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Abstract - Saffman and Taylor (1958) proved the linear instability of the
displacement of two immiscible fluids in a Hele-Shaw cell, when the displac-
ing fluid is less viscous. We minimize this instability by using a Middle-
Layer, containing a polymer solute with a variable viscosity, between the
two initial fluids. A diffusion process is considered here, governing the vari-
able viscosity. The linear stability of the displacement is governed by a
Sturm-Liouville system. In some previous papers was proved the improve-
ment of stability, for large enough diffusion coefficient. In this paper we give
simpler estimates of the growth constant (in time) of the linear perturba-
tions, by using an analysis of the maximum points of the eigenfunctions of
the governing Sturm-Liouville system.
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1. Introduction

Consider the displacement of two immiscible fluids (water and oil) in a
horizontal Hele-Shaw cell. This model can be used for the study of the
Secondary Oil Recovery from a porous medium. The instability of the flow,
when the displacing fluid (water) is less viscous, was first studied by Saffman
and Taylor (see [10]). This instability can be minimized by using a Middle
Layer region (denoted by M.L.) between the initial immiscible fluids, where
a polymer-solute exists. We suppose that the viscosity here is an unknown
invertible function µ in terms of the polymer concentration c.

Numerical and experimental results were given by Slobod and Lestz (see
[11]), Mungan (see [6]), Uzoigve et al. (see [13]), Shah and Schecter (see
[12]), Gorell and Homsy (see [5]), Wang and Dong ([14]), related with some
exponential viscosity profiles in M.L.. Theoretical results were obtained by
Carasso and Paşa (see [1]), Paşa (see [7]), Daripa and Paşa (see [2]), Paşa
and Titaud (see [9]). In these models, the polymer concentration of the fluid
particles is constant.
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In the present paper we consider a diffusion process in M.L. The polymer
“concentration” of each fluid particle is not constant, but verifies a diffusion
equation with the diffusion coefficient η. We study the linear stability of
the basic flow given by a basic linear viscosity µ(x) = ax+ b in M.L.. This
time, two eigenfunctions appear in the governing Sturm-Liouville system,
related with the “amplitude” of the perturbations of horizontal velocity and
viscosity. The eigenfunctions of the governing Sturm-Liouville system are
the growth constant (in time) of the perturbations.

Daripa and Paşa (see [3]) proved the stabilizing effect of the diffusion
process for large enough η, but an exact sufficient stability condition in
terms of η was not given. Paşa (see [8]) obtained estimates of σ by using a
generalization of the Gerschgorin’s localization theorem and proved that the
diffusion coefficient η can not improve the displacement stability for small
wave numbers of perturbations.

In the present paper we improve these results. We use a numerical
procedure only for the first equation (2.3) of the stability system. The exact
form of the second equation (2.4) is used to get a direct estimate of σ, only
by using the rectangle rule for approximating the integrals on a finite
interval and a Poincaré type inequality for the eigenfunction h. The same
conclusion is obtained: the diffusion coefficient η alone can not improve
the displacement stability for small wavenumbers α of perturbations. On
the contrary, a strong improvement of the stability is given by the diffusion
process, for large α.

2. The stability analysis

A three-layer Hele-Shaw cell with horizontal plates is considered in the fixed
x1Oy plane. We neglect the gravity effects. The Hele-Shaw cell is filled by
water (with constant viscosity µ1), a polymer-solute (with variable viscosity
µ) and oil (with constant viscosity µ2). We suppose µ1 ≤ µ < µ2. The
middle-layer between water and oil is the segment Ut − l < x1 < Ut. The
polymer-solute with the variable viscosity µ is contained in this region. The
water velocity U far upstream is giving the displacement in the positive Ox1
direction.

In the “left” end of M.L., x = −l, we consider a continuous viscosity and
zero surface tension. In the “right” end, x = 0, a viscosity jump [µ2 − µ0]
and a surface tension T exist. The left limit of the viscosity µ in the “right”
end x = 0 is denoted by µ0 = µ(0) = µ−(0).

