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Abstract - This paper is concerned with the linear theory of strain gradient
elasticity. The deformation of an isotropic chiral cylinder subjected to resul-
tant forces and moments on the ends is investigated. The three-dimensional
problem is reduced to the study of some generalized plane strain problems.
It is shown that the flexure of a chiral cylinder, in contrast with the case of
achiral materials, is accompanied by extension and bending.
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1. Introduction

With a view toward describing the aim of the present article we recall first
that Saint-Venant’s problem consists in determining the equilibrium of an
elastic cylinder that is subjected only to surface forces distributed over its
plane ends. Saint-Venant’s approach of the problem is based on a relaxed
statement in which the pointwise assignment of the terminal tractions is
replaced by prescribing the corresponding resultant force and resultant mo-
ment. The deformation of elastic cylinders continues to attract attention
both from theoretical and technical point of view (see, e.g., [2,4-6] and refer-
ences therein). In this paper we study Saint-Venant’s problem for isotropic
and homogeneous chiral elastic rods in the strain gradient theory. The me-
chanical behaviour of chiral materials is of interest for the investigation of
carbon nanotubes, auxetic materials and bones. The chiral effects cannot
be described within classical elasticity [8]. Recently, Papanicolopulos [11]
has shown that the strain gradient theory of elasticity is adequate to de-
scribe the deformation of isotropic chiral elastic solids. The equations and
the boundary conditions of the non-linear strain gradient theory of elastic
solids were first established by Toupin [12,13]. The linear theory has been
developed by Mindlin [9] and Mindlin and Eshel [10]. The interest in the
gradient theory of elasticity is stimulated by the fact that this theory is used
to investigate problems related to size effects and nanotechnology [1]. We
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note that the torsion of isotropic chiral elastic cylinders has been studied in
various papers (see [7,11]). In the present article we study Saint-Venant’s
problem, where the cylinder is subjected to extension, bending, torsion and
flexure. The problem is reduced to the study of some two-dimensional prob-
lems. It is shown that, in contrast with the case of achiral materials, the
flexure of a chiral cylinder is accompanied by extension and bending.

2. Basic equations

In this section we present the equations and the boundary conditions in the
linear strain-gradient theory of elastostatics. We consider a solid that in
its undeformed state occupies the region B of Euclidean three-dimensional
space and is bounded by the surface 9B. We refer the deformation of the
continuum to a fixed system of rectangular axes Oz, (k = 1,2,3). Through-
out we employ standard indicial notations: Latin subscripts (unless other-
wise specified) are understood to range over the integers (1,2,3), whereas
Greek subscripts to the range (1,2), summation over repeated subscripts is
implied and subscripts preceded by a comma denote partial differentiation
with respect to the corresponding Cartesian coordinate. We assume that B
is occupied by a homogeneous and isotropic chiral elastic solid. The strain
measures are given by

1
eij = 5(%' + W), Kijk = Ukjijs (2.1)

where u; is the displacement vector field. The constitutive equations for
homogeneous and isotropic chiral elastic solids are [11]

Tij = Nepr0ij + 2pei5 + f(€ikmBjkm + €jkmBikm),
1
Wijk = §a1(f<ém'5jk + 2Kk 0ij + KrpjOik )+
+ a2(KirrGjk + KjrrOik) + 203K,k 035+ (2.2)
+ 204Kk + as(Krji + Krij) + f(Eiks€js T EjksCis),

where 7;; is the stress tensor, p;;, is the double stress tensor, d;; is the Kro-
necker delta, € is the alternating symbol and A, u, i, (m =1,2,...,5),
and f are constitutive constants. For an achiral material the coefficient f is
equal to zero. Let F; be the body force per unit volume. The equilibrium
equations are

Tjij = Msji,sj + Fi = 0. (2.3)

We assume that B is a bounded region with Lipschitz boundary 0B, con-
sisting of a finite number of smooth surfaces. Let I', be the intersection of
two adjoined smooth surfaces and C' = UI',,. Mindlin [9] has introduced the
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notations

