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Abstract - This paper is concerned with the linear theory of strain gradient
elasticity. The deformation of an isotropic chiral cylinder subjected to resul-
tant forces and moments on the ends is investigated. The three-dimensional
problem is reduced to the study of some generalized plane strain problems.
It is shown that the flexure of a chiral cylinder, in contrast with the case of
achiral materials, is accompanied by extension and bending.
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1. Introduction

With a view toward describing the aim of the present article we recall first
that Saint-Venant’s problem consists in determining the equilibrium of an
elastic cylinder that is subjected only to surface forces distributed over its
plane ends. Saint-Venant’s approach of the problem is based on a relaxed
statement in which the pointwise assignment of the terminal tractions is
replaced by prescribing the corresponding resultant force and resultant mo-
ment. The deformation of elastic cylinders continues to attract attention
both from theoretical and technical point of view (see, e.g., [2,4-6] and refer-
ences therein). In this paper we study Saint-Venant’s problem for isotropic
and homogeneous chiral elastic rods in the strain gradient theory. The me-
chanical behaviour of chiral materials is of interest for the investigation of
carbon nanotubes, auxetic materials and bones. The chiral effects cannot
be described within classical elasticity [8]. Recently, Papanicolopulos [11]
has shown that the strain gradient theory of elasticity is adequate to de-
scribe the deformation of isotropic chiral elastic solids. The equations and
the boundary conditions of the non-linear strain gradient theory of elastic
solids were first established by Toupin [12,13]. The linear theory has been
developed by Mindlin [9] and Mindlin and Eshel [10]. The interest in the
gradient theory of elasticity is stimulated by the fact that this theory is used
to investigate problems related to size effects and nanotechnology [1]. We
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note that the torsion of isotropic chiral elastic cylinders has been studied in
various papers (see [7,11]). In the present article we study Saint-Venant’s
problem, where the cylinder is subjected to extension, bending, torsion and
flexure. The problem is reduced to the study of some two-dimensional prob-
lems. It is shown that, in contrast with the case of achiral materials, the
flexure of a chiral cylinder is accompanied by extension and bending.

2. Basic equations

In this section we present the equations and the boundary conditions in the
linear strain-gradient theory of elastostatics. We consider a solid that in
its undeformed state occupies the region B of Euclidean three-dimensional
space and is bounded by the surface ∂B. We refer the deformation of the
continuum to a fixed system of rectangular axes Oxk, (k = 1, 2, 3). Through-
out we employ standard indicial notations: Latin subscripts (unless other-
wise specified) are understood to range over the integers (1, 2, 3), whereas
Greek subscripts to the range (1, 2), summation over repeated subscripts is
implied and subscripts preceded by a comma denote partial differentiation
with respect to the corresponding Cartesian coordinate. We assume that B
is occupied by a homogeneous and isotropic chiral elastic solid. The strain
measures are given by

eij =
1

2
(ui,j + uj,i), κijk = uk,ij , (2.1)

where ui is the displacement vector field. The constitutive equations for
homogeneous and isotropic chiral elastic solids are [11]

τij = λerrδij + 2µeij + f(εikmκjkm + εjkmκikm),

µijk =
1

2
α1(κrriδjk + 2κkrrδij + κrrjδik)+

+ α2(κirrδjk + κjrrδik) + 2α3κrrkδij+ (2.2)

+ 2α4κijk + α5(κkji + κkij) + f(εiksejs + εjkseis),

where τij is the stress tensor, µijk is the double stress tensor, δij is the Kro-
necker delta, εijk is the alternating symbol and λ, µ, αm, (m = 1, 2, . . . , 5),
and f are constitutive constants. For an achiral material the coefficient f is
equal to zero. Let Fi be the body force per unit volume. The equilibrium
equations are

τji,j − µsji,sj + Fi = 0. (2.3)

We assume that B is a bounded region with Lipschitz boundary ∂B, con-
sisting of a finite number of smooth surfaces. Let Γp be the intersection of
two adjoined smooth surfaces and C = ∪Γp. Mindlin [9] has introduced the
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notations

Pi = (τki − µski,s)nk −Dj(nrµrji) + (Dknk)nsnpµspi,

Ri = µrsinrns, Qi =< µpjinpnq > εjrqsr, (2.4)

where ni are the components of the outward unit normal of ∂B, Di are the
components of the surface gradient, Di = (δik−nink)∂/∂xk, si are the com-
ponents of the unit vector tangent to C, and < g > denotes the difference
of limits of g from both sides of C. The traction problem consists in find-
ing a displacement field that satisfies the equations (2.1), the constitutive
equations (2.2), and the equilibrium equations (2.3) on B, and the boundary
conditions

Pi = P̃i, Ri = R̃i on B\C, Qi = Q̃i on C, (2.5)

where Fi, P̃i, R̃i and Q̃i are prescribed functions. Throughout this paper
we assume that the elastic potential is a positive definite quadratic form in
the variables eij and κijk.

