desired
regularity for the velocity and displacement. Let {βj}j∈N∗ and {ψk}k∈N∗ be
some bases for the spaces B and V0 = V ∩ (H1

0 (Ωf ))2, respectively.
For any βj consider the problem:

−µ ∆ϕj +∇pj = 0 in Ωf ,

div ϕj = 0 in Ωf ,

ϕj = 0 on ∂Ωf\ (Γ+ ∪ Γ−) ,

ϕj = (βj)±i on Γ±.

(3.5)
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The problem (3.5) is a classical non homogeneous Stokes problem with
unique solution.

By means of the functions {βj}j∈N∗ , {ψk}k∈N∗ and {ϕj}j∈N∗ we define
the approximate functions


dn(y, t) =

n∑
j=1

bj(t) βj(y),

vmn (x, y, t) =
m∑
k=1

ak(t) ψk(x, y) +

n∑
j=1

ḃj(t) ϕj(x, y),

(3.6)

for each n, m ∈ N∗. To determine the approximate functions means to
determine the functions of t, ak, bj : [0, T ] 7→ R, for all k, j ∈ N∗. This can
be done by solving the problem written below



ρf

∫
Ωf

∂vmn
∂t

(t) ·ψk + µ

∫
Ωf

∇vmn (t) :∇ψk =

∫
Ωf

F(t) ·ψk, k = 1, ...,m,

ρf

∫
Ωf

∂vmn
∂t

(t) ·ϕj + µ

∫
Ωf

∇vmn (t) : ∇ϕj + ρh

∫ b

0

∂2dn
∂t2

(t) · βj

+A1

∫ b

0

∂2dn
∂y2

(t) · β′′j +A2

∫ b

0

∂dn
∂y

(t) · β′j +A3

∫ b

0
dn(t) · βj

=

∫
Ωf

F(t) ·ϕj +

∫ b

0
g(t) · βj , j = 1, ..., n, a.e. in (0, T ),

vmn (0) = 0 in Ωf ; dn(0) =
∂dn
∂t

(0) = 0 in (0, b).

(3.7)

We notice that the condition vmn =
∂(dn)±
∂t

i on Γ± × (0, T ) is fulfilled due

to the construction of the functions ϕj .

Introducing (3.6) into (3.7) we obtain for determining the unknown func-
tions ak, bj the following second order system of m + n linear differential
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equations



ρf

m∑
l=1

δklȧl(t)+ρf

n∑
i=1

(∫
Ωf

ϕi ·ψk

)
b̈i(t)+µ

m∑
l=1

(∫
Ωf

∇ψl :∇ψk

)
al(t)

=

∫
Ωf

F(t) ·ψk, k = 1, ...,m,

ρf

m∑
l=1

(∫
Ωf

ψl ·ϕj

)
ȧl(t) +

n∑
i=1

(
ρf

(∫
Ωf

ϕi ·ϕj

)
+ ρhδij

)
b̈i(t)

+µ

n∑
i=1

(∫
Ωf

∇ϕi :∇ϕj

)
ḃi(t)+

n∑
i=1

(
A1

∫ b

0
β′′i ·β′′j +A2

∫ b

0
β′i ·β′j+A3δij

)
bi(t)

=

∫
Ωf

F(t) ·ϕj +

∫ b

0
g(t) · βj , j = 1, ..., n,

al(0) = bi(0) = ḃi(0) = 0, l = 1, ...,m, i = 1, ..., n.
(3.8)

The functions al, bi are uniquely determined from (3.8) if and only if the
matrix of order m+ n

M=


ρf (δkl)1≤k,l≤m ρf

(∫
Ωf

ϕi ·ψk

)
1≤k≤m,1≤i≤n

ρf

(∫
Ωf

ϕj ·ψl

)
1≤j≤n,1≤l≤m

(
ρf

∫
Ωf

ϕi ·ϕj+ ρhδij

)
1≤i,j≤n

 (3.9)

is non singular. We obtain this result by showing that
M
(
ξ
η

)
·
(
ξ
η

)
≥ 0 ∀ ξ ∈ Rm, η ∈ Rn,

M
(
ξ
η

)
·
(
ξ
η

)
= 0⇒ ξ = 0, η = 0.

