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Abstract - In this paper we investigate the conditions of inhomogeneous
plane waves propagation in monoclinic crystals subject to initial electrome-
chanical fields. We obtain here the components of the electroacoustic tensor
for the class 2, resp. m, of the monoclinic system. For particular isotropic
directional bivectors we derive the decomposition of the propagation con-
dition, and we show that the specific coefficients are similar to the case of
guided waves propagation in monoclinic crystals subject to a bias. We ana-
lyze the important particular case of polar anisotropic directional bivectors
and we obtain a similar decomposition of the propagation condition, with
specific coefficients.
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1. Introduction

Inhomogeneous plane waves arise in many areas of mechanics of continua,
including Rayleigh, Love and Stoneley waves from the linear elasticity the-
ory, TE and TM waves from electromagnetism, or viscoelastic waves. These
are waves for which an attenuation of the amplitude occurs in a direction
distinct from the direction of propagation. They are elliptically polarized
plane waves, which generalize the classical homogeneous plane waves. Im-
portant examples using this kind of waves may be found in papers [1, 2] for
anisotropic elasticity, in [3] for electromagnetism, in [7] for viscoelasticity,
or in [5, 6] for wave propagation in porous materials. The use of complex
vectors (called bivectors) leads to a direct formulation of the condition of
propagation for this kind of waves. The concept of bivector is due to W.R.
Hamilton (see work [9]). The algebra of bivectors is well established (see,
for example, the works [4, 8, 10, 20]).

In the present paper we derive the conditions of propagation for inhomo-
geneous plane waves in monoclinic crystals subject to initial electromechan-
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ical fields. We obtain the components of the electroacoustic tensor for the
symmetry class 2, resp. m, of the monoclinic system. In the particular case
of isotropic directional bivectors we derive the decomposition of the propa-
gation condition, and we show that the specific coefficients are similar to the
case of guided waves propagation in monoclinic crystals subject to a bias
(see papers [18, 19], to compare). It is obvious that the present particular
inhomogenous plane wave generalizes the homogenous plane wave. More-
over, we study here ”free” waves propagation, while in [18, 19] we analyzed
the guided waves case.

Furthermore, we analyze the important particular case of polar anisotro-
pic directional bivectors and we find a similar decomposition of the propa-
gation condition, with specific coefficients. These results generalize previous
solutions concerning attenuated waves propagation in crystals subject to a
electromechanical bias (see papers [12]-[14]). Some of the present results
were conjectured in paper [17].

2. Basic equations. Condition of propagation

We review here the basic equations for the problems concerning the waves
propagation in anisotropic crystals subject to initial electromechanical fields
(see chapter [15], or paper [16], for details). For this problem we suppose to
be in the case of incremental dynamic electromechanical fields superposed
on large initial static electromechanical fields.

To describe this situation, we use here three different configurations : the
reference configuration BR in which, at time t = 0, the body is undeformed

and free of all fields; the initial configuration
◦
B in which the body is statically

deformed and carries the initial fields; the present (current) configuration Bt

obtained from
◦
B by applying time dependent incremental deformations and

fields. In what follows, all the fields related to the initial configuration
◦
B

will be denoted by a superposed ”◦”.
We assume the material to be an elastic dielectric, which is nonmagneti-

zable and conducts neither heat, nor electricity. Consequently, we shall use
the quasi-electrostatic approximation of the equations of balance. Further-
more, we assume that the elastic dielectric is linear and homogeneous, and
that the initial homogeneous deformations and electric fields are static and
large.

Under these hypotheses the homogeneous field equations take the follow-
ing form:

◦
ρ ü = div Σ, div ∆ = 0

rot e = 0 ⇔ e = −grad ϕ

(2.1)

where
◦
ρ is the mass density, u is the incremental displacement, Σ is the
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incremental electromechanical nominal stress tensor, ∆ is the incremental
electric displacement vector, e is the incremental electric field and ϕ is the
incremental electric potential. All incremental fields involved into the above
equations depend on the spatial variable x and on time t.