3. Saint-Venant’s problem

In this section we present the formulation of Saint-Venant’s problem in the
context of the strain gradient theory of elasticity. We suppose that the
region B from here on refers to the interior of a right cylinder of length
h with the cross-section Σ and the lateral boundary Π. The Cartesian
coordinate frame is supposed to be chosen in such a way that x3-axis is
parallel to the generator of B and the x1Ox2 plane contains one of terminal
cross-sections. We denote by Σ1 and Σ2 the cross-sections located at x3 = 0
and x3 = h, respectively. We denote by Γ the boundary of the cross-section
Σ1. We assume that the lateral surface Π is smooth, so that Qi is equal to
zero on Π. We assume that the cylinder is free from lateral loading. The
conditions on the lateral surface are

Pi = 0, Ri = 0 on Π. (3.1)

We shall use Saint-Venant’s approach of the problem, in which the point-
wise assignment of the terminal tractions is replaced by prescribing the
corresponding resultant force and resultant moment. We assume that the
body forces are absent and that the load on the cylinder is distributed over
its ends, Σ1 and Σ2, in a way which fulfills the equilibrium conditions of the
body. Let the loading applied on Σ1 be statically equivalent to the force
F = (F1,F2,F3) and the moment M = (M1,M2,M3). The conditions on
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the end located at x3 = 0 are∫
Σ1

Pαda+

∫
Γ
Qαds = Fα, (3.2)∫

Σ1

P3da+

∫
Γ
Q3ds = F3, (3.3)∫

Σ1

(xαP3 +Rα)da+

∫
Γ
xαQ3ds = εβα3Mβ, (3.4)∫

Σ1

εαβ3xαPβda+

∫
Γ
εαβ3xαQβds = M3. (3.5)

In view of (2.4) we obtain

Pi = −τ3i + 2µα3i,α + µ33i,3, Ri = µ33i on Σ1, Qi = −2µα3inα on Γ, (3.6)

where (n1, n2, 0) are the direction cosines of the exterior normal to Π. On
Σ2 there are tractions that satisfy the equilibrium conditions of the body.
The equilibrium equations become

τji,j − µpji,pj = 0. (3.7)

Saint-Venant’s problem consists in finding the functions ui of class C4(B)∩
C3(B) which satisfy the equations (2.1), (2.2) and (3.7) on B, the conditions
(2.6) on the lateral surface, and the conditions (3.2)-(3.5) on the end Σ1,
when the constants Fj , Mj , and the constitutive coefficients are prescribed.
If F3 = 0 and Mj = 0, then the problem reduces to the flexure problem.

4. Two-dimensional problems

In this section we assume that the cylinder B is subjected to the external
loading (Fi, P̃i, R̃i, Q̃i) where Fi, P̃i and R̃i are independent of the axial
coordinate and Q̃i = 0 on C. A state of generalized plane strain in cylinder
B is characterized by the fact that the displacement vector is independent
of the axial coordinate,

ui = ui(x1, x2), (x1, x2) ∈ Σ1. (4.1)

The relations (2.1), (2.2) and (4.1) imply that eij , κijk, τij and µijk are all
independent of the axial coordinate. In the case of a generalized plane strain,
the strain measures reduce to

2eαβ = uα,β + uβ,α, 2eα3 = u3,α, καβk = uk,αβ, (4.2)
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and e33 = 0, κi3j = 0. The constitutive equations can be written as

ταβ = λeρρδaβ + 2µeαβ + f(εαρ3κβρ3 + εβρ3καρ3),

τα3 = 2µeα3 + fερβ3καρβ,

µαβγ =
1

2
α1(κρραδβγ + 2κγρρδαβ + κρρβδαγ)+

+ α2(καρρδβγ + κβρρδαγ) + 2α3κρργδαβ+ (4.3)