(3.10)

Obvious computations lead to

M
(
ξ
η

)
·
(
ξ
η

)
=ρf

∫
Ωf

 m∑
k=1

ξkψk+

n∑
j=1

ηjϕj

2

+ρhη2 ∀ ξ∈Rm, η∈Rn, (3.11)

which yields (3.10))1. Supposing next that M
(
ξ
η

)
·
(
ξ
η

)
= 0 we obtain

(3.10)2.
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Computing
m∑
k=1

ak(t)·(3.7)1 +
n∑
j=1

ḃj(t)·(3.7)2 and using standard tech-

niques we obtain the first estimates for vmn and dn

max
{
ρ

1/2
f ‖v

m
n ‖L∞(0,T ;(L2(Ωf ))2) ; (2µ)1/2 ‖vmn ‖L2(0,T ;(H1

0 (Ωf ))2) ;

(ρh)1/2

∥∥∥∥∂dn∂t
∥∥∥∥
L∞(0,T ;(L2(0,b))2)

;A
1/2
1 ‖dn‖L∞(0,T ;(H2

0 (0,b))2)

}
≤c(F,g),

(3.12)

where

c2(F,g) = eT

(
1

ρf

∫ T

0

∫
Ωf

F2 +
1

ρh

∫ T

0

∫ b

0
g2

)
.

Due to the regularity of the data with respect to t given by (2.4) and

(3.1) we obtain further estimates, by computing, as above
m∑
k=1

ȧk(t)·(3.7)1

+
n∑
j=1

b̈j(t)·(3.7)2:

max
{
ρ

1/2
f

∥∥∥∥∂vmn∂t
∥∥∥∥
L∞(0,T ;(L2(Ωf ))2)

; (2µ)1/2

∥∥∥∥∂vmn∂t
∥∥∥∥
L2(0,T ;(H1

0 (Ωf ))2)

;

(ρh)1/2

∥∥∥∥∂2dn
∂t2

∥∥∥∥
L∞(0,T ;(L2(0,b))2)

;A
1/2
1

∥∥∥∥∂dn∂t
∥∥∥∥
L∞(0,T ;(H2

0 (0,b))2)

}
≤ c̃(F,g),

(3.13)

with

c̃2(F,g) = c2

(
∂F

∂t
,
∂g

∂t

)
+ eT

(
1

ρf

∫ T

0

∫
Ωf

F2(0) +
1

ρh

∫ T

0

∫ b

0
g2(0)

)
.

These estimates give the following regularity of the approximations vmn and
dn {

vmn ∈W 1,∞(0, T ; (L2(Ωf ))2) ∩H1(0, T ;V ),

dn ∈W 2,∞(0, T ; (L2(0, b))2) ∩W 1,∞(0, T ;B)
(3.14)

and the following convergences, on subsequences
v
mq
nl ⇀ v weakly-? in W 1,∞(0, T ; (L2(Ωf ))2),

v
mq
nl ⇀ v weakly in H1(0, T ;V ),

dnl
⇀ d weakly-? in W 2,∞(0, T ; (L2(0, b))2),

dnl
⇀ d weakly-? in W 1,∞(0, T ;B),

(3.15)

when l, q →∞. We consider next an arbitrary function τ ∈ L2(0, T ) and we

compute

∫ T

0
(3.7)1 · τ(t)dt. We pass to the limit on subsequences and using
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the fact that {ψk}k∈N∗ is a basis of V0 and De Rham’s theorem we establish
the existence of a distribution p̃ such that

ρf
∂v

∂t
− µ∆v − F = −∇p̃ in D′(0, T ; (D′(Ωf ))2). (3.16)

With the technique of [17], Ch. 3 we improve the regularity of the functions
v, p̃ as follows {

v ∈ L2(0, T ; (H2(Ωf ))2),

p̃ ∈ L2(0, T ;H1(Ωf ))
(3.17)

and now the relation (3.16) makes sense in L2(0, T ; (L2(Ωf ))2). In the same
way as before we pass to the limit in (3.7)2; this yields

ρf

∫
Ωf

∂v

∂t
(t) ·ϕj + µ

∫
Ωf

∇v(t) : ∇ϕj + ρh

∫ b

0

∂2d

∂t2
(t) · βj

+A1

∫ b

0

∂2d

∂y2
(t) · β′′j +A2

∫ b

0

∂d

∂y
(t) · β′j +A3

∫ b

0
d(t) · βj

=

∫
Ωf

F(t) ·ϕj +

∫ b

0
g(t) · βj , ∀ j ∈ N∗, a.e. in (0, T ).