We suppose the following incremental constitutive equations:

Σkl =
◦
Ωklmn um,n+

◦
Λmkl ϕ, m

∆k =
◦

Λkmn un,m+
◦
εkl el =

◦
Λkmn un,m−

◦
εkl ϕ, l.

(2.2)

In these equations
◦
Ωklmn are the components of the instantaneous elas-

ticity tensor,
◦

Λkmn are the components of the instantaneous coupling tensor

and
◦
εkl are the components of the instantaneous dielectric tensor. The in-

stantaneous coefficients can be expressed in terms of the classical moduli of
the material and on the initial applied fields as follows:

◦
Ωklmn= cklmn+

◦
Skn δlm − ekmn

◦
El −enkl

◦
Em −ηkn

◦
El

◦
Em,

◦
Λmkl= emkl + ηmk

◦
El,

◦
εkl= δkl + ηkl,

(2.3)

where cklmn are the components of the constant elasticity tensor, ekmn are

the components of the constant piezoelectric tensor,
◦
Ei are the components

of the initial applied electric field and
◦
Skn are the components of the initial

applied symmetric (Cauchy) stress tensor.
From the relations (2.3) we find the symmetry relations

◦
Ωklmn=

◦
Ωnmlk,

◦
εkl=

◦
εlk . (2.4)

Moreover, we see that
◦
Ωklmn is not symmetric according to indices (k,l) and

(m,n) and
◦
Λmkl is not symmetric relative to indices (k,l).

From the previous field and constitutive equations we obtain the follow-
ing fundamental system of equations:

◦
ρ ül =

◦
Ωklmn um,nk+

◦
Λmkl ϕ,mk,

◦
Λkmn un,mk−

◦
εkn ϕ,nk = 0, l = 1, 3.

(2.5)
In this context, for our electromechanical problem, we define the inho-

mogeneous plane wave by:

u(x, t) = aexp[iω(s · x− t)], ϕ(x, t) = a4exp[iω(s · x− t)]. (2.6)

Here a = a++ia− is a complex vector defining the mechanical amplitude
bivector, a4 is the electric amplitude of the wave, and s = s+ + is− is a
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complex vector denoting the slowness bivector. In relations (2.6) ω defines
the frequency of the wave, which is a real parameter. We suppose that this
kind of wave propagates in an unbounded domain.

The real part of u is

u+ = [a+cosω(s+ · x− t)− a−sinω(s+ · x− t)]exp(−ω s− · x).

The planes s+ · x = constant are planes of constant phase, while s− · x =
constant are planes of constant amplitude. The previous relations represent
a train of elliptically polarized plane waves. The waves travel in the direction
of the vector s+, with the slowness |s+|, and are attenuated in the direction
of the vector s−. The period is 2π/ω. For any fixed position vector x, the
displacement vector u+ describes an ellipse similar to the ellipse defined by
the bivector a (see works [4, 10], for details).

A solution in the form (2.6) defines an inhomogeneous plane wave if
the vector s− is not parallel to the vector s+. We see that in the case of
inhomogeneous plane waves the planes of constant phase are different from
the planes of constant amplitude. In the particular case, when s− is parallel
to s+, we have an attenuated homogeneous plane wave. The phase speed is
given by V = |s+|−1, while |s−| defines the attenuation coefficient.

In order to solve the problem of inhomogeneous plane wave propagation
in the described material, we use the directional ellipse method, due to M.
Hayes (see paper [10]). The slowness bivector is written in the form s = NC,
where the directional bivector C has the form C = qm + in, with m ·n = 0,
|m| = |n| = 1, and q ≥ 1. N is called complex scalar slowness. Once
the directional bivector C is prescribed, then the slowness s, as well as the
amplitudes a and a4, are determined from the equations of motion. Thus,
the main unknown of the inhomogeneous plane wave propagation problem
is the complex scalar slowness N . A bivector C is said to be isotropic if
C ·C = 0.

