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Abstract - Some finite element approaches are discussed for the analysis
of seepage flows in a gravity field (referred to as quasi static conditions)
and in the presence of an acceleration field variable in time and space (i.e.
during an earthquake). The equations governing the flow of a liquid within
a porous skeleton in quasi static conditions and their finite element formula-
tion are recalled first. In this case the problem can be solved considering the
hydraulic head as the only nodal variable. Then the dynamic case is con-
sidered. The governing equations are combined in two differential equations
that, reduced in their weak form, lead to three alternative finite element
formulations. They involve different sets of nodal variables, namely: the
components of the discharge velocity only; both velocity and pore pressure;
the pore pressure only. The advantages and shortcomings of these solution
procedures are discussed and, to validate them, a test examples is solved
and compared with results presented in the literature.
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1. Introduction

The literature provides exhaustive theoretical bases and broadly accepted
methods for the numerical analysis of seepage and of the coupled effective
stress-flow problem under a gravity field, e.g. [3, 4, 6]. In dynamic condi-
tions however, e.g. during earthquakes, the analysis of seepage becomes less
straightforward [1, 2] since recourse cannot be made anymore to the usual
concept of hydraulic head. This led to various numerical approaches for
the dynamic coupled problem that involve different assumptions, different
governing equations and different free variables [7, 8]. Note that a correct
analysis of dynamic seepage is particularly relevant when dealing with granu-
lar deposits. In fact their relatively high hydraulic conductivity rules out the
assumption of undrained conditions sometime adopted in engineering prac-
tice for fine grained soils. The relatively complex mathematical structure
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of the dynamic problem and the associated computational burden makes
the choice of the most appropriate numerical approach somewhat contro-
versial. Here, the finite element formulation of quasi static seepage analysis
will be recalled first. Then the fluid dynamic equations will be considered.
Their weak form is derived and a first finite element formulation, having as
free variable the discharge velocity, is presented. Some observations on the
computational limits of this approach suggest considering alternative sets
of free variables. Two alternative formulations are then derived. The first
one involves as nodal variables both discharge velocity and pore pressure,
while the second one adopts the pore pressure only. Finally, the solution of a
bench mark problem is compared with Westergaard results (see [5]). In the
following the discussion is limited to the seepage flow of a Newtonian liquid
within a saturated and rigid porous skeleton in isothermal conditions. All
variables are in general functions of time t. Upper case and lowercase under-
lined letters denote, respectively, matrices and column vectors. Superscript
T means transpose.

2. Seepage flow in a gravity field

Let denote with v̂ and v the vectors of the velocity components of the liquid
particles and the vector of the discharge velocity in Darcy sense, which
pertains to the liquid phase. The two vectors are related to each other
through the matrix NS of the area, or surface, porosities the entries of
which (nSx , nSy , nSz) are the ratios between the area of pores and the total
area of the section through which the flow takes place.

v = NS v̂. (2.1)

Due to the difficulties in determining the area porosities, the volume
porosity n in usually adopted, which represents the ratio between the volume
of voids and the total volume of a soil element. The volume porosity can be
seen as the average value of the area porosities (see [1]). Consequently, the
following approximated relationship can be adopted.

v = nv̂. (2.2)

The flow continuity equation, expressing the conservation of mass of the
liquid contained within an infinitesimal porous element, is customarily de-
rived under the following assumptions: fully saturated porous medium; con-
stant density ρ of the liquid; incompressible pore liquid and solid particles;
rigid soil skeleton; absence of internal flow sources. Under these assumptions
the continuity equation reads (cf. Figure 1),

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= ∇T v = 0, (2.3)



Seepage flow analysis in gravity and in variable acceleration fields 247

where vx, vy and vz are the components of Darcy velocity collected in vector
v.

Figure 1. Relevant quantities for the equation of mass continuity in the x direction.

In a gravity field the velocity vector v can be related to the gradient i of
the hydraulic head h,

h =
p

ρg
+ y +

|v|2

2g
; (2.4a)

vx = −kx
∂h

∂x
, etc.; (2.4b)

iT =

{
∂h

∂x

∂h

∂y

∂h

∂z

}
= (∇h)T (2.4c)

v = P · i, (2.4d)

where p is the pore pressure (positive if tensile); ρ is the density of liquid; g
is the acceleration of gravity; y is the vertical coordinate in the direction op-
posite to that of the acceleration of gravity; |v| is the modulus of the velocity
vector; kx is the coefficient of hydraulic conductivity in the x direction (note
that the Cartesian axes are assumed as principal directions of permeability)
and P is the matrix collecting these coefficients.