+ 2α4καβγ + α5(κγβα + κγαβ) + f(εαγ3eβ3 + εβγ3eα3),

µαβ3 = 2α3κρρ3δαβ + 2α4καβ3 + f(ερα3eβρ + ερβ3eαρ),

and

τ33 = λeρρ, µ3αβ =
1

2
α1κρρ3δαβ + α5κβα3 + fεβρ3eαρ,

µ3α3 =
1

2
α1κρρα + α2καρρ + fερα3e3ρ, (4.4)

µ33α = α1καρρ + 2α3κρρα + 2fεαρ3e3ρ,

µ333 = (α1 + 2α3)κρρ3.

In the context of generalized plane strain, the equations of equilibrium be-
come

ταi,α − µβνi,βν + Fi = 0 on Σ1. (4.5)

The functions Pi and Ri associated to the lateral surface are given by

Pi = (τβi − µρβi,ρ)nβ −Dρ(nβµβρi) + (Dρnρ)nβnνµβνi,

Ri = µρνinρnν . (4.6)

The conditions on the lateral surface become

Pi = P̃i, Ri = R̃i on Γ. (4.7)

The generalized plane strain problem consists in finding the displacement
field which satisfies the equations (4.2), the constitutive equations (4.3) and
the equilibrium equations (4.5) on Σ1, and the boundary conditions (4.7) on
Γ. With the help of (4.2) and (4.3), the equations of equilibrium (4.5) can
be expressed in the form

µ∆uα + (λ+ µ)uβ,βα − 2(α3 + α4)∆∆uα−
− 2(α1 + α2 + α5)∆uβ,βα + 2fεαβ3∆u3,β + Fα = 0, (4.8)

µ∆u3 − 2(α3 + α4)∆∆u3 + 2fερν3∆uν,ρ + F3 = 0, on Σ1.

The necessary and sufficient conditions for the existence of a solution to the
generalized plane strain problem are [3]∫

Σ
Fkda+

∫
Γ
P̃kds = 0,∫

Σ
ε3αβxαFβda+

∫
Γ
ε3αβ(xαP̃β + nαR̃β)ds = 0. (4.9)
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In the next section we will use four special problems of generalized plane

strain, denoted by A(k), (k = 1, 2, 3, 4). Let us denote by u
(k)
i , e

(k)
ij , κ

(k)
irs,

τ
(k)
ij and µ

(k)
irs the displacement, the strain measures, the stress tensor and

the double stress tensor in the problem A(k), respectively. The problem A(k)

is associated to the body forces F
(k)
i and to the tractions P̃

(k)
i and R̃

(k)
i ,

defined by

F
(1)
i = λδ1i, P̃

(1)
1 = −λx1n1 + (α1 − 2α2)ε3αν(n1n2),νnα,

P̃
(1)
2 = −λx1n2 +

1

2
(α1 − 2α2)ε3αν(n2

1 − n2
2),αnν ,

P̃
(1)
3 = 2fn2, R̃

(1)
1 = 2α3 − α1 + (α1 − 2α2)n2

1,

R̃
(1)
2 = (α1 − 2α2)n1n2, R̃

(1)
3 = 0.

F
(2)
i = λδ2i, P̃

(2)
1 = −λx2n1 +

1

2
(α1 − 2α2)ε3αν(n2

1 − n2
2),αnν ,

P̃
(2)
2 = −λx2n2 + (α1 − 2α2)ε3αν(n1n2),νnα, P̃

(2)
3 = −2fn1, (4.10)

R̃
(2)
1 = (α1 − 2α2)n1n2, R̃

(2)
2 = 2α3 − α1 + (α1 − 2α2)n2

2, R̃
(2)
3 = 0,

F
(3)
i = 0, P̃ (3)

α = −λnα, P̃ (3)
3 = 0, R̃

(3)
i = 0,

F
(4)
i = 0, P̃

(4)
1 =

1

2
f [5n1 +D1(x2n2) +D2(x2n1 − 2x1n2)−

− 2(x2n1n2 − x1n
2
2)(Dρnρ)],

P̃
(4)
2 =

1

2
f [5n2 +D1(x1n2 − 2x2n1) +D2(x1n1)−

− 2(x1n1n2 − x2n
2
1)(Dρnρ)], P̃

(4)
3 = µε3βρxρnβ,

R̃
(4)
1 = f(x1n

2
2 − x2n1n2), R̃

(4)
2 = f(x2n

2
1 − x1n1n2), R̃

(4)
3 = 0.