The fluid velocity and pressure are denoted by (u, v) and p. The polymer
concentration c verifies a diffusion equation in M.L.. As the viscosity in
M.L. is supposed invertible in terms of c, in M.L. the viscosity µ verifies
the equation

µt + u∇µ = η∆µ. (2.1)
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Figure 1: Basic flow in the three-layer Hele-Shaw cell: water, polymer-solute,
oil.

We consider a basic viscosity µ in M.L. which is linear in terms of the
moving spatial coordinate x = x1 − Ut:

µ(x, t) = ax+ b = x
µ0 − µ1

l
+ µ0, x ∈ (−l, 0). (2.2)

The basic velocity components of the basic velocity are (U, 0). The basic
pressure is given by Px = −µU, Py = 0. The basic initial straight interfaces
are Γ1 : x = −l; Γ2 : x = 0. The basic solution is described in Figure 1.

The flow in all porous medium is governed by the Darcy’s law and the
continuity equation. We consider the Laplace’s law on the interfaces: the
pressure jump is balanced by the surface tension multiplied with the curva-
ture and the normal velocity is continuous.

u′, v′, p′, µ′ are the perturbations of the basic velocity, pressure and vis-
cosity. Far upstream and downstream we have u′, v′ = 0 and µ′ = 0 on Γi.

As the problem is linear, the horizontal perturbation is decomposed in
Fourier modes:

u′(x, y, t) = f(x) exp (iαy + σt)

where σ, α are the growth constant (in time) and the wave numbers of the
perturbations. The free divergence conditions gives us v′ in terms of u′. The
Darcy’s law gives us p′ in terms of σ and α - see eqs. (24), (25), (26) from
[8]. The viscosity perturbation is

µ′(x, y, t) = h(x) exp (iαy + σt)

The perturbed interfaces and the limit values of the pressure on Γi are
given in [8] - see eqs. (28), (29), (30). The cross derivation of the pressure
derivatives and the diffusion equation for the basic viscosity are giving the
following system which governs the stability of the flow in our three-layer
Hele-Shaw cell:
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− (µfx)x + µα2f = −α2Uh, x ∈ (−l, 0); (2.3)

ηhxx − (σ + ηα2)h = af, x ∈ (−l, 0); (2.4)

f+x (−l) = αf(−l), f−x (0) = f(0){e/σ + q}; (2.5)

h(0) = h(−l) = 0; (2.6)

e =
Uα2(µ2 − µ(0))− α4T

µ(0)
, q = − µ2α

µ(0)
. (2.7)

In [3] were obtained estimates of the growth constant σ in term of η,
but depending on the eigenfunctions f, h. A variational formulation of the
problem described by the above system (2.3)-(2.7) was used. In [8] we
obtained an estimate of σ in terms of the problem data, not depending on
f, h, by using a generalization of the Gerschgorin’s localization theorem for
a system with two eigenfunctions.

In the present paper we use a simpler method for estimate the growth
constant, based on the analysis of the points where the maximum value
of |f(x)| is attained on the interval [−l, 0]. We have three possibilities, as
follows.

i) Max |f(x)| = |f(0)|. In this case we use an approximation of the
second boundary condition (2.5):

fx(0) ≈ [f(0)− f(−d)]/d = (e/σ + q)f(0), (2.8)

where d is a small positive number and e, q are given by (2.7). The precision
order of the above approximation is O(d). The diffusion coefficient η is not
appearing in the above relation. We estimate the real part σR of the growth
constant as follows:

f(0)(1− dq)− f(−d) =
ed

σ
f(0), (1− dq) =

f(−d)

f(0)
+
ed

σ
≤ 1 +

ed

|σ|
⇒

σR ≤ |σ| ≤
e

−q
=
αU(µ2 − µ(0))− α3T

µ2
(2.9)