Py = (Thi — fskis) e — Dj(nrpirji) + (Ding)nsnp lpi,
R; = prsineng, Qi =< Upjinpng > €jrqSr, (2.4)

where n; are the components of the outward unit normal of 9B, D; are the
components of the surface gradient, D; = (d;5 —ning)0/0xy, s; are the com-
ponents of the unit vector tangent to C', and < g > denotes the difference
of limits of g from both sides of C'. The traction problem consists in find-
ing a displacement field that satisfies the equations (2.1), the constitutive
equations (2.2), and the equilibrium equations (2.3) on B, and the boundary
conditions

P,=P, R;=R;on B\C, Q; =Q;on C, (2.5)

where Fj, ]5;', El and Qvl are prescribed functions. Throughout this paper
we assume that the elastic potential is a positive definite quadratic form in
the variables e;; and k.

3. Saint-Venant’s problem

In this section we present the formulation of Saint-Venant’s problem in the
context of the strain gradient theory of elasticity. We suppose that the
region B from here on refers to the interior of a right cylinder of length
h with the cross-section ¥ and the lateral boundary II. The Cartesian
coordinate frame is supposed to be chosen in such a way that xs-axis is
parallel to the generator of B and the x10z2 plane contains one of terminal
cross-sections. We denote by Y1 and Yo the cross-sections located at z3 = 0
and x3 = h, respectively. We denote by I' the boundary of the cross-section
1. We assume that the lateral surface II is smooth, so that @); is equal to
zero on II. We assume that the cylinder is free from lateral loading. The
conditions on the lateral surface are

P,=0, Ri=0 on IL (3.1)

We shall use Saint-Venant’s approach of the problem, in which the point-
wise assignment of the terminal tractions is replaced by prescribing the
corresponding resultant force and resultant moment. We assume that the
body forces are absent and that the load on the cylinder is distributed over
its ends, X1 and X9, in a way which fulfills the equilibrium conditions of the
body. Let the loading applied on ¥; be statically equivalent to the force
F = (F1,Fa, F3) and the moment M = (M;, M, M3). The conditions on
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the end located at x3 = 0 are

P,da + / Qads = Fa, (3.2)
1 T
Psda + / Qsds = F3, (3.3)
1 r
/ (xaPs + Ry)da + / TaQ3ds = ega3M3g, (3.4)
1 r
/ 8a53$aP3da + / €a53$aQﬂdS = Ms. (35)
1 r

In view of (2.4) we obtain
Py = —73; + 210360 + 1433i,3, Ri = p33; on X1, Qi = —2pa3ina on I', (3.6)

where (n1,n2,0) are the direction cosines of the exterior normal to II. On
Y9 there are tractions that satisfy the equilibrium conditions of the body.
The equilibrium equations become

Tjij — Mpjipj = 0 (3.7)

Saint-Venant’s problem consists in finding the functions u; of class C*(B) N
C3(B) which satisfy the equations (2.1), (2.2) and (3.7) on B, the conditions
(2.6) on the lateral surface, and the conditions (3.2)-(3.5) on the end ¥,
when the constants F;, M;, and the constitutive coefficients are prescribed.
If 73 =0 and M; = 0, then the problem reduces to the flexure problem.

4. Two-dimensional problems

In this section we assume that the cylinder B is subjected to the external
loading (FZ,PZ,R“Q,) where F;, P, and R; are independent of the axial
coordinate and Q); = 0 on C. A state of generalized plane strain in cylinder
B is characterized by the fact that the displacement vector is independent
of the axial coordinate,

U; = ui(xl,xg), (.%‘1,.1‘2) € X1. (4.1)
The relations (2.1), (2.2) and (4.1) imply that e;j, ki, 75; and p;;p are all

independent of the axial coordinate. In the case of a generalized plane strain,
the strain measures reduce to

26@5 = Uq,g T Ug,a; 2eq3 = U3 oy Rapk = Uk,af, (42)
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and e33 = 0, x;3; = 0. The constitutive equations can be written as