(3.18)

We also compute

∫
Ωf

(3.16) (written in L2(0, T ; (L2(Ωf ))2)) ·ϕj which gives

ρf

∫
Ωf

∂v

∂t
(t) ·ϕj + µ

∫
Ωf

∇v(t) : ∇ϕj +

∫
Γ+

p̃(t)(βj)+

−
∫

Γ−
p̃(t)(βj)− =

∫
Ωf

F(t) ·ϕj ∀ j ∈ N∗, a.e. in (0, T ).
(3.19)

Computing (3.18)-(3.19) and taking into account that {βj}j∈N∗ is a basis of
the space B we get

ρh

∫ b

0

∂2d

∂t2
(t) · β+A1

∫ b

0

∂2d

∂y2
(t) · β′′+A2

∫ b

0

∂d

∂y
(t) · β′+A3

∫ b

0
d(t) · β

=

∫ b

0
g(t) · β +

∫
Γ+

p̃(t)β+ −
∫

Γ−
p̃(t)β−, ∀β ∈ B, a.e. in (0, T ).

(3.20)

Consider next w ∈ V with wx = β± on Γ± and compute, as before,

∫
Ωf

(3.16)

(written in L2(0, T ; (L2(Ωf ))2)) ·w. We obtain, as before

ρf

∫
Ωf

∂v

∂t
(t) ·w + µ

∫
Ωf

∇v(t) : ∇w +

∫
Γ+

p̃(t)β+ −
∫

Γ−
p̃(t)β−

=

∫
Ωf

F(t) ·w ∀w ∈ V, wx = β± on Γ±, a.e. in (0, T ).
(3.21)
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We are now in a position to obtain some of the assertions of the theorem:
the existence of a pair (v,d) satisfying the variational equality of (3.4)
follows from (3.20) and (3.21); the regularity of the functions v and d is
a consequence of (3.14), (3.15) and (3.17)1. This supplementary regularity
allows us to write in (3.4)2 the time derivatives under the integrals.

To achieve the proof, it remains to obtain the boundary and initial con-
ditions satisfied by v and d and the properties of the pressure.

From the estimates (3.13) we also obtain that {vmn }n,m∈N∗ is bounded
at least in L2(0, T ; (H1/2(Γ±))2); hence the convergence v

mq
nl → v strongly

in L2(0, T ; (L2(Γ±))2) holds, for l, q → ∞. Multiplying the boundary con-

dition for the approximate functions vmn /Γ± =
∂(dn)±
∂t

i with test functions

τ ∈ L2(0, T ; (L2(Γ±))2) and integrating on Γ± × (0, T ) we obtain (3.4)3 by
passing to the limit on subsequences, with l, q →∞.

For establishing the initial conditions (3.4)4 we proceed as follows. We
obtain for the approximate functions vmn and dn the relation that corre-
sponds to (3.4)2, i.e.

ρf

∫
Ωf

∂vmn
∂t

(t) ·w + µ

∫
Ωf

∇vmn (t) : ∇w + ρh

∫ b

0

∂2dn
∂t2

(t) · β

+A1

∫ b

0

∂2dn(t)

∂y2
· β′′+A2

∫ b

0

∂dn(t)

∂y
· β′+A3

∫ b

0
dn(t) · β=

∫
Ωf

F(t)·w

+

∫ b

0
g(t) · β ∀w∈V, ∀β∈B, wx = β± on Γ±; a.e. in (0, T ).

(3.22)

We apply next a standard technique, that can be found, e.g., in [15]. We
present in what follows only the main ideas of this technique. We consider

first a function τ ∈ C1([0, T ]) with τ(T ) = 0. We compute

∫ T

0
(3.4)2τ and∫ T

0
(3.22)τ ; in the second calculus we pass to the limit on subsequences after

integrating by parts. In this way we obtain the first and the third initial
condition of (3.4). Some details are necessary for the third initial condition.
With the technique previously described we get∫ b

0

∂d

∂t
(0) · β = 0 ∀β ∈ B, (3.23)

which gives only
∂d±
∂t

(0) = c±, with c+, c− constants. Due to the regularity

of d we also have

∫ b

0

(
∂d+

∂t
(0)− ∂d−

∂t
(0)

)
= 0, which gives, combined with

the previous property, c+ = c− = : c. Introducing this into (3.23) we obtain

c

∫ b

0
(β+ + β−) = 0 ∀β ∈ B, which yields c = 0.
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Taking next a more regular test function, τ ∈ C2([0, T ]), with τ(T ) =
τ ′(T ) = 0 and repeating the previous technique we also obtain d(0) = 0.