�

ii) Max |f(x)| = |fM | := |f(xM )|, −l < xM < 0. Let ∗ denote the
complex conjugate. We introduce the notation

F = −
∫ 0

−l
f(x)h∗(x)dx = F1 + iF2. (2.10)

We multiply (2.4) with h∗, we integrate on (−l, 0) and obtain

σR + α2η =
aF1 − η

∫ 0
−l |hx|

2∫ 0
−l |h|2

. (2.11)
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The Cauchy-Schwartz inequality is giving

|F1|2 ≤
∫ 0

−l
|f |2

∫ 0

−l
|h|2,

therefore from the last two relations it follows

σR + α2η ≤ a
√
|f |2√
|h|2
− η

∫ 0
−l |hx|

2∫ 0
−l |h|2

. (2.12)

A mean formula is used for the two integrals in the first term of the right
hand-side of the above inequality. There exists the points r, s ∈ (−l, 0) such
that ∫ 0

−l
|f |2 = l|f(r)|2;

∫ 0

−l
|h|2 = l|h(s)|2. (2.13)

We have |f(r)| ≤ |fM |, then

σR + α2η =≤ a |f(r)|
|h(s)|

− η
∫ 0
−l |hx|

2∫ 0
−l |h|2

≤ a |fM |
|h(s)|

− η
∫ 0
−l |hx|

2∫ 0
−l |h|2

. (2.14)

In [3] was not possible to estimate the ratio |f(r)|/|h(s)|. To overcome this
difficulty, we use the above inequality (2.14).

A first new element of this paper, compared with the previous results, is
a Poincaré type inequality for the second (negative) term in the right hand
side of the relation (2.14). As h(−l) = 0, we have h(x) =

∫ x
−l hx(y)dy, then∫ 0

−l
|h|2dy ≤ l

∫ 0

−l
|hx|2dy. (2.15)

Recall a is the slope of the viscosity, then from (2.2)

a = (µ0 − µ1)/l. (2.16)

From the last three relations we get

σR + α2η ≤ 1

l
{(µ0 − µ1)

|fM |
|h(s)|

− η}. (2.17)

The ratio |fM |/|h(s)| is considered in the equivalent form

|fM |
|h(s)|

=
|fM |
|hM |

|hM |
|h(s)|

, hM := h(xM ). (2.18)

We must prove hM 6= 0. For this, we use the first stability equation (2.3) in
the point xM . We approximate the derivative of f in a point y ∈ (−l, 0) by
the formula

fx(y) ≈ f(y + d/2)− h(y − d/2)

d
,



362 Gelu Paşa

whith the precision order O(d2). The discretized form of the equation (2.3)
in the point y = xM is

− f(y + d)
µ(y + d/2)

d2
+ f(y)[

µ(y + d/2) + µ(y − d/2)

d2
+ α2µ(y)]− (2.19)

−f(y − d)
µ(y − d/2)

d2
= −α2Uh(y).

Suppose now h(y) = h(xM ) = 0, then from the last equality we obtain

|µ(y + d/2) + µ(y − d/2) + d2α2µ(y)| ≤ |µ(y + d/2)|+ |µ(y − d/2)|

because |f(y)| is the maximum value of |f(x)|. This last last inequality is
giving d2α2 ≤ 0, which is false, then indeed we have hM 6= 0.

A second new element of this paper is a direct estimate of the ratio
|fM |/|hM | in terms of the problem data, as follows. We use again the dis-
cretized form (2.19) of the equation (2.3) in y = xM , we divide with |fM |
and get

|AMM | ≤ α2U
|hM |
|fM |

+ |AM.M−1|+ |AM,M+1|, (2.20)

where the elements of the matrix A are given by the following formulas:

AMM =
µ(y + d/2) + µ(y − d/2)

d2
+ α2µ(y), AM,M−1 = −µ(y − d/2)

d2

AM,M+1 = −µ(y + d/2)

d2
.