Tap = Aeppbag + 21€ap + f(Eapskipps + Epp3kaps),
Ta3 = 2p€03 + fSpBBKapBa
1
HaBy = 50‘1("509&557 + 264pp0ap + Kppplary)+
+ a2(Kapp0sy + Kappday) + 203K ppy 00+ (4.3)
+ 2044/%0457 + 045(/%,56, + /iyag) + f(Eowgegg + €ﬂ736a3),
MHap3 = 20435/)/)350:3 + 2a4ﬁa63 + f(gpaSQBp + €p63eozp)7

and

1
733 = Aepp, H3a8 = §a1"£pp35a5 + a5KBa3 + f€5p3€ocpa

H3a3 = ialﬁppa + Q2KRapp + fgpa3€3p7 (44)

H33a = Q1Kapp + 203Kpp0 + 2 fEap3€3p,
333 = (o1 + 2a3)Kpp3.
In the context of generalized plane strain, the equations of equilibrium be-
come
Toia — MBvigy +Fi =0 on 3. (4.5)
The functions P; and R; associated to the lateral surface are given by
Py = (781 — mpgip)ns — Dp(npspi) + (Dpnp)ngnupipui,
R; = ppvingny. (4.6)
The conditions on the lateral surface become
P,=P, Ri=R; onT. (4.7)

The generalized plane strain problem consists in finding the displacement
field which satisfies the equations (4.2), the constitutive equations (4.3) and
the equilibrium equations (4.5) on ¥, and the boundary conditions (4.7) on
I'. With the help of (4.2) and (4.3), the equations of equilibrium (4.5) can
be expressed in the form

pAUq + (N4 p)ug go — 2(o3 + o) AAug—

—2(a1 + ag + a5)Aug g + 2feqpsAug g+ Fo =0, (4.8)

pAug — 2(os + ) AAug + 2fe3Au,, + F5 =0, on Y.
The necessary and sufficient conditions for the existence of a solution to the
generalized plane strain problem are [3]

/dea+/]3kds:o,
b r

/ €3a8Talgda + / 63a5(xaﬁg + na]?ig)ds =0. (4.9)
P r
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In the next section we will use four special problems of generalized plane
strain, denoted by A% (k = 1,2,3,4). Let us denote by ugk), el(-f), HEQ,
Tl-(f) and /%(2 the displacement, the strain measures, the stress tensor and
the double stress tensor in the problem A®)| respectively. The problem A®*)
is associated to the body forces Fi(k) and to the tractions ]5i( ) and R( )

defined by

Fz'(l) = A1, 131( )= Az + (- 202)e300 (N1112) 10y
P = ~Xoums + 3 — 200)%10, (o — 1) an

P = 2fna, B =205 — a1 + (a1 — 2a2)n3,

RY = (a1 — 200)ming, RYY =0.

~ 1
FZ-(Q) = A\, P1(2) = —A\xan; + 5(041 — 209300 (N} — n%)yany,

132( = —Azang + (@1 — 202)e300 (N112) v N0 ﬁé” = —2fny, (4.10)
»2) _

R = (01 — 202)ming, RS =203 — a1 + (a1 — 200)n3, Ry =0,

F® =0, PO = —)\na, B =0, R® =0

F( ) = =0, P(4) 2f[5n1 + Dy (xz2n2) + Do(x2n1 — 2x109)—

= 2(962n1n2 — 21n3)(Dyny)),
§2(4) [5112 + Dl(l’lng — 2112711) -+ Dg(a?lnl)
= 2(1’1711“2 — 29md)(Dpn,)), PSY = pesgprpns,

)

R\ 2 R — f(zon? — zining), Ry’ =0

Rg ) — f(ziny — zaning), Ry

We introduce the notations

k k k k k
P = (8 — 1) Yng — Dy(naplon) + (Dpny)uimany,

R = u/()]f,)inpn,,. (4.11)

The functions u(k), e® k™ 2R and u(k) satisfy the equations

1y 7 rs? g irs
k k k k k k
2el) = g+ ul s 2603 = un, KD, = Ui, (4.12)
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the constitutive equations

(k) )\e(k)(; + 2M6( + f(eap:')f‘f(ﬂ) +5Bp3’43g€) ),

p3 p3/s
T(i ) = 2ue ) ¢ fapggﬁ((lp)ﬁ,
B Lo e 5w ok® 5y ) g (4.13)
Hapy = 204 ( ppa By -+ Ky ppOap +pr5 cvy) .