We establish next the part of the theorem concerning the pressure. We
have already introduced in (3.16) a function p̃, unique up to an additive
function of t, with the regularity given by (3.17)2. These properties give an
expression for p̃ of the form

p̃(x, y, t) = q(x, y, t) + π(t) a.e. in Ωf × (0, T ), (3.24)

with q ∈ L2(0, T ;H1(Ωf )) unique and π ∈ L2(0, T ) an arbitrary function.
Define the set

Aq =
{
p̃ ∈ L2(0, T ;H1(Ωf ))/p̃ = q + π, π ∈ L2(0, T )

}
(3.25)

and notice that (2.6)1 is verified by (v, p̃) a.e. in Ωf× (0, T ) for any p̃ ∈Aq.
Taking now β = (β+, 0) and then β = (0, β−) in (3.20), integrating by

parts and using the property

∫ b

0
β± = 0 we get two equations involving the

displacements d± and the pressure of the form

ρh
∂2d±
∂t2

+A1
∂4d±
∂y4

−A2
∂2d±
∂y2

+A3d± = g± ± p̃/x=±a/2 + α± (3.26)

in L2((0, b)× (0, T )), with α± arbitrary functions in L2(0, T ). Since p̃ is an
element of Aq we can write instead (3.26)

ρh
∂2d±
∂t2

+A1
∂4d±
∂y4

−A2
∂2d±
∂y2

+A3d± = g± ± q/x=±a/2 ± π + α±. (3.27)

The two relations of (3.27) represent (2.6)4 for p = q + π + α, if α+ =
−α− =: α. Let us introduce the notation

E+(t) = ρh
∂2d+

∂t2
+A1

∂4d+

∂y4
−A2

∂2d+

∂y2
+A3d+ − g+ − q/x=a/2.

We notice that E+ is uniquely determined due to the uniqueness of the
functions d+ and q. The relation (3.27) corresponding to the subscript +
gives π+α = E+ and so, the unique function p that satisfies, together with
v,d the problem (2.6) is p = q + E+, that completes the proof. 2

Corollary 3.1. The following estimate yields

‖v‖H1(0,T ;(H1
0 (Ωf ))2) ≤ ˜̃c(F,g), (3.28)

with ˜̃c 2(F,g) = (2µ)−1
(
c2(F,g) + c̃ 2(F,g)

)
.

Proof. In the same way as (3.12) and (3.13) we obtain the corresponding
estimates for v,d instead of vmn ,dn, which lead to (3.28). 2
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4. The boundary control problem

There exist various optimal control problems of practical interest in con-
nection with the blood flow through the bloodstream. For instance, in a
previous paper, [16], we studied the possibility to obtain an optimal config-
uration for the blood pressure. The present article deals with a boundary
control problem inspired by the physical situation described below. The
blood flow in a leg vein in an anti-gravity sense is expressed in our model
by the condition

u · j ≥ 0. (4.1)

When the vein walls lose their elasticity, recirculation phenomena may ap-
pear, which means that there exists ω ⊂ Ωf with meas(ω) > 0 and there
exists a time interval (τ1, τ2) ⊂ (0, T ) such that uy < 0 a.e. in ω × (τ1, τ2).
This situation leads to leg edema and venous ulcers. The inelasticity of
the vein walls is compensated by the compression exerted by the elastic
stockings. In our problem, this compression is represented by the func-
tions g+ and g− that act from the exterior on the vein walls, Γ±. Taking
into account the phenomenon previously described, we want to determine
some forces g± which realise a blood flow without recirculation. For this
purpose we consider the following boundary control problem: Find some
forces g∗ = (g∗+, g

∗
−) such that u∗y ≥ 0 a.e. in Ωf × (0, T ), where (u∗, p∗, d∗±)

represents the unique solution of (2.3) corresponding to g∗. In order to
study the control problem presented above, we consider the cost functional
J : H1(0, T ; (L2(0, b))2) 7→ R with the expression

J(g) =
1

2

∫ T

0

∫
Ωf

(min(uy, 0))2 dxdydt, (4.2)

with (u, p, d±) the unique solution of (2.3) corresponding to g. We also
consider a bounded subset of the space for g chosen in (3.1), i.e.