We introduce the notations

P
(k)
i = (τ

(k)
βi − µ

(k)
ρβi,ρ)nβ −Dρ(nβµ

(k)
βρi) + (Dρnρ)µ

(k)
βνinβnν ,

R
(k)
i = µ

(k)
ρνinρnν . (4.11)

The functions u
(k)
i , e

(k)
ij , κ

(k)
irs, τ

(k)
ij and µ

(k)
irs satisfy the equations

2e
(k)
αβ = u

(k)
α,β + u

(k)
β,α, 2e

(k)
α3 = u

(k)
3,α, κ

(k)
αβj = u

(k)
j,αβ, (4.12)
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the constitutive equations

τ
(k)
αβ = λe(k)

ρρ δαβ + 2µe
(k)
αβ + f(εαρ3κ

(k)
βρ3 + εβρ3κ

(k)
αρ3),

τ
(k)
α3 = 2µe

(k)
α3 + fερβ3κ

(k)
αρβ,

µ
(k)
αβγ =

1

2
α1(κ(k)

ρραδβγ + 2κ(k)
γρρδαβ + κ

(k)
ρρβδαγ)+ (4.13)

+ α2(κ(k)
αρρδβγ + κ

(k)
βρρδαγ) + 2α3κ

(k)
ρργδαβ+

+ 2α4κ
(k)
αβγ + α5(κ

(k)
γβα + κ

(k)
γαβ) + f(εαγ3e

(k)
β3 + εβγ3e

(k)
α3 ),

µ
(k)
αβ3 = 2α3κ

(k)
ρρ3δαβ + 2α4κ

(k)
αβ3 + f(ερα3e

(k)
βρ + ερβ3e

(k)
αρ ),

and the equilibrium equations

τ
(k)
βj,β − µ

(k)
ρνj,ρν + F

(k)
j = 0, (4.14)

on Σ1, and the boundary conditions

P
(k)
i = P̃

(k)
i , R

(k)
i = R̃

(k)
i on Γ. (4.15)

The functions F
(k)
i , P̃

(k)
i and R̃

(k)
i which appear in (4.14) and (4.15) are de-

fined by (4.10). Let us note that the necessary and sufficient conditions (4.9)
for the existence of solution are satisfied for each boundary value problem
A(k). The problems A(k) have been introduced in [7] in order to study the
torsion problem.

5. Solution of the problem

In this section we investigate Saint-Venant’s problem for homogeneous and
isotropic chiral rods. We seek the solution in the form [6]

uα = −1

2
aαx

2
3 −

1

6
bαx

3
3 − (a4 +

1

2
b4x3)ε3αβxβx3+

+

4∑
k=1

(ak + bkx3)u(k)
α + wα(x1, x2), (5.1)

u3 = (a1x1 + a2x2 + a3)x3 +
1

2
(b1x1 + b2x2 + b3)x2

3 + w3(x1, x2),

where u
(k)
i are the displacements in the plane problems A(k), wj are un-

known functions and ak and bk are unknown constants. Let us consider a
generalized plane strain of the cylinder B in which the components of the
displacement vector are the functions wj . We denote by γij and ηαβj the
strain measures corresponding to the displacements wj ,

γαβ =
1

2
(wα,β + wβ,α), 2γα3 = w3,α, ηαβk = wk,αβ. (5.2)
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From the equations (2.1) and (5.1) we obtain

eαβ = γαβ +
4∑

k=1

(ak + bkx3)e
(k)
αβ ,

eα3 =
1

2
ε3βα(a4 + b4x3)xβ +

4∑
k=1

(ak + bkx3)e
(k)
α3 + γα3 +

1

2

4∑
k=1

bku
(k)
α ,

e33 = a1x1 + a2x2 + a3 + (b1x1 + b2x2 + b3)x3 +

4∑
k=1

bku
(k)
3 ,

καβγ = ηαβγ +
4∑

k=1

(ak + bkx3)κ
(k)
αβγ ,

καβ3 = ηαβ3 +
4∑

k=1

(ak + bkx3)κ
(k)
αβ3, (5.3)