Inserting the relations (2.6) into the fundamental equations (2.5), we de-
rive the condition of propagation of inhomogeneous plane waves in previously
defined materials: ◦

Qlm

◦
Ql4

◦
Q4m

◦
Q44

( am
a4

)
= 0, l,m = 1, 3. (2.7)

Here the components of the electroacoustic tensor Q have the form:

◦
Qlm= N2

◦
Ωklmn CkCn−

◦
ρ δlm,

◦
Ql4= N2

◦
Λmkl CmCk,

◦
Q4m= N2

◦
Λklm CkCl,

◦
Q44= −N2 ◦

εkn CkCn.

(2.8)

Due to symmetry relations
◦
Ωklmn=

◦
Ωnmlk and to the definition (2.8) of the

electroacoustic tensor components it yields that the tensor Q is symmetric
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for the general anisotropy. In particular, it is symmetric in the monoclinic
system.

3. Inhomogeneous plane waves propagation in monoclinic crystals

3.1. Direct dyad axis

In this case we suppose that x3 is a direct dyad axis. Now, we are in the
class 2 of the monoclinic system (A2||x3). Then, following [11], the elastic
constants with one index equal to 3 are zero and the piezoelectric constants
with no index equal to 3 are zero.

Under this hypothesis, after a long, but elementary calculus, we find that
the electroacoustic tensor Q is a symmetric tensor with complex components
(see Appendix 1). Consequently, the inhomogeneous plane waves (2.6) may
propagate in any direction, in a prestressed and prepolarized crystal from
the class 2 of the monoclinic system.

On the other hand, after a short inspection the components of the elec-
troacoustic tensor, one can easily observe that, even if the initial fields are
absent, the corresponding tensor has no zero components, for a general di-
rectional bivector C. Thus, we have no decomposition of the condition of
propagation (2.7) in the general case (see Appendix 1 for the analysis of the
components of the electroacoustic tensor).

3.1.1. Particular case: isotropic directional bivector

If we consider the particular case of isotropic directional bivectors, we may
choose C = i + ij, where {i, j, k} represents an orthonormal basis of the
three dimensional Euclidian space and i is the complex unit. Here the inho-
mogeneous wave is circularly polarized in a plane normal to the dyad axis x3.

Moreover, if
◦
E1=

◦
E2= 0, we obtain

◦
Q14=

◦
Q24= 0, respectively

◦
Q13=

◦
Q23= 0.

Then, the system (2.7) reduces to two independent subsystems, with the
coefficients similar to those from the problem of guided wave propagation in
monoclinic crystals (see papers [18, 19]). It is obvious that the present par-
ticular inhomogenous plane wave generalizes the homogenous guided wave.

• The first subsystem ◦
Q11

◦
Q12

◦
Q21

◦
Q22

( a1
a2

)
= 0. (3.1)

defines a non-piezoelectric wave, polarized in the plane x1x2, which depends

on the initial stress field, only. It corresponds to
◦
P 2 guided wave. These
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characteristics are due to the form of the involved coefficients:

◦
Q11= N2[c11+

◦
S11 +2i(c16+

◦
S12)− (c66+

◦
S22)]−

◦
ρ,

◦
Q12=

◦
Q21= N2[c16 + i(c12 + c66)− c26],

◦
Q22= N2[c66+

◦
S11 +2i(c26+

◦
S12)− (c22+

◦
S22)]−

◦
ρ .

(3.2)

• The second subsystem: ◦
Q33

◦
Q34

◦
Q43

◦
Q44

( a3
a4

)
= 0. (3.3)

has as solution a transverse-horizontal wave, with polarization after the axis
x3, which is piezoelectric and electrostrictive active, and depends on the

initial mechanical and electrical fields. This wave is linked with
◦
TH guided

wave. The components involved into this equation have the form:

◦
Q33= N2{[c55+

◦
S11 +2i(c45+

◦
S12)− (c44+

◦
S22)

−2[e15 + i(e14 + e25)− e24]
◦
E3 −(η11 + 2iη12 − η22)

◦
E

2

3}−
◦
ρ,

◦
Q34=

◦
Q43= N2[e15 + i(e14 + e25)− e24 + (η11 + 2iη12 − η22)

◦
E3],

◦
Q44= −N2(η11 + 2iη12 − η22).