Br =
{
g ∈ H1(0, T ; (L2(0, b))2)/‖g‖H1(0,T ;(L2(0,b))2) ≤ r

}
, (4.3)

where r is a positive given constant that may be taken arbitrarily large.

In what follows we study the following boundary control problem

Find g∗ ∈ Br such that J(g∗) ≤ J(g) ∀g ∈ Br. (CP )

Limiting the search of the exterior forces g to the bounded set Br does
not represent a generality restriction of the practical problem for which
we propose this mathematical model, since the compression of the elastic
stockings varies, from the medical point of view, between some admissible
values.
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Remark 4.1. a) If J(g∗) = 0, it means that we found an exterior compres-
sion that prevents the blood recirculation in the vein.

b) If, for any admissible choice of the bounded set Br J(g∗) > 0, this
means that there is no compression that ensures a blood flow without recir-
culation, but we founded those exterior forces which give a blood flow with
minimum recirculation.

The existence of an optimal control is given in the next theorem.

Theorem 4.1. The control problem (CP) has at least one solution.

Proof. For obtaining this result we use a Weierstrass theorem (see e.g.
[4]). We apply this result for the space H1(0, T ; (L2(0, b))2), the set Br and
the functional J . Since the necessary properties for H1(0, T ; (L2(0, b))2) and
Br are obvious, it remains to prove that J is weakly lower semicontinuous.
In fact, we shall prove in what follows a stronger result, that J is weakly
continuous. Let us consider a sequence {gn}n∈N∗ ⊂ Br with gn ⇀ g weakly
in H1(0, T ; (L2(0, b))2). From the definition of c(F,g), c̃(F,g), ˜̃c(F,g), and
from (3.28) it follows that {vn}n∈N∗ is bounded in H1(0, T ; (H1

0 (Ωf ))2) by a
constant depending on r, where (vn,dn) is the unique solution of (3.4) cor-
responding to gn. Hence, there exists an element v ∈ H1(0, T ; (H1

0 (Ωf ))2)
such that on a subsequence we have{

vnk
⇀ v weakly in H1(0, T ; (H1

0 (Ωf ))2),

vnk
⇀ v strongly in L2(0, T ; (L2(Ωf ))2),

(4.4)

when k →∞.
Moreover, from (3.12) and (3.13) written for the solution (vn,dn) of

(3.4) corresponding to gn we also have

max

{∥∥∥∥∂2dn
∂t2

∥∥∥∥
L∞(0,T ;(L2(0,b))2)

; ‖dn‖W 1,∞(0,T ;(H2
0 (0,b))2)

}
≤ c(r), (4.5)

that gives 
∂2dnk

∂t2
⇀

∂2d

∂t2
weakly in L2(0, T ; (L2(0, b))2),

dnk
⇀ d weakly in H1(0, T ; (H2

0 (0, b))2)
(4.6)

for k → ∞. We notice that, in fact, the convergences (4.4), (4.6) hold on
the whole sequences, due to the uniqueness of the solution of (3.4). Conse-
quently

un → u strongly in L2(0, T ; (L2(Ωf ))2). (4.7)

Using the inequality∫
Ωf

(min(f, 0)−min(h, 0))2 ≤ ‖f − h‖L2(Ωf ) ∀ f, h ∈ L2(Ωf ),
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we obtain with standard computations

|J(gn)− J(g)| ≤ C‖un − u‖L2(0,T ;(L2(Ωf ))2), (4.8)

with the constant C depending on u, which means the weak continuity of
J , and achieves the proof. 2

5. The optimality conditions

The first result of this section concerns the G-differentiability of the func-
tional J . Because the expression of J , this property is more difficult to
obtain than usually.