In most cases of interest in geomechanics the velocity of flow is relatively
small and the kinetic term in equation (2.4a) can be neglected. This has
the advantage of reducing the mathematical complexity of the problem,
otherwise the velocity components would depend on the square modulus of
the velocity vector.

The finite element form of equation (2.3) is easily reached by writing it
in a weak form, ∫

Ω
h∗ ·

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
dV = 0, (2.5)
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where the weight function h∗ represents a virtual variation of hydraulic head
and Ω is the arbitrary volume of the porous medium.

Integrating by parts of equation (2.5),∫
Ω

(
∂h∗vx
∂x

+
∂h∗vy
∂y

+
∂h∗vz
∂z

)
dΩ−

∫
Ω

(
∂h∗

∂x
vx +

∂h∗

∂y
vy +

∂h∗

∂z
vz

)
dΩ = 0

(2.6)
and applying Green-Gauss theorem to the first term of equation (2.6), one
obtains∫

Γ
h∗·(vx · αx + vy · αy + vz · αz) dΓ−

∫
Ω

(
∂h∗

∂x
vx +

∂h∗

∂y
vy +

∂h∗

∂z
vz

)
dΩ = 0.

(2.7)
Here Γ is the surface bounding volume Ω and αx, αy and αz are the

direction cosines of the outward vector normal to Γ. Note that the quan-
tity within parentheses in the first integral of equation (2.7) represents the
modulus of the flow velocity normal to surface Γ.

With reference to the first integral in equation (2.7), consider that surface
S is subdivided into its pervious and impervious parts. The hydraulic head
is known on the pervious boundary, consequently the variation h∗ vanishes
on it, whilst the normal flow velocity vanishes on the impervious portion of
Γ. Consequently, the entire surface integral vanishes. Hence, the weak form
of equation (2.3) reduces to∫

Ω

(
∂h∗

∂x
vx +

∂h∗

∂y
vy +

∂h∗

∂z
vz

)
dΩ = 0 (2.8)

Now, consider a finite element within which the distribution of hydraulic
head h(x, y, z) and, hence, of pore pressure is governed by interpolation
functions, grouped in vector b(x, y, z), and by the nodal hydraulic heads he

h(x, y, z) = bT (x, y, z) · he = (he)T · b(x, y, z). (2.9)

The velocity field within the element can be expressed by substituting
equation (2.9) into equations (2.4b)-(2.4d),

v(x, y, z) = P ·B(x, y, z) · he, (2.10)

where B is the matrix of the space derivatives of the interpolation functions
b. Introducing equations (2.9), (2.10) into equation (2.8), denoting with V e

the volume of the finite element and eliminating the virtual vector of nodal
hydraulic heads, the following system of linear equations is arrived at,

M · he = 0, (2.11)

where M is the element flow matrix

M =

∫
V e

BT P B dV. (2.12)
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3. Governing equations in the case of variable acceleration field

The relative velocity w of the fluid phase with respect to that of the solid
one, u̇, is expressed as (cf. (2.2)).

w = nv̂ − u̇. (3.1)

Since a rigid porous skeleton is assumed here, the velocity u̇ is simply
the time integral of the imposed acceleration (due to gravity and to the
earthquake) and, hence, is known. As a consequence, the problem can be
tackled subjecting the fluid phase to a known acceleration field varying with
time. This allows using v instead of w as a free variable.

3.1. Equation of compatibility

This equation expresses the relationship between the strain rates of the
liquid, collected in vector ε̇, and the velocity v̂ through a differential operator
C analogous to that governing the strain-displacement relationship for solids.

ε̇ =


εx
εy
. . .
γ̇zx

 =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


·


v̂x
v̂y
v̂z

 = C(v̂). (3.2)

As usual, the first three entries of vector ε̇ correspond to normal strain rates
and the remaining ones to shear strain rates. The above equation, rewritten
in terms of the discharge velocity v, becomes

ε̇ =
1

n
C(v). (3.3)

3.2. Shear stress-shear strain rate relationship

Assuming that the fluid phase behaves as a Newtonian liquid, a linear re-
lationship can be established between the deviatoric strain rates ė and the
deviatoric stresses τ . To this purpose the following quantities are introduced
for convenience,

p =
1

3
mTσ, (3.4a)

τ = σ −mp; (3.4b)

ε̇vol = mT ε̇, (3.5a)

ė = ε̇− 1

3
mε̇vol. (3.5b)
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Here ε̇ and σ are the strain rate and the stress vectors; ε̇vol is the volumetric
strain rate and m is a vector the entries of which are equal to 1 if they
correspond to normal strains, otherwise they vanish.