+ ag(ﬁg@pém + K;ép)p(safy) + 2a3/<£)p)75a5+

+ 2044/@(15)7 + as(k '(y’,CB)a + mg]zﬁ) + f(EMge(ﬁ]g) + 557361(1]?),
(k) (k)

k
Iogs = 2a3/€;p)36ag + 2a4/<;((m3 + f(€pa3€5p + epgge(k))

and the equilibrium equations
k k k
/E’J)ﬂ N 'u;'/)j,pv T F( '= =0, (4.14)

on X1, and the boundary conditions

p® = p® W _ B® o, (4.15)

1

The functions Fi(k), ﬁi(k) and Egk) which appear in (4.14) and (4.15) are de-
fined by (4.10). Let us note that the necessary and sufficient conditions (4.9)
for the existence of solution are satisfied for each boundary value problem
A®) . The problems A%®) have been introduced in [7] in order to study the
torsion problem.

5. Solution of the problem

In this section we investigate Saint-Venant’s problem for homogeneous and
isotropic chiral rods. We seek the solution in the form [6]

1 1
Uy = —iaa$§ — gbamg — (aq + 51)4303)53&31"53034—
4
+ > (ag, + bews)ul) + wa (w1, 72), (5.1)
k=1

u3z = (171 + agx2 + az)rs + ;(51961 + bowy + b3)xh + w3 (w1, 22),
where ugk) are the displacements in the plane problems A%, wj are un-
known functions and aj; and by are unknown constants. Let us consider a
generalized plane strain of the cylinder B in which the components of the
displacement vector are the functions w;. We denote by v;; and 7,4; the
strain measures corresponding to the displacements wj,

1
YaB = §(waﬂ + Wga), 2Va3 = W3,as Nafk = W,ap- (5.2)
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From the equations (2.1) and (5.1) we obtain

4
k
€aB = Yap t+ Z(ak + bk:(};g)eiﬁ),
k=1
1 1 1<
k
€a3 = 563/3@(@4 + byxs)xs + kZ—l(ak + bkiL"B)@&g,) + %3+ 5 ; bru,

4
€33 = a1X1 + a9 + a3z + (blxl + boxy + b3)a;3 + Z bkugk),

k=1
4
k
Kapy = Napy + ) _(ak + bkl"?,)fﬁ&/}w
k=1
4
k
KaB3 = Nap3 + Z(ak + bk:li3)/<&((1[33, (5.3)
k=1
4
k
KB3a = €38a (a4 + baz3) + Z bkug,zg,
k=1
LA
k
Ka33 = Qo + baZ3 + 3 Z bkeg:}),
k=1
K33a = —Oq — baZ3 + €38a047 3, K333 = b1 + boxa + b3,

g;) and /ﬁkaﬁ) ; are given by (4.12). The stress tensor and the double

stress tensor associated to the strain measures 7;; and 7,3; are defined by

where e

tag = A’)’pp(sozﬁ + 2“7&5 + f(fap?)n,ﬁp?) + 5,6’p377ap3)a
ta3 = 21Ya3 + f€p83Map3, 133 = ANVpps

1
Vapy = 5041(779,004567 + 21ypp0ag + Nppsday)+

+ a2(Nappdpy + Mppday) + 2037ppy0ap+ (5.4)
+ 2a4napy + @5 8a + Nyas)+
+ f(€ar3783 + €8137a3)s

Vas3 = 2030pp30as + 204nap3 + f(€pa3V8p + €pB37ap)s

1

Va33 = ialnppa + a2Napp + f€3pa'73pa

V33a = Q1Mapp + 2a377ppa + 2f53ap73p7
1

Va3p = 504177;);73 + asNgas + f53ﬁp')/ap7

V333 = (041 + 2a3)77pp3'
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From the constitutive equations and the relations (5.3) and (5.4) we find the
following form of the stress tensor 7,

Tag = tap + {)\[a1$1 + asx9 + as + (blxl + boxo + 63)1'3]—
4

—2f(as + b4$3)}5aﬂ +Top + Z(ak + kag)T{i?,
k=1

Ta3 = ta3 + 2f5ap3(ap + bpx3) + )u53ﬁoc(a4 + b4l‘3)l‘5+ (55)