κβ3α = ε3βα(a4 + b4x3) +

4∑
k=1

bku
(k)
α,β,

κα33 = aα + bαx3 +
1

2

4∑
k=1

bke
(k)
α3 ,

κ33α = −aα − bαx3 + ε3βαb4xβ, κ333 = b1x1 + b2x2 + b3,

where e
(k)
αj and κ

(k)
αβj are given by (4.12). The stress tensor and the double

stress tensor associated to the strain measures γij and ηαβj are defined by

tαβ = λγρρδαβ + 2µγαβ + f(εαρ3ηβρ3 + εβρ3ηαρ3),

tα3 = 2µγα3 + fερβ3ηαρ3, t33 = λγρρ,

ναβγ =
1

2
α1(ηρραδβγ + 2ηγρρδαβ + ηρρβδαγ)+

+ α2(ηαρρδβγ + ηβρρδαγ) + 2α3ηρργδαβ+ (5.4)

+ 2α4ηαβη + α5(ηγβα + ηγαβ)+

+ f(εaγ3γβ3 + εβγ3γα3),

ναβ3 = 2α3ηρρ3δαβ + 2α4ηαβ3 + f(ερα3γβρ + ερβ3γαρ),

να33 =
1

2
α1ηρρα + α2ηαρρ + fε3ραγ3ρ,

ν33α = α1ηαρρ + 2α3ηρρα + 2fε3αργ3ρ,

να3β =
1

2
α1ηρρ3 + α5ηβα3 + fε3βργαρ,

ν333 = (α1 + 2α3)ηρρ3.
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From the constitutive equations and the relations (5.3) and (5.4) we find the
following form of the stress tensor τij ,

ταβ = tαβ + {λ[a1x1 + a2x2 + a3 + (b1x1 + b2x2 + b3)x3]−

− 2f(a4 + b4x3)}δαβ + Tαβ +

4∑
k=1

(ak + bkx3)τ
(k)
αβ ,

τα3 = tα3 + 2fεαρ3(aρ + bρx3) + µε3βα(a4 + b4x3)xβ+ (5.5)

+ Tα3 +

4∑
k=1

(ak + bkx3)τ
(k)
α3 ,

τ33 = t33 + (λ+ 2µ)[a1x1 + a2x2 + a3 + (b1x1 + b2x2 + b3)x3]+

+ 4f(a4 + b4x3) + T33 + λ
4∑

k=1

(ak + bkx3)u(k)
ρ,ρ,

where we have used the notations

Tαβ = f

4∑
k=1

bk(ε3ραu
(k)
ρ,β + ε3ρβu

(k)
ρ,α),

Tα3 = µ
4∑

k=1

bku
(k)
α − f(b4xα +

4∑
k=1

bkερα3u
(k)
3,ρ), (5.6)

T33 = (λ+ 2µ)

4∑
k=1

bku
(k)
3 + 2fε3αβ

4∑
k=1

bku
(k)
α,β.

The components of the double tensor are given by

µ111 = ν111 + 2(α2 − α3)(a1 + b1x3) +
4∑

k=1

(ak + bkx3)µ
(k)
111 +N111,

µ222 = ν222 + 2(α2 − α3)(a2 + b2x3) +

4∑
k=1

(ak + bkx3)µ
(k)
222 +N222,

µ221 = ν221 + (α1 − 2α3)(a1 + b1x3)− f(a4 + b4x3)x1+

+

4∑
k=1

(ak + bkx3)µ
(k)
221 +N221,

µ112 = ν112 + (α1 − 2α3)(a2 + b2x3)− f(a4 + b4x3)x2+

+

4∑
k=1

(ak + bkx3)µ
(k)
112 +N112,
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µ121 = ν121 +
1

2
(2α2 − α1)(a2 + b2x3) +

1

2
f(a4 + b4x3)x2+

+

4∑
k=1

(ak + bkx3)µ
(k)
121 +N121,

µ122 = ν122 +
1

2
(2α2 − α1)(a1 + b1x3) +

1

2
f(a4 + b4x3)x1+

+

4∑
k=1

(ak + bkx3)µ
(k)
122 +N122,

µρ33 = νρ33 +
1

2
(2α2 − α1 + 4α4)(aρ + bρx3)− 1

2
f(a4 + b4x3)xρ+

+

4∑
k=1

(ak + bkx3)µ
(k)
ρ33 +Nρ33,

µ33ρ = ν33ρ + (α1 − 2α3 − 2α4 + 2α5)(aρ + bρx3)+ (5.7)