It follows that A is diagonal dominant: |AMM | > |AM,M−1| + |AM,M+1|.
From (2.20) we get

|fM |
|hM |

≤ α2U
1

|AMM | − |AM,M−1| − |AM,M+1|
=

α2U

α2µ(xM )
≤ U

µ1
. (2.21)

The relations (2.17), (2.18) and (2.21) give us

σR + α2η ≤ 1

l
{U(µ0 − µ1)

µ1
· |hM |
|h(s)|

− η}. (2.22)

As we don’t know the (finite) value of |hM |/|h(s)|, the final general result
in the case ii) is:

There exists a large enough η such that

σR ≤
U(µ0 − µ1)

lµ1
− α2η. (2.23)

�
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Remark 1. We not used any discretization of the stability equation (2.4)
but only a mean formula for the integrals of the eigenfunctions f, h on [−l, 0].
However, a numerical approximation of hxx only in a particular point can
give us the same estimate (2.23). For this, we consider the maximum value
|h(xP )| of |h(x)|, attained in the interior point xP , and we approximate (2.4)
in the point xP as follows:

η

d2
{h(xP − d)− 2h(xP ) + h(xP + d)} − (σ + α2η)h(xP ) = af(xP ), (2.24)

then we get

(σ + α2η) + 2
η

d2
= −af(xP )

h(xP )
+

η

d2
· h(xP − d) + h(xP + d)

h(xP )
,

|σ + α2η + 2
η

d2
| ≤ a |f(xP )|

|h(xP )|
+

η

d2
· 2⇒ σR + α2η ≤ a |f(xP )|

|h(xP )|
, ∀η > 0.

As |f(xM )| is the maximum value of |f(x)|, we have the inequalities

|f(xP )|
|h(xP )|

≤ |f(xM )|
|h(xM )|

· |h(xM )|
|h(xP )|

,
|h(xM )|
|h(xP )|

≤ 1

and we obtain

σR + α2η ≤ a |f(xM )|
|h(xM )|

.

This last relation and the inequality (2.21) are giving the same previous

estimate (2.23). �

iii) Max |f(x)|= |f(−l)|. In this case we approximate the first boundary
condition (2.5) in the point −l by the formula

fx(−l) ≈ [f(−l + d)− f(−l)]/d = αf(−l). (2.25)

Then f(−l + d)− f(−l) ≈ αdf(−l), the maximum value of f is attained in
the interior point (−l+ d) and we use the analysis of the previous case ii) .

�

From the above formulas (2.23) and (2.9) we get the following estimate
of the real part of the growth constant:

σR ≤MAX{U(µ0 − µ1)
lµ1

− α2η;
αU(µ2 − µ0)− α3T

µ2
} (2.26)

We can see that the possible upper bound of σR obtained in the case i) can
not be improved by the diffusion coefficient η. On the contrary, in the case
ii), the diffusion process can improve the displacement stability, but only
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for large values of the wave number α. For small α, an improved stability
is obtained for small U, (µ2 − µ0) and large values of l, T .

Remark 2. The estimate (2.21) in the point ii) above is a particular
case of a more general result. Let A be a square diagonal dominant matrix
and f a vector with the maximum modulus value |fp|. Then the following
inequality holds:

|fp|
|Apkfk|

≤ 1

|App| −
∑

k 6=p |Apk|
. (2.27)

Indeed, we have

Apkfk = Appfp +
∑
k 6=p

Apkfk, App =
Apkfk
fp

−
∑
k 6=p

Apk
fk
fp
,

|App| ≤ |
Apkfk
fp
|+

∑
k 6=p

|Apk|, |
Apkfk
fp
| ≥ |App| −

∑
k 6=p

|Apk|

because |fk/fp| ≤ 1. �

Remark 3. The largest upper bound of σR is obtained from the maximum
value in terms of α of the right hand side of (2.26):

σR ≤MAX{U(µ0 − µ1)
lµ1

,
[U(µ2 − µ0)]3/2

6µ2
√

3T
} (2.28)

�
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