(3.4)

3.1.2. Particular case: anisotropic directional bivector

The second particular case deals with the anisotropic directional bivector
C = (C1, C2, 0), with

C1 = cosα+ isinα, C2 = cosα− isinα, α ∈ [0, 2π).

This inhomogeneous wave is elliptically polarized in the plane normal to the
dyad axis x3, except the particular directions α ∈ {π/4, 3π/4, 5π/4, 7π/4},
where it is circularly polarized.

If
◦
E1=

◦
E2= 0, we obtain

◦
Q14=

◦
Q24= 0 and

◦
Q13=

◦
Q23= 0. Then, the

system (2.7) reduces to two independent subsystems, as follows:
• The first subsystem ◦

Q11

◦
Q12

◦
Q21

◦
Q22

( a1
a2

)
= 0. (3.5)
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defines a non-piezoelectric wave, polarized in the plane x1x2, which depends
on the initial stress field, only. These characteristics are due to the form of
the coefficients:

◦
Q11= N2[(c11+

◦
S11)(cos2α+ isin2α) + 2(c16+

◦
S12)

+(c66+
◦
S22)(cos2α− isin2α)]−

◦
ρ,

◦
Q12=

◦
Q21= N2[c16(cos2α+ isin2α) + (c12 + c66) + c26(cos2α− isin2α)],

◦
Q22= N2[(c66+

◦
S11)(cos2α+ isin2α) + 2(c26+

◦
S12)

+(c22+
◦
S22)(cos2α− isin2α)]−

◦
ρ .

(3.6)
• The second subsystem: ◦

Q33

◦
Q34

◦
Q43

◦
Q44

( a3
a4

)
= 0. (3.7)

has as solution a transverse-horizontal wave, with polarization after the axis
x3, which is piezoelectric and electrostrictive active, and depends on the
initial mechanical and electrical fields. The components involved into this
equation have the form:

◦
Q33= N2{(c55+

◦
S11 −2e15

◦
E3 −η11

◦
E

2

3)(cos2α+ isin2α)

+2[c45+
◦
S12 −(e14 + e25)

◦
E3 −η12

◦
E

2

3]

+(c44+
◦
S22 −2e24

◦
E3 −η22

◦
E

2

3)(cos2α− isin2α)}−
◦
ρ,

◦
Q34=

◦
Q43= N2[(e15 + η11

◦
E3)(cos2α+ isin2α)

+(e14 + e25 + 2η12
◦
E3) + (e24 + η22

◦
E3)(cos2α− isin2α)],

◦
Q44= −N2[(1 + η11)(cos2α+ isin2α)+(1 + η22)(cos2α− isin2α) + 2η12].

(3.8)

3.2. Inverse dyad axis (mirror plane)

We suppose now that the plane x1x2 is normal to an inverse dyad axis (x3 in
our case) or, equivalently, that the plane x1x2 is parallel to a mirror plane
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M . It follows that the crystal belongs to the class m of the monoclinic
system (M ⊥ x3). In this particular case the elastic constants with one
index equal to 3 are zero, as well as the piezoelectric constants with one
index equal to 3, which vanish (see [11]).

As in the previous case, an elementary calculus shows us that the elec-
troacoustic tensor Q is a symmetric tensor with complex components. Con-
sequently, the inhomogeneous plane waves (2.6) may propagate in any di-
rection in a prestressed and prepolarized crystal from the class m of the
monoclinic system.