+ f(a4 + b4x3)xρ +

4∑
k=1

(ak + bkx3)µ
(k)
33ρ +N33ρ,

µα3β = να3β + (2α4 − α5)(a4 + b4x3)εαβ3+

+ f [a1x1 + a2x2 + a3 + (b1x1 + b2x2 + b3)x3]εαβ3+

+
4∑

k=1

(ak + bkx3)µ
(k)
α3β +Nα3β,

µαβ3 = ναβ3 +
4∑

k=1

(ak + bkx3)µ
(k)
αβ3 +Nαβ3,

µ333 = ν333 + (α1 + 2α3)

4∑
k=1

(ak + bkx3)κ
(k)
333 +N333.

Here we have used the following notations

N111 = −(α1 + 2α3)b4x2 + (α1 + 2α2)
4∑

k=1

bku
(k)
3,1,

N222 = (α1 + 2α3)b4x1 + (α1 + 2α2)

4∑
k=1

bku
(k)
3,2,

N221 = −2α3b4x2 + α1

4∑
k=1

bku
(k)
3,1 − f

4∑
k=1

bku
(k)
2 ,
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N112 = 2α3b4x1 +
4∑

k=1

bk(α1u
(k)
3,2 + 2α3u

(k)
1 + fu

(k)
1 ),

N121 =
1

2
α1b4x1 +

4∑
k=1

bk(α2u
(k)
3,2 −

1

2
fu

(k)
1 ),

N122 = −1

2
α1b4x2 +

4∑
k=1

bk(α2u
(k)
3,1 +

1

2
fu

(k)
2 ),

Nρ33 =
1

2
(α1 + 2α5)ε3βρb4xβ +

4∑
k=1

bk[(α2 + 2α4 + α5)u
(k)
3,ρ+

+
1

2
fε3ρβu

(k)
β ], (5.8)

N33ρ = 2(α3 + α4)ε3βρb4xβ +
4∑

k=1

bk[(α1 + 2α5)u
(k)
3,ρ + fε3ρβu

(k)
β ],

Nα3β =
1

2
(α1 + 2α2)(b1x1 + b2x2 + b3)δaβ +

4∑
k=1

bk(2α4u
(k)
β,α+

+ α5u
(k)
α,β + α2δαβu

(k)
ρ,ρ + fεαβ3u

(k)
3 ),

Nαβ3 = (α1 + 2α3)δαβ(b1x1 + b2x2 + b3) +
4∑

k=1

bk(α1δαβu
(k)
ρ,ρ + 2α5e

(k)
αβ ),

N333 = 2(α1 + α2 + α3 + α4 + α5)(b1x1 + b2x2 + b3).

In view of (4.10), (4.14), (5.5) and (5.7), the equations of equilibrium become

tαi,α − νραi,ρα +Gi = 0 on Σ1, (5.9)

where

Gα = Tβα,β −Nρηα,ρη −
4∑

k=1

bk(2µ
(k)
3ρα,ρ − τ

(k)
α3 )+

+ 4fε3αβbβ + µε3ραxρb4, (5.10)

G3 = Tβ3,β −Nρη3,ρη +

4∑
k=1

bk(λu
(k)
ρ,ρ − 2µ

(k)
ρ33,ρ)+

+ (λ+ 2µ)(b1x1 + b2x2 + b3) + 6fb4.

We denote

Πj = (tβj−νρβj,ρ)nβ−Dη(nρνρηj)+(Dνnν)nρnηνρηj ,Λj = νρηjnρnη, (5.11)

and introduce the notations

Hj = (Tβj −Nρβj,ρ)nβ −Dη(nρNρηj) + (Dνnν)nρnηNρηj , Lj = Nρηjnρnη.
(5.12)
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It follows from (2.4), (5.5) and (5.7) that the conditions on the lateral surface
(2.6) become

Πj = Π̃j , Λj = Λ̃j on Γ, (5.13)

where

Π̃α = 2ερα3nρ[(2α4 − α5)b4 + f(b1x1 + b2x2 + b3)]−Hα+

+ 2nρ

4∑
k=1

bkµ
(k)
3ρα, (5.14)

Π̃3 = 2nρ[
1

2
(2α2 − α1 + 4α4)bρ −

1

2
fb4xρ +

4∑
k=1

bkµ
(k)
ρ33]−H3, Λ̃j = −Lj .