Proposition 5.1.The functional J is G-differentiable on H1(0,T ;(L2(0,b))2).
Let g,g∗ be two arbitrary elements of the space H1(0, T ; (L2(0, b))2). Then

〈DJ(g∗),g − g∗〉 =

∫ T

0

∫
Ωf

ûymin(u∗y, 0)dxdydt, (5.1)

where 〈·, ·〉 represents the duality pairing between H1(0, T ; (L2(0, b))2) and
its dual, (u∗, p∗,d∗) is the unique solution of (2.3) corresponding to g∗ and
(û, p̂, d̂) is the unique solution of the auxiliary problem

ρf
∂û

∂t
− µ ∆û +∇p̂ = 0 in Ωf × (0, T ),

div û = 0 in Ωf × (0, T ),

û =
∂d̂±
∂t

i on Γ± × (0, T ),

ρh
∂2d̂±
∂t2

+A1
∂4d̂±
∂y4

−A2
∂2d̂±
∂y2

+A3d̂±

= ±p̂/x=±a/2
+ (g − g∗)± on Γ± × (0, T ),

û = 0 on (∂Ωf\(Γ+ ∪ Γ−))× (0, T ),

d̂± =
∂d̂±
∂y

= 0 in {0, b} × (0, T ).

û(0) = 0 in Ωf ,

d̂±(0) =
∂d̂±
∂t

(0) = 0 in (0, b).

(5.2)

Proof. We first notice that the existence of a unique solution for (5.2) is
given by Theorem 3.1, since the problem (5.2) is the same as (2.6) with a
different right hand side.

Let us consider α ∈ (0, 1), let us denote gα = g∗ + α(g − g∗) and let
(uαg, pαg,dαg) be the unique solution of the coupled problem (2.3) corre-
sponding to gα. Since the problem (2.3) is linear, we obtain with obvious
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computations that

(
uαg − u∗

α
,
pαg − p∗

α
,
dαg − d∗

α

)
is the unique solution

of (5.2) for any α ∈ (0, 1). Introduce next the notation

Jα1 =
1

2α

∫
{ûy<0}∩{u∗y<0}

(
(u∗ + αû)2

y − (u∗)2
y

)
,

Jα2 =
1

2α

∫
{ûy<0}∩{u∗y≥0}

(min ((u∗ + αû)y, 0))2 ,

Jα3 =
1

2α

∫
{ûy≥0}∩{u∗y<0}

(
(min ((u∗ + αû)y, 0))2 − (u∗)2

y

) (5.3)

and notice that

lim
α↘0

J(g∗ + α(g − g∗))− J(g∗)

α
= lim

α↘0
(Jα1 + Jα2 + Jα3 ) . (5.4)

We compute in what follows the three limits of the right hand side of (5.4).

• lim
α↘0

Jα1 =

∫
{ûy<0}∩{u∗y<0}

ûyu
∗
y =

∫
{ûy<0}

ûy min(u∗y, 0).

• The second limit is more difficult to compute. We have Jα2 ≤ aαbα,
where 

a2
α =

∫
{ûy<0}∩{u∗y≥0}

(
min

((
u∗

α
+ û

)
y

, 0

))2

,

b2α =
1

4

∫
{ûy<0}∩{u∗y≥0}

(
min

(
(u∗ + α û)y , 0

))2
.

We analyze next the sequences {aα}α, {bα}α. We prove first that {aα}α is
a bounded sequence. Let α1 < α2 be two arbitrary elements of (0, 1). On

{ûy < 0} ∩ {u∗y ≥ 0} we obviously have
1

α1
u∗y + ûy ≥

1

α2
u∗y + ûy for any

0 < α1 < α2 < 1. We compare aα1 and aα2 taking into account the following
possibilities:

i) If
1

α2
u∗y + ûy ≥ 0, then min

(
1
α1
u∗y + ûy, 0

)
=min

(
1
α2
u∗y + ûy, 0

)
=0;

ii) If
1

α1
u∗y + ûy ≥ 0 >

1

α2
u∗y + ûy, then 0 =

(
min

(
1

α1
u∗y + ûy, 0

))2

≤(
min

(
1

α2
u∗y + ûy, 0

))2

;

iii) If 0 >
1

α1
u∗y + ûy, then min

(
1

α1
u∗y + ûy, 0

)
=

1

α1
u∗y + ûy ≥

1

α2
u∗y +

ûy = min

(
1

α2
u∗y + ûy, 0

)
.

Hence

(
min

(
1

α1
u∗y + ûy, 0

))2

≤
(

min

(
1

α2
u∗y + ûy, 0

))2

.



398 Ruxandra Stavre

From i), ii), iii) it follows that aα1 ≤ aα2 ∀α1 < α2, α1, α2 ∈ (0, 1) which
yields 0 ≤ aα ≤ a1 ∀α ∈ (0, 1).

For the second sequence we have lim
α↘0

b2α =

∫
{ûy<0}∩{u∗y=0}

(u∗y)
2 = 0.