On these bases, the following relationship holds for a Newtonian fluid,

τ = µI0ė, (3.6)

where µ is its deviatoric viscosity and I0 is a diagonal matrix the entries of
which are equal to 2 if they correspond to normal stresses, otherwise they
are equal to 1.

Substitution of equations (3.5), (3.3) into equation (3.6) leads to the
strain rate vs. shear stress relationship,

τ = µI1ε̇ =
µ

n
I1C(v), (3.7)

where

I1 = I0 −
1

3
I0mm

T = I0 −
2

3
mmT . (3.8)

3.3. Equation of motion

Adopting an Eulerian approach, the equation of motion expresses the mo-
mentum balance of the liquid contained within an infinitesimal volume of
the porous medium. This implies that the rate of increase of momentum be
equal to the difference between the inward and outward momentum rates
plus the contribution of the external forces acting on the liquid.

Figure 2. Relevant quantities for the equation of motion in the x direction.

The equation of motion for a one dimensional flow in the x direction is
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(cf. Fig. 1),

∂(ρvx)

∂t
= −

[
∂(ρvxvx)

∂x
+
∂(ρvxvy)

∂y
+
∂(ρvxvz)

∂z

]
+(

nSx

∂σx
∂x

+ nSy

∂τyx
∂y

+ nSz

∂τzx
∂z

)
+ nρbx − fDx , (3.9)

where bx is the component of the imposed acceleration field in the x direction
and fDx is the drag force due to the interaction between the flowing liquid
and the porous skeleton. Introducing the simplifying assumption expressed
by equation (2.2), the matrix form of the equation of motion for a three
dimensional flow becomes

∂(ρv)

∂t
= −

[
mTC

(
ρvvT

)]T
+ nCT (σ) + nρb− f

D
. (3.10)

In equation (3.9) vectors f
D

and b collect, respectively, the drag forces and
the given acceleration components in the Cartesian directions. Confining
our attention to laminar flows, the following relationship holds between the
drag forces and the discharge velocity, where K ′ is the intrinsic permeability
matrix of the skeleton,

f
D

= µ(K ′)−1v. (3.11)

3.4. Mass continuity equation

If internal flow sources are neglected, the continuity of mass requires that
the mass of fluid cumulated within an infinitesimal volume of the porous
medium in a unit time coincides with the difference between the rate of
masses entering and leaving it.

As to the rate of mass accumulation, Ṁ , two contributions exist. The
first one is the change in mass due to the volumetric strain rate of the fluid
phase that, neglecting the possible volumetric viscosity of the liquid, can be
related to the pore pressure rate through the bulk modulus B of the liquid
and the volume porosity n of the skeleton.

Ṁ1 = −n ṗ
B
ρ. (3.12)

The second contribution depends on the change in density of the liquid.

Ṁ2 = nρ̇. (3.13)

On these bases, the following equation expresses the mass continuity for
a three dimensional flow,

nρ̇− nρ

B
ṗ =

[
∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z

]
, (3.14)

which in matrix form becomes

nρ̇− nρ

B
ṗ = mTC(ρv). (3.15)
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3.5. Equation of state for the liquid phase

An additional scalar relationship is necessary to reach the balance between
the numbers of unknowns and equations. This is represented by the equa-
tion of state that expresses the variation of the density of liquid ρ with
temperature and pore pressure.

As previously mentioned, it is reasonable to treat the dynamic seepage
flow under isothermal conditions, thus neglecting the variation of density
with temperature. In addition, considering the high bulk modulus of water,
also the change of density with the pore pressure is marginal. Consequently,
the density of liquid ρ was assumed as constant in equation (3.15).

4. Final system of matrix equations

Introducing the assumption of constant density, the governing equations
(3.7), (3.4b) and (3.10) can be re-written in the following form.

σ =
µ

n
I1C(v) +mp (4.1)

ρv̇ = −ρ
[
mTC

(
vvT

)]T
+ nCT (σ) + nρb− µ(K ′)−1v. (4.2)

The final system of governing differential equations consists of equations
(3.15) and of the combination of equations (4.1) and (4.2)

mTC(v)− n

B
ṗ = 0 (4.3)

ρ

n
v̇ = −ρ

n

[
mTC

(
vvT

)]T
+
µ

n
CT [I1C(v)]+CT (mp)+ρb− µ

n
(K ′)−1v, (4.4)

which correspond to four scalar differential equations involving as free vari-
ables the discharge velocity components and the pore pressure.