4
+ T3 + Z(ak + bkxg)ng),

k=1
T33 = t33 + ()\ + 2,[1,) [a1x1 + axx2 +az + (bld:l + bowa + bg)l‘g]-i-
4
+4f(ag + bgxw3) + T33 + A Z(ak + bkl‘3)u§2]2’
k=1

where we have used the notations

4
k
Tog =1 bk(€3pau;7[)3 + E3p8uf):

k=1
4 4 .
TaS = ,UZ bku((;yk) - f(b455a + Z bkepa3ug7[);)a (56)
k=1 k=1

4 4
T33 = ()\ + 2#) Z bkugk) + 2f€3aﬁ Z bku((lk’%
k=1 k=1

The components of the double tensor are given by

k
pi = v + 2(ae — az)(ar + bixs) + » (ar + bk$3)/~‘§1)1 + N1,

X
N -~
=

k
H222 = V222 + 2(aa — a3)(az + baxs) + » (ak + bk953)M;2)2 + Nago,

[y

k=
p221 = V21 + (o — 2a3) (a1 + bixs) — f(ag + baxs)xi+

4
+ ) (a+ biws) sy + Nooy,
k=1
pi12 = vii2 + (oq — 2as)(ag + baxs) — f(ag + baxs)xa+

4

+ Z(ak + bkxg)ug'% + Nii2,
k=1
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1 1
f121 = Vi21 + 5(2&2 —a1)(ag + bazs) + §f(a4 + baxz)xo+

4
k
+ > (e + bia) i) + Nion,
k=1
1 1
H122 = V122 + 5(2042 —ai)(a1 + bixz) + §f(a4 + byxs)xi+

4

+ Z(ak + bkxg)uﬁléé + Nigo,
k=1

1 1
Lp33 = Vp33 + 5(2042 — o + 4ou)(a, + byxs) — if(a4 + baxz)x,+

4
k
+ ) (ak+ bk$3)#£,3)3 + Nps3,
=1
U3sp = 133, + (a1 — 203 — 201 + 2a5)(a, + bpa3)+
4
k
+ f(a4 + b4x3)mp + Z(ak + bkxg),ué?)i) + Nggp,
=1

Ha38 = Vasp + (204 — a5)(as + baxs)eaps+

+ flarz1 + agzo + az + (biz1 + baxa + b3)zsleqaps+

4
+ ) (a + beas) Mag)g + Nasgs,
k=1

4

k
Hap3 = Vap3 + E (ar + bk$3)uég3 + Naps,
k=1

4
333 = 333 + (o1 + 2a3) Z ay + bpx3) nggé + N333.
k=1

Here we have used the following notations

Nin = —(a1 + 2a3)baza + (o1 + 2a2) Zbkug 1
k=1

Nazy = (a1 + 2a3)bazs + (a1 +202) Y | biully,
k=1

4 4
N221 = —2043[)4.732 + o Z bkugfl) — f Z bkuék)
k=1 k=1
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Nijo = 20i3bsx1 + Zbk alqu) + 203 ul + fu )7

k=1
1 - k) Lo
k k
Nigy = §a1b4$1 + g—l br(oug 5 — §fu1 ),

4
1 K, L. &
Nig9 = —5()411)4%2 + ; bk(agu:(g’l) + ifug ))7
4

1 k
Np3z = 5(041 + 2045)63/3,,1)41‘/3 + Z b[(ae + 20y + a5)u§’;+

k=1
1 k
+ §f53pﬁu(ﬁ )]7 (5'8)
4
N33, = 2(az + au)esgpbazg + Z bi[(a1 + 2a5)ugi)) + fagpgu(ﬁk)],
k=1

4
1
Nazg = 5(041 + 202) (b1 + bawa + b3)dap + Z bk(2a4u(;;~l—
k=1
+ a5u$)ﬁ + agéagugfﬁ), + f€a53uék)),
4
k=1