Consequently, lim
α↘0

Jα2 = 0.

• For determining the third limit we write

Jα3 =
1

2α

∫
{ûy≥0}∩{u∗y<0}∩{(u∗+αû)y<0}

2αu∗yûy + α2(ûy)
2 − 1

2α

∫
{ûy≥0}∩{u∗y<0}∩{(u∗+αû)y≥0}

(u∗y)
2.

The second term satisfies

1

2α

∫
{ûy≥0}∩{u∗y<0}∩{(u∗+αû)y≥0}

(u∗y)
2 ≤ α

2

∫
{ûy≥0}∩{u∗y<0}∩{(u∗+αû)y≥0}

(ûy)
2.

Hence, lim
α↘0

Jα3 =

∫
{ûy≥0}∩{u∗y<0}

ûyu
∗
y =

∫
{ûy≥0}

ûymin(u∗y, 0).

Combining the previous computations we get

〈DJ(g∗),g−g∗〉= lim
α↘0

(Jα1 +Jα2 +Jα3 )=

∫
{ûy<0}
ûymin(u∗y, 0) +

∫
{ûy≥0}
ûymin(u∗y, 0),

which represents (5.1). 2

Corollary 5.1. Let g∗ be an optimal control and g ∈ Br an arbitrary ele-
ment. Then ∫ T

0

∫
Ωf

ûymin(u∗y, 0) ≥ 0. (5.5)

In order to establish the necessary conditions of optimality we consider the
variational problem

Find (ω, δ) ∈ L2(0, T ;V )×H1(0, T ;B) with(
dω

dt
,
d2δ

dt2

)
∈ L2(0, T ;V ′)× L2(0, T ;B′); δ = (δ+, δ−) s. t.

−ρf
d

dt

∫
Ωf

ω(t) ·w + µ

∫
Ωf

∇ω(t) : ∇w + ρh
d

dt

∫ b

0

∂δ(t)

∂t
· β

+A1

∫ b

0

∂2δ(t)

∂y2
· β′′+A2

∫ b

0

∂δ(t)

∂y
· β′+A3

∫ b

0
δ(t) · β

=

∫
Ωf

wymin(u∗y(t), 0)

a.e. in (0, T ),∀w∈V, ∀β∈B, wx = β± on Γ±,

ω = −∂δ±
∂t

i on Γ± × (0, T ),

ω(T ) = 0 in Ωf , δ(T ) =
∂δ

∂t
(T ) = 0 in (0, b).

(5.6)
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For obtaining existence, uniqueness and regularity results for problem (5.6)
we introduce the new functions{

ω̃(t) = ω(T − t),
δ̃(t) = δ(T − t)

∀ t ∈ [0, T ] (5.7)

and we prove

Proposition 5.2. (ω, δ) is solution for (5.6) if and only if (ω̃, δ̃) verifies:



Find (ω̃, δ̃) ∈ L2(0, T ;V )×H1(0, T ;B) with(
dω̃

dt
,
d2δ̃

dt2

)
∈ L2(0, T ;V ′)× L2(0, T ;B′); δ̃ = (δ̃+, δ̃−) s. t.

ρf
d

dτ

∫
Ωf

ω̃(τ) ·w + µ

∫
Ωf

∇ω̃(τ) : ∇w + ρh
d

dτ

∫ b

0

∂δ̃(τ)

∂τ
· β

+A1

∫ b

0

∂2δ̃(τ)

∂y2
· β′′+A2

∫ b

0

∂δ̃(τ)

∂y
· β′+A3

∫ b

0
δ̃(τ) · β

=

∫
Ωf

wymin(u∗y(T − τ), 0)

a.e. in (0, T ), ∀w∈V, ∀β∈B, wx = β± on Γ±,

ω̃ =
∂δ̃±
∂τ

i on Γ± × (0, T ),

ω̃(0) = 0 in Ωf , δ̃(0) =
∂δ̃

∂τ
(0) = 0 in (0, b).

(5.8)

Proof. Denote τ = T−t. The result is obvious if we notice that
∂

∂τ
= − ∂

∂t

and
∂2

∂τ2
=

∂2

∂t2
. 2

We are now in a position to prove

Theorem 5.1. Problem (5.6) has a unique solution (ω∗, δ∗) with the regu-
larity

{
ω∗ ∈W 1,∞(0, T ; (L2(Ωf ))2) ∩H1(0, T ;V ) ∩ L2(0, T ; (H2(Ωf ))2),

δ∗ ∈W 2,∞(0, T ; (L2(0, b))2) ∩W 1,∞(0, T ;B).