As to the boundary conditions, consider a porous domain having surface
Γ and volume Ω. The surface can be subdivided into its impervious part,
ΓV , where the velocity normal to it vanishes and its pervious part, ΓP , where
the pore pressure p is known, i.e.

αT v = 0 on ΓV ; (4.5a)

p = p on ΓP . (4.5b)

Here α collects the direction cosines of the outward vector normal to ΓV .

5. Velocity approach

A first finite element formulation is derived here in which the discharge ve-
locity represents the only nodal variable. To this purpose equation (4.4)
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and the boundary condition equation (4.5b) are written in weak form intro-
ducing a virtual variation v∗ of the discharge velocity that fulfils equation
(4.5a). Note that the quadratic term on the right hand side of equation
(4.4), equivalent to the kinetic part of equation (2.4), is disregarded.∫

Ω
(v∗)T

{ρ
n
v̇ − µ

n
CT [I1C(v)]− CT (mp)− ρb

}
dΩ +

+

∫
Ω

(v∗)T
{µ
n

(K ′)−1v
}
dΩ +

∫
ΓP

(v∗)Tα(p− p)dΓ = 0. (5.1)

Integrating by parts the second term within brackets, and applying
Green-Gauss theorem, introducing the interpolation or shape function ma-
trix Se

v, expressing the velocity distribution within the e-th element as a
function of the nodal velocities ve, after some manipulations one obtains

M ev̇e + (Xe + Ze)ve = fe + fe
P
. (5.2)

The following expressions hold for matrices and vectors in equations
(5.2), where V e is the volume of the element; Γe

P represents its sides where
a known pore pressure pe is imposed; b is the vector of the imposed accel-
erations and pe is the unknown pore pressure distribution within the e-th
element,

M e =
ρ

n

∫
V e

SeT

v Se
vdV (5.3a)

Xe =
µ

n

∫
V e

[C(Se
v)]T I1C(Se

v)dV (5.3b)

Ze =
µ

n

∫
V e

(Se
v)T (K ′)−1Se

vdV (5.3c)

fe = ρ

∫
V e

(Se
v)T b dV +

∫
Γe
P

(Se
v)TmpedΓ (5.3d)

fe
P

= −
∫
V e

[C(Se
v)]T mpedV. (5.3e)

The integration of equation (5.2) is carried through a series of time in-
crements ∆ti, so that ti = ti−1 + ∆ti, and assuming a linear variation of the
nodal velocities within each increment. This leads to the following expres-
sions for ve and v̇e within the time interval,

ve(ti−1 + β∆ti) = βve(ti−1 + ∆ti) + (1− β)ve(ti−1) (5.4a)

v̇e(ti−1 + β∆ti) =
1

∆ti
[ve(ti−1 + ∆ti)− ve(ti−1)], (5.4b)
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where 0 ≤ β ≤ 1. Assuming β = 1
2 , substitution of equations (5.4) into

equation (5.2) leads to[
M e +

∆ti
2

(Xe + Ze)

]
ve(ti) =

[
M e − ∆ti

2
(Xe + Ze)

]
ve(ti−1) +

+
∆ti
2

[
fe(ti) + fe(ti−1)

]
+

∆ti
2

[
fe
P

(ti) + fe
P

(ti−1)
]
. (5.5)

Considering equation (5.3e), the pore pressure pe(ti) at the end of the
time interval that appears in vector fe

P
(ti) can be expressed as

pe(ti) = pe(ti−1) +

∫ ti

ti−1

ṗe(t)dt. (5.6)

Since the pore pressure rate and the velocity vary linearly within the
time step, cf. equation (4.3), equation (5.6), the following incremental rela-
tionship holds,

pe(ti) = pe(ti−1) +
∆ti
2

B

n
mT · {C[ve(ti−1)] + C[ve(ti)]} , (5.7)

where the pore pressure pe is defined at the integration point of the element.
On these bases, and knowing the flow velocities and pore pressures at

time ti−1, the following iterative process can be adopted to evaluate the
quantities at the end of the step:

− The pore pressure pe(ti) is approximated through equation (5.7) as-
suming ve(ti) = ve(ti−1);

− The velocity ve(ti) is calculated solving the system of linear equations
(5.5);

− The pore pressure pe(ti) is updated through equation (5.7);

− The iterations end when ve(ti) and pe(ti) stabilize.

6. Velocity-pore pressure approach

The above iterative approach, where the pore pressure does not represent a
nodal variable and, hence, does not have a continuous distribution through-
out the mesh, might show some stability problem unless very small time
integration steps are adopted. To overcome this drawback an alternative
approach can be easily formulated where both discharge velocity and pore
pressure represent nodal variables.