N333 = 2(0[1 +ao +a3+aq + a5)(b1x1 + boxo + b3).
In view of (4.10), (4.14), (5.5) and (5.7), the equations of equilibrium become

taia — Vpai,pa + Gi =0 on Xy, (59)
where
- (k) (k)
Ga = TBa,B - NP”ZOMPW - Z bk(2u3po¢ o~ Ta3 )+
k=1
+ 4f53o<,3b5 + H53po¢$pb47 (510)
Gs =T33 — Npn3,pn + Z bi( )‘u(k ,(;]%,p>+
+ (A +2u)(byzy + 52562 + b3) + 6fby.
We denote

I = (tgj —Vpgjp)ns—Dn(npvpni) +(Dunw)npngvpms, Aj = Vppineng, (5.11)
and introduce the notations

Hj = (Tg; — Npgjp)ng — Dy(npNpyj) + (Dynw)npngNpy;, L = ijn(pnn')
5.12
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It follows from (2.4), (5.5) and (5.7) that the conditions on the lateral surface

(2.6) become
Hj = Hj, Aj = Aj on F, (513)

where

I, = Qgpa3np[(2a4 — 045)[)4 + f(bla:l + bozo + b3)] — Ho+

4
k
2, > bl (5.14)
k=1
~ 1 1 4 (k) ~
Il = 2n,[5 (200 — o1 +4aa)b, — 5 fazy + > bipyss) — Hs, Aj = —Lj.
k=1

Thus, the functions w; are the components of the displacement vector in the
generalized plane strain problem characterized by the equations (5.2), the
constitutive equations (5.4) and the equilibrium equations (5.9) on ¥; and
the boundary conditions (5.13) on I'. The necessary and sufficient conditions
to solve this problem are

G;da + / ﬁids =0, / 53agmaG5da + / €3a5($aﬁ5 + naA/N\g)dS =0.
Y I Y T

(5.15)
By using the divergence theorem we obtain

/ (T35, — Nong,pn)da + / ;ds =0,

1 r

/ €3aﬂxa(TPﬁ,ﬂ - anb’,un)da + / e3a8(xallg +naAg)ds = 0.  (5.16)
1 r

In view of (5.4), (5.10), (5.14) and (5.16) we find that

/ Goda + / I, ds = / Taz.3da. (5.17)
1 T 3

With the help of the equilibrium equations (3.7) we can write

Ta3 = Ta3 + Ta (Tj3,j - MTsS,rs) = (5-18)
= [za(783 — 1pu3.0)] g + Havsy + Ta(T33 — 1133333 — 211333,33)-

We note that
(Dni)nsnppispi — Dj(nrpiri) = [(Bpjinpne — ppringmy) vIng,
so that, the condition P3 = 0 on II can be expressed as

(783 = 1pu3.w + (Hps3nTin = pon3npnp) m — (p33npn) 3 — ka3 slng = 0 on IL.
(5.19)
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From (5.18) and (5.19) we find
[ asda = [ wallnmangng = pynpm) st
DN r

+ 233,31 }ds + / [ftav3w + Ta(T33,3 — 1133333 — 2013a3,3)]da.  (5.20)

D]
Since R3 = 0 on II, we have
/wa[<ﬂpu3npn,6’ - upﬁSnan),y]nIBds = _/ Mau3,yda-
r o
Thus, from (5.20) we get

/ Tazda = / [a(T33,3 — 11333,33) + 2/1a33,3]da. (5.21)
o N
It follows from (5.5), (5.7), (5.8) and (5.21) that
/ Ta3,3da = 0. (5.22)
31

By (5.17) and (5.22) we conclude that the first two conditions from (5.15)
are satisfied. Let us introduce the notations

Doy = /E (Tamyy + 20555 — S5 )da,
1

Dy = [ #lflda, D= [ sanoarl) + 2480, (5.23)
21 E1

and
T3 = M) + (A + 2wy = M) + X+ 2p,

77%) = AUS}) + 4f7 W:g%) = T/gg) + 2f€3ﬂpcp,
3 3 4 4

W?()B) - TB(3)’ Wéﬁ) = Té?,) T HEPB3Tp, (5.24)

0 = 5 (202 — a1 +daq)dja + p9 (G =1,2,3),

1 : '
dhits = — 5T + Bs: a5 = (a1 — 203 — 204 + 205)dja + K,

1 4
q:(a3)a = fxa + Mi(%S)a’ qggﬂ = €308y + Mggﬁ?