(5.9)
Moreover, there exists a unique function π∗∈L2(0,T ;H1(Ωf)) s. t. (ω∗, π∗, δ∗)
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satisfies the adjoint system

−ρf
∂ω∗

∂t
− µ ∆ω∗ +∇π∗ = min(u∗y, 0)j in Ωf × (0, T ),

div ω∗ = 0 in Ωf × (0, T ),

ω∗ = −
∂δ∗±
∂t

i on Γ± × (0, T ),

ρh
∂2δ∗±
∂t2

+A1
∂4δ∗±
∂y4

−A2
∂2δ∗±
∂y2

+A3δ
∗
± = ±π∗/x=±a/2

on Γ±×(0, T ),

ω∗ = 0 on (∂Ωf\(Γ+ ∪ Γ−))× (0, T ),

δ∗± =
∂δ∗±
∂y

= 0 in {0, b} × (0, T ).

ω∗(T ) = 0 in Ωf ,

δ∗±(T ) =
∂δ∗±
∂t

(T ) = 0 in (0, b).

(5.10)

Proof. From u∗ = v∗+u0, the regularity of v∗ given by Theorem 3.1 and
(2.4)1 we get u∗y ∈ H1(0, T ; (H1(Ωf )) and, applying e.g. Theorem A.1, [9],
it follows that min(u∗y, 0)j ∈ H1(0, T ; (H1(Ωf ))2). The proof is achieved if
we notice that the variational problem (5.8) represents exactly (3.4) with
the changes: F 7→ min(u∗y, 0)j, g 7→ 0 and, consequently, we apply Theorem
3.1. 2

The last result of this article is represented by the necessary conditions of
optimality, obtained in the theorem below:

Theorem 5.2. Let g∗ be an optimal control. Then there exist the unique
triplets (u∗, p∗,d∗) and (ω∗, π∗, δ∗) such that:

i) (u∗, p∗,d∗) is the unique solution of (2.3) corresponding to g∗;
ii) (ω∗, π∗, δ∗) is the unique solution of (5.10);

iii)

∫ T

0

∫ b

0

∂δ∗

∂t
· (g∗ − g)dydt ≥ 0 ∀g ∈ Br.

Proof. The assertions i) and ii) follow from Theorem 3.1 and Theorem
5.1, respectively. Hence, it remains to prove iii). For this purpose, we take(
ω∗(t),−∂δ

∗

∂t
(t)

)
as test function in (5.2)1,4, we integrate on Ωf × (0, T )

and on (0, b)× (0, T ), respectively and we use (5.6)4. These give

−ρf
∫ T

0

∫
Ωf

∂ω∗

∂t
· û + µ

∫ T

0

∫
Ωf

∇ω∗ : ∇û + ρh

∫ T

0

∫ b

0

∂2δ∗

∂t2
· ∂d̂
∂t

+A1

∫ T

0

∫ b

0

∂2δ∗

∂y2
· ∂

3d̂

∂y2∂t
+A2

∫ T

0

∫ b

0

∂δ∗

∂y
· ∂

2d̂

∂y∂t
+A3

∫ T

0

∫ b

0
δ∗ · ∂d̂

∂t

= −
∫ T

0

∫ b

0

∂δ∗

∂t
· (g − g∗).

(5.11)
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We take next

(
û(t),

∂d̂

∂t
(t)

)
as test function in (5.6) and we integrate from

0 to T . This yields

−ρf
∫ T

0

∫
Ωf

∂ω∗

∂t
· û + µ

∫ T

0

∫
Ωf

∇ω∗ : ∇û + ρh

∫ T

0

∫ b

0

∂2δ∗

∂t2
· ∂d̂
∂t

+A1

∫ T

0

∫ b

0

∂2δ∗

∂y2
· ∂

3d̂

∂y2∂t
+A2

∫ T

0

∫ b

0

∂δ∗

∂y
· ∂

2d̂

∂y∂t
+A3

∫ T

0

∫ b

0
δ∗ · ∂d̂

∂t

=

∫ T

0

∫
Ωf

ûymin(u∗y, 0).

(5.12)

Finaly, combining (5.11), (5.12) and (5.5) we get iii), which completes the
proof. 2
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