To this purpose equation (4.3) is written in the following weak form
where p∗ is a virtual pore pressure variation.

n

B

∫
Ω
δp ṗ dΩ =

∫
Ω
δpmTC(v)dΩ. (6.1)
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Introducing the interpolation function vector for the pore pressure, sep,
that relates the pore pressure within the element to its nodal values pe, and
integrating over the volume V e of the e-th element, equation (6.1) leads to

Ae
1ṗ

e +Ae
2v

e = 0, (6.2)

where

Ae
1 =

n

B

∫
V e

seP s
eT
P dV ; (6.3a)

Ae
2 = −

∫
V e

sePm
TC(SeT

v )dV. (6.3b)

Now, expressing the pore pressure pe in equation (5.3e) in terms of the
nodal pore pressures pe through the interpolation functions

fe
P

= −
∫
V e

[C(Se
v)]TmseTP dV · pe (6.4)

and combining equations (5.2), (6.2) and (6.4), the following system is ar-
rived at[

M e 0
0 Ae

1

]{
v̇e

ṗe

}
+

[
(Xe + Ze) (Ae

2)T

Ae
2 0

]{
ve

pe

}
=

{
fe

0

}
. (6.5)

The time integration of equation (6.5) is carried out assuming a linear
variation of velocity during the time increment (cf. equations (5.4)). In
addition, also a linear variation of the pore pressure should be assumed.
This introduces an approximation since, as previously observed, the pore
pressure rate should vary linearly with time.

Note that, to be consistent with equation (4.3), the interpolations func-
tions of the pore pressure should coincide with the space derivatives of those
of the flow velocity. This implies that higher order element should be used
with respect to those adopted for the pore pressure. The consequent non
negligible computational burden and the above approximation suggest dis-
regarding this approach for practical applications.

7. Pore pressure approach

Taking into account that in many cases of interest in geotechnical engineer-
ing the flow velocity is small, some terms of equation (4.4) can be disregarded
since their contribution is likely to be marginal. These are the term of the
left hand side of the equation (4.4), which depends on the acceleration, and
the first term on the right hand side that depends on the square of velocity.

Consider now the terms linearly depending on velocity. The second one
on the right hand side of equation (4.4), related to the curvature of the
stream lines, plays a major role in standard flow problem. However, in the
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case of seepage flows its contribution is in general smaller than that of the
last term on the right hand side that represents the interaction between the
flowing liquid and the solid particles. Hence, equation (4.4) reduces to

v =
n

µ
K ′[CT (mp) + ρb]. (7.1)

Upon substitution of equation (7.1) into equation (4.3) one obtains the
governing equation in terms of the pore pressure only (see [8]).

mTC

{
n

µ
K ′[CT (mp) + ρb]

}
− n

B
ṗ = 0. (7.2)

Writing equation (7.2) in weak form, and following the same procedure
previously outlined for the velocity approach, the pore pressure finite ele-
ment formulation is arrived at.

Ae
1ṗ

e +Ae
3p

e = fe
2
, (7.3)

where

Ae
3 =

n

µ

∫
V e

[
CT (mseTP )

]T
K ′CT (mseTP ) dV ; (7.4a)

fe
2

= ρ

∫
V e

[
CT (mseTP )

]
TK ′b dV. (7.4b)

8. Test example

The velocity and the pore pressure approaches were used for determining
the water pressure distribution along a vertical rigid wall due to a dynamic
excitation in the horizontal direction (see [5]).

The mesh consists of 200 four node quadrilateral elements and 231 nodes,
11 of which discretize the vertical wall.

The numerical results are reported, and compared with Westergaard
solution, in Figures 3 and 4. They show, respectively, the maximum excess
pressure distribution, with respect to the hydrostatic one, along the wall and
the variation with time of the excess pressure at its base. In these figures
H is the wall height and pmax is the maximum excess pressure at the wall
base from Westergaard solution.

9. Conclusions

Three finite element approaches have been presented for dynamic seepage
analysis, which involve different sets of free variables. Two of them, which
seem more convenient from the numerical standpoint, have been used for
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Figure 3. Excess pressure distribution along the vertical wall.

Figure 4. Variation with time of the excess pressure at the wall base.

solving a bench mark problem obtaining an acceptable agreement with West-
ergaard solution. The study will now proceed towards the finite element for-
mulation of dynamic two phase problems in view of the analysis of the effects
of earthquakes on structures embedded in saturated granular deposits.
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