3 3 4 4
q&g,)g =e3q8f + u&g)g, qflg,)ﬁ = 308204 — a5) + uflg,),g-

In view of (5.10), (5.14) and (5.16) we obtain

4
Gsda + / ﬁgds = Zngbj,
ol r ot
_ 5 4
/ Egaﬁl‘aG/Bda + / €3a5(xaH5 + naAg)ds = Z Dy;b;, (5.25)
ol r =
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where Dj;, are defined in (5.23). Thus, the last two conditions (5.15) can be
written in the form

4 4
D Dby =0, > Dby = 0. (5.26)
k=1 k=1

Let us impose now the conditons (3.2). We note that in view of (3.6) we
obtain

P,da + / Qads = —/ (T3a - ,u33a,3)da-
N T 3

By using (5.21) we find

Pada+/Qad8= —/ [0(T33,3 — 11333,33) + 211a33,3 — 1433a,3]da. (5.27)
N r N

It follows from (5.5), (5.7), (5.23) and (5.27) that

4
/ P.da + / Quds = — ZDakbk~
1 r k=1

The conditions (3.2) reduce to

4
> Dapbp = —Fa. (5.28)
k=1
It is known [7] that
det (Dys) # 0, Dys = Dy, (5.29)

We conclude that the constants by, be, b3 and b4 are determined by the system
(5.26), (5.28). We note that the necessary and sufficient conditions for the
existence of the functions w; are satisfied. In what follows we shall assume
that these functions are known. Let us investigate the conditions (3.3)-(3.5).
We can write

/ P3da+/Q3d8 = —/ (733 — 1333,3)ds,

oA r oA

/ (xaP3 + Rq)da + / TaQ3ds = —/ [Ta (733 — 1333,3) + 2Ha33 — M33a]da,
oA r oA

/ Eap3taPsda + / €aB3TaRQpds = (5.30)
oA r

= / [€ap3ta(33s,3 — T33) — 2€083/ta3g)da.
P
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From (5.5), (5.7), (5.23) and (5.30) we obtain

4
Psda + / Qsds = — Z Dsyap — }A"s,
1 r k=1

4
/ (zaP3 + Ry)da + / 2aQsds = = > Dagay — €305 Mg, (5.31)
21 r k=1

4
/ Eaggl‘apgda + / Eaggl‘ands = — Z Dypay, — Ms,
21 r k=1

where

4
F3 = / [t33 + T33 — (al + 2043) Z bklﬁg;)g]da,
X1 k=1

4

_ k

My = 63a5/ {zsltss + Tas — (a1 + 2a3) Y birsn)+
31 k=1

+ 2V533 + 2N533 — V338 — N335}da, (532)

Ms = / €a53$a[t53 + ng — (Ozl — 203 — 204 + 2(15)()5—
31

4
— foams = bkug];)ﬁ] + 2€483(Vass + Nasg) }da.
k=1

On the basis of (5.31), the conditions (3.3)-(3.5) become

4

> Dagar = esap(Mg + Msp), (5.33)
k=1

4 1
> Dspar = —Fs — Fs, Y Dagay, = —Mz — Ms.
k=1 k=1

The system (5.33) uniquely determines the constants aj, as,as and ay. We
conclude that the solution of Saint-Venant’s problem is given by (5.1), where
the functions w; are the displacements in the plane strain problem character-
ized by (5.2), (5.4), (5.9), (5.13), and the constants a; and by, are determined
by the systems (5.33) and (5.28), (5.26), respectively. First, we have to find
the solutions of the problems A%), (k=1,2,3,4), and the constants D, de-
fined in (5.23). From (5.28), (5.32) and (5.33) we see that, in contrast with
the classical elasticity, the flexure of chiral cylinders produces extension and
bending effects. Torsion of a chiral circular cylinder has been studied in [7].
The solution presented in this paper can be used to investigate the problem
of extension, bending and flexure.
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