On the other hand, from a short inspection the the components of the
electroacoustic tensor, one can easily observe that, even if the initial fields
are absent, the corresponding tensor has no zero components, for a general
directional bivector C. Thus, we have no decomposition of the condition of
propagation (2.7) (see Appendix 2 for the analysis of the components of the
electroacoustic tensor).

3.2.1. Particular case: isotropic directional bivector

If we consider the particular case of isotropic directional bivectors, we can
choose C = i + ij, where {i, j, k} represents an orthonormal basis of the
three dimensional Euclidian space and i is the complex unit. Now, the
inhomogeneous wave is circularly polarized in a plane normal to the inverse

dyad axis x3. Moreover, if
◦
E3= 0, we obtain

◦
Q34= 0, respectively

◦
Q13=

◦
Q23=

0.

Then, the system (2.7) reduces to two independent subsystems, with
the coefficients similar to the case of guided wave propagation in monoclinic
crystals (see papers [18, 19]). Obviously, this particular inhomogenous plane
wave generalizes the homogenous guided wave.

• The first subsystem has the form:


◦
Q11

◦
Q12

◦
Q14

◦
Q21

◦
Q22

◦
Q24

◦
Q41

◦
Q42

◦
Q44


 a1

a2
a4

 = 0. (3.9)

It has as solution a inhomogeneous plane wave, polarized into the plane
x1x2, associated with the electric field (via the amplitude a4 of the electric
potential ϕ), providing piezoelectric and electrostrictive effects, and depend-

ing on the initial stress and electric fields. It corresponds to
◦
P 2 wave form

the problem of guided wave propagation. These features of the wave were
obtained from the analysis of the corresponding coefficients:
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◦
Q11= N2[(c11+

◦
S11 −2e11

◦
E1 −η11

◦
E

2

1)

+2i(c16+
◦
S12 −e16

◦
E1 −e21

◦
E1 −η12

◦
E

2

1)

−(c66+
◦
S22 −2e26

◦
E1 −η22

◦
E

2

1)]−
◦
ρ,

◦
Q12=

◦
Q21= N2{(c16 − e16

◦
E1 −e11

◦
E2 −η11

◦
E1

◦
E2)

+i[c12 + c66 − (e12 + e26)
◦
E1 −(e21 + e16)

◦
E2 −2η12

◦
E1

◦
E2]

−(c26 − e22
◦
E1 −e26

◦
E2 −η22

◦
E1

◦
E2)},

◦
Q22= N2{(c66+

◦
S11 −2e16

◦
E2 −η11

◦
E

2

2)

+2i[c26+
◦
S12 −(e26 + e12)

◦
E2 −η12

◦
E

2

2]

−(c22+
◦
S22 −2e22

◦
E2 −η22

◦
E

2

2)}−
◦
ρ,

(3.10)

respectively:

◦
Q14=

◦
Q41= N2[(e11 + η11

◦
E1) + i(e16 + e21 + 2η12

◦
E1)− (e26 + η22

◦
E1)],

◦
Q24=

◦
Q42= N2[(e16 + η11

◦
E2) + i(e12 + e26 + 2η12

◦
E2)− (e22 + η22

◦
E2)],

◦
Q44= −N2(η11 + 2iη12 − η22).

(3.11)

• The second subsystem reduces to a single equation, as follows:

◦
Q33 a3 = 0. (3.12)

Its root is linked to a transverse-horizontal wave, with polarization after
the axis x3, non-piezoelectric, and influenced by the initial stress field, only.

It corresponds to
◦
TH wave form the problem of guided wave propagation.

Here:

◦
Q33= N2[(c55+

◦
S11) + 2i(c45+

◦
S12)− (c44+

◦
S22)]−

◦
ρ . (3.13)

3.2.2. Particular case: anisotropic directional bivector

In the second particular case we have the anisotropic directional bivector
C = (C1, C2, 0), with

C1 = cosα+ isinα, C2 = cosα− isinα, α ∈ [0, 2π).
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This inhomogeneous wave is elliptically polarized in the plane normal to the
dyad axis x3, except the particular directions α ∈ {π/4, 3π/4, 5π/4, 7π/4},
where it is circularly polarized.