Thus, the functions wi are the components of the displacement vector in the
generalized plane strain problem characterized by the equations (5.2), the
constitutive equations (5.4) and the equilibrium equations (5.9) on Σ1 and
the boundary conditions (5.13) on Γ. The necessary and sufficient conditions
to solve this problem are∫

Σ1

Gida+

∫
Γ

Π̃ids = 0,

∫
Σ1

ε3αβxαGβda+

∫
Γ
ε3αβ(xαΠ̃β + nαΛ̃β)ds = 0.

(5.15)
By using the divergence theorem we obtain∫

Σ1

(Tβj,β −Nρηj,ρη)da+

∫
Γ

Πjds = 0,∫
Σ1

ε3αβxα(Tρβ,ρ −Nνηβ,νη)da+

∫
Γ
ε3αβ(xαΠβ + nαΛβ)ds = 0. (5.16)

In view of (5.4), (5.10), (5.14) and (5.16) we find that∫
Σ1

Gαda+

∫
Γ

Π̃αds =

∫
Σ1

τα3,3da. (5.17)

With the help of the equilibrium equations (3.7) we can write

τα3 = τα3 + xα(τj3,j − µrs3,rs) = (5.18)

= [xα(τβ3 − µβν3,ν)],β + µαν3,ν + xα(τ33 − µ333,33 − 2µ3β3,3β).

We note that

(Dknk)nsnpµspi −Dj(nrµrji) = [(µpjinpnr − µprinpnj),r]nj ,

so that, the condition P3 = 0 on Π can be expressed as

[τβ3−µβν3,ν +(µρβ3nρnη−µρη3nρnβ),η− (µρ33nρnβ),3−µ3β3,3]nβ = 0 on Π.
(5.19)
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From (5.18) and (5.19) we find∫
Σ1

τα3da =

∫
Γ
xα{[(µρν3nρnβ − µρβ3nρnν),ν ]nβ+

+ 2µρ33,3nρ}ds+

∫
Σ1

[µαν3,ν + xα(τ33,3 − µ333,33 − 2µ3α3,3α)]da. (5.20)

Since R3 = 0 on Π, we have∫
Γ
xα[(µρν3nρnβ − µρβ3nρnν),ν ]nβds = −

∫
Σ1

µαν3,νda.

Thus, from (5.20) we get∫
Σ1

τα3da =

∫
Σ1

[xα(τ33,3 − µ333,33) + 2µα33,3]da. (5.21)

It follows from (5.5), (5.7), (5.8) and (5.21) that∫
Σ1

τα3,3da = 0. (5.22)

By (5.17) and (5.22) we conclude that the first two conditions from (5.15)
are satisfied. Let us introduce the notations

Dαk =

∫
Σ1

(xαπ
(k)
33 + 2q

(k)
α33 − q

(k)
33α)da,

D3k =

∫
Σ1

π
(k)
33 da, D4k =

∫
Σ1

ε3αβ(xαπ
(k)
3β + 2q

(k)
α3β)da, (5.23)

and

π
(α)
33 = λu(α)

ρ,ρ + (λ+ 2µ)xα, π
(3)
33 = λu(k)

ρ,ρ + λ+ 2µ,

π
(4)
33 = λu(4)

ρ,ρ + 4f, π
(α)
3β = τ

(α)
β3 + 2fε3βρcρ,

π
(3)
3β = τ

(3)
β3 , π

(4)
3β = τ

(4)
β3 + µερβ3xρ, (5.24)

q
(j)
α33 =

1

2
(2a2 − α1 + 4α4)δjα + µ

(j)
α33, (j = 1, 2, 3),

q
(4)
α33 = −1

2
fxα + µ

(4)
α33, q

(j)
33α = (α1 − 2α3 − 2α4 + 2α5)δjα + µ

(j)
33α,

q
(4)
33α = fxα + µ

(4)
33α, q

(ρ)
α3β = ε3αβfxρ + µ

(ρ)
α3β,

q
(3)
α3β = ε3αβf + µ

(3)
α3β, q

(4)
α3β = ε3αβ(2α4 − α5) + µ

(4)
α3β.