If
◦
E3= 0, we obtain that

◦
Q34= 0, and

◦
Q13=

◦
Q23= 0. Then, the system

(2.7) reduces to two independent subsystems, as follows:

• The first subsystem has the form:


◦
Q11

◦
Q12

◦
Q14

◦
Q21

◦
Q22

◦
Q24

◦
Q41

◦
Q42

◦
Q44


 a1

a2
a4

 = 0. (3.14)

It has as solution an inhomogeneous plane wave, polarized into the plane
x1x2, associated with the electric field (via the amplitude a4 of the electric
potential ϕ), providing piezoelectric and electrostrictive effects, and depend-
ing on the initial stress and electric fields. These properties of the wave were
obtained from the analysis of the corresponding coefficients:

◦
Q11= N2{(c11+

◦
S11 −2e11

◦
E1 −η11

◦
E

2

1)(cos2α+ isin2α)

+2[c16+
◦
S12 −(e16 + e21)

◦
E1 −2η12

◦
E

2

1]

+(c66+
◦
S22 −2e26

◦
E1 −η22

◦
E

2

1)(cos2α− isin2α)}−
◦
ρ,

◦
Q12=

◦
Q21= N2{(c16 − e16

◦
E1 −e11

◦
E2 −η11

◦
E1

◦
E2)(cos2α+ isin2α)

+[c12 + c66 − (e12 + e26)
◦
E1 −(e21 + e16)

◦
E2 −2η12

◦
E1

◦
E2]

+(c26 − e22
◦
E1 −e26

◦
E2 −η22

◦
E1

◦
E2)(cos2α− isin2α)},

◦
Q22= N2{(c66+

◦
S11 −2e16

◦
E2 −η11

◦
E

2

2)(cos2α+ isin2α)

+2[c26+
◦
S12 −(e26 + e12)

◦
E2 −η12

◦
E

2

2]

+(c22+
◦
S22 −2e22

◦
E2 −η22

◦
E

2

2)(cos2α− isin2α)}−
◦
ρ,

(3.15)
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respectively

◦
Q14=

◦
Q41= N2[(e11 + η11

◦
E1)(cos2α+ isin2α) + (e16 + e21 + 2η12

◦
E1)

+(e26 + η22
◦
E1)(cos2α− isin2α)],

◦
Q24=

◦
Q42= N2[(e16 + η11

◦
E2)(cos2α+ isin2α) + (e12 + e26 + 2η12

◦
E2)

+(e22 + η22
◦
E2)(cos2α− isin2α)],

◦
Q44= −N2[(1 + η11)(cos2α+ isin2α) + (1 + η22)(cos2α− isin2α) + 2η12].

(3.16)
• The second subsystem reduces to a single equation:

◦
Q33 a3 = 0. (3.17)

Its root is linked to a transverse-horizontal wave, with polarization after
the axis x3, non-piezoelectric, and influenced by the initial stress field, only.
Here:

◦
Q33= N2[(c55+

◦
S11)(cos2α+ isin2α) + 2(c45+

◦
S12)

+(c44+
◦
S22)(cos2α− isin2α)]−

◦
ρ .

(3.18)

4. Conclusions

In our work we obtained the conditions of inhomogeneous plane wave propa-
gation in monoclinic crystals subject to initial electromechanical fields. For
particular isotropic directional bivectors we derive the decomposition of the
propagation condition, and we show that the specific coefficients are simi-
lar to the case of guided waves propagation in monoclinic crystals subject
to a bias. Moreover, we analyze the important particular case of polar
anisotropic directional bivectors and we obtain a similar decomposition of
the propagation condition, with specific coefficients.
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Appendix 1

The components of the electroacoustic tensor in the class 2 of the mon-
oclinic system (A2||x3):
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Appendix 2

The components of the electroacoustic tensor in the class m of the mon-
oclinic system (Ā2||x3):
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