In view of (5.10), (5.14) and (5.16) we obtain∫
Σ1

G3da+

∫
Γ

Π̃3ds =
4∑
j=1

D3jbj ,

∫
Σ1

ε3αβxαGβda+

∫
Γ
ε3αβ(xαΠ̃β + nαΛ̃β)ds =

4∑
j=1

D4jbj , (5.25)
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where Djk are defined in (5.23). Thus, the last two conditions (5.15) can be
written in the form

4∑
k=1

D3kbk = 0,
4∑

k=1

D4kbk = 0. (5.26)

Let us impose now the conditons (3.2). We note that in view of (3.6) we
obtain ∫

Σ1

Pαda+

∫
Γ
Qαds = −

∫
Σ1

(τ3α − µ33α,3)da.

By using (5.21) we find∫
Σ1

Pαda+

∫
Γ
Qαds = −

∫
Σ1

[xα(τ33,3−µ333,33)+2µα33,3−µ33a,3]da. (5.27)

It follows from (5.5), (5.7), (5.23) and (5.27) that

∫
Σ1

Pαda+

∫
Γ
Qαds = −

4∑
k=1

Dαkbk.

The conditions (3.2) reduce to

4∑
k=1

Dαkbk = −Fα. (5.28)

It is known [7] that

det (Drs) 6= 0, Drs = Dsr. (5.29)

We conclude that the constants b1, b2, b3 and b4 are determined by the system
(5.26), (5.28). We note that the necessary and sufficient conditions for the
existence of the functions wj are satisfied. In what follows we shall assume
that these functions are known. Let us investigate the conditions (3.3)-(3.5).
We can write∫

Σ1

P3da+

∫
Γ
Q3ds = −

∫
Σ1

(τ33 − µ333,3)ds,∫
Σ1

(xαP3 +Rα)da+

∫
Γ
xαQ3ds = −

∫
Σ1

[xα(τ33 − µ333,3) + 2µα33 − µ33α]da,∫
Σ1

εαβ3xαPβda+

∫
Γ
εαβ3xαQβds = (5.30)

=

∫
Σ1

[εαβ3xα(µ33β,3 − τ33)− 2εαβ3µα3β]da.



Saint Venant’s problem in the strain gradient theory of elasticity 327

From (5.5), (5.7), (5.23) and (5.30) we obtain∫
Σ1

P3da+

∫
Γ
Q3ds = −

4∑
k=1

D3kak − F̂3,

∫
Σ1

(xαP3 +Rα)da+

∫
Γ
xαQ3ds = −

4∑
k=1

Dαkak − ε3αβM̂β, (5.31)

∫
Σ1

εαβ3xαPβda+

∫
Γ
εαβ3xαQβds = −

4∑
k=1

D4kak − M̂3,

where

F̂3 =

∫
Σ1

[t33 + T33 − (α1 + 2α3)

4∑
k=1

bkκ
(k)
333]da,

M̂α = ε3αβ

∫
Σ1

{xβ[t33 + T33 − (α1 + 2α3)
4∑

k=1

bkκ
(k)
333]+

+ 2νβ33 + 2Nβ33 − ν33β −N33β}da, (5.32)

M̂3 =

∫
Σ1

εαβ3xα[tβ3 + Tβ3 − (α1 − 2α3 − 2α4 + 2α5)bβ−

− fb4xβ −
4∑

k=1

bkµ
(k)
33β] + 2εαβ3(να3β +Nα3β)}da.

On the basis of (5.31), the conditions (3.3)-(3.5) become

4∑
k=1

Dαkak = ε3αβ(Mβ + M̂β), (5.33)

4∑
k=1

D3kak = −F3 − F̂3,
4∑

k=1

D4kak = −M3 − M̂3.

The system (5.33) uniquely determines the constants a1, a2, a3 and a4. We
conclude that the solution of Saint-Venant’s problem is given by (5.1), where
the functions wj are the displacements in the plane strain problem character-
ized by (5.2), (5.4), (5.9), (5.13), and the constants ak and bk are determined
by the systems (5.33) and (5.28), (5.26), respectively. First, we have to find
the solutions of the problems A(k), (k = 1, 2, 3, 4), and the constants Drs de-
fined in (5.23). From (5.28), (5.32) and (5.33) we see that, in contrast with
the classical elasticity, the flexure of chiral cylinders produces extension and
bending effects. Torsion of a chiral circular cylinder has been studied in [7].
The solution presented in this paper can be used to investigate the problem
of extension, bending and flexure.
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