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Abstract - We introduce and analyze some two-level multiplicative and
additive Schwarz methods for variational and quasi-variational inequalities
of the second kind. The methods are introduced as subspace correction
algorithms for problems in a reflexive Banach space. We prove that these
methods are globally convergent and give, under some assumptions, error
estimates. In the finite element spaces, the introduced algorithms are in
fact two-level Schwarz methods. In this case we prove that the assumptions
we made for the general convergence result hold, and write the convergence
rate depending on the overlapping and mesh parameters. We get that our
methods have an optimal convergence rate, it is almost independent of the
mesh and overlapping parameters, and also, the methods have an optimal
computing complexity per iteration.
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1. Introduction

Literature on the Schwarz methods is very large, and it is motivated by
their capability in providing robust and efficient algorithms for large scale
problems. We can see, for instance, the papers in the proceedings of the
annual conferences on domain decomposition methods starting in 1987 with
[10] or those cited in the books [14], [17], [18] and [19]. Naturally, most of
the papers dealing with these methods are dedicated to the linear problems.
However, their generalization to non–linear problems is not straightforward,
in particular for variational inequalities of the second kind or for quasi-
variational inequalities, is far from being trivial. The convergence of the
projected Gauss–Seidel relaxation (or successive coordinate minimization)
for variational inequalities of the second kind in Rd has been proved in
[9]. There, the non-differentiable term has been decomposed as a sum of
terms, each of them depending only on one vector component. The projected
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Gauss-Seidel method is a particular case of a Schwarz method in which the
domain is decomposed into the interior of the supports of the nodal basis
functions. Consequently, the above representation of the non-differentiable
term can be viewed as a decomposition in concordance with the domain
decomposition. A straightforward generalization of the convergence proof
in [9] to more general decompositions can be obtained using this idea, but
it fails if, in order to get a faster convergence, a two-level or multilevel
method is considered. This is due to the fact that the nonlinearities are
not decoupled on the coarser levels. A remedy can be found in adapting
minimization techniques for the construction and analysis of multigrid and
domain decomposition methods, see [12]–[14].

In [4] one- and two-level multiplicative Schwarz methods have been pro-
posed for variational and quasi-variational inequalities of the second kind,
and they have been applied to frictional contact problems. It is proved there
that the convergence rates of the two-level methods are almost independent
of the mesh and overlapping parameters. However, the original convex set,
which is defined on the fine grid, is used to find the corrections on the coarse
grid, too. This leads to a suboptimal computing complexity. To avoid vis-
iting the fine grid, some approximating subsets of this convex set for the
coarse levels have been constructed in [8], [16], [8] and [12]–[14] for com-
plementarity problems. It is well-known that the additive methods are the
best on parallel machines even if their convergence is a little slower than
that of the multiplicative ones. In this paper, we introduce multiplicative
and additive two-level methods for variational and quasi-variational inequal-
ities of the second kind whose convex set is of two-obstacle type. Suitable
constraints for the corrections computed on the coarse mesh are provided
in order to ensure the optimal convergence of the methods. In this way,
besides the optimal convergence rate, these methods have also an optimal
computing complexity.

The paper is organized as follows. Section 2 is devoted to a general
framework in a reflexive Banach space. We introduce here an assumption
on the construction of the level convex sets. Another two hypotheses will be
introduced, which will be necessary in the convergence proofs, one for the
multiplicative algorithms and the other one for the additive ones. Mainly,
these hypotheses refer to the decomposition of the elements in the convex
set, and introduce a constant C0 which will play an important role in the
writing of the convergence rate. In Section 3, we introduce subspace cor-
rection algorithms for variational inequalities of the second kind, and prove
that, under the above assumptions, they are globally convergent. We also
estimate their convergence rates. In Section 4, we introduce subspace cor-
rection algorithms for the quasi-variational inequalities. As in the previous
section, we prove their convergence and estimate the convergence rate, us-
ing the assumptions introduced in Section 2. Section 5 is devoted to the
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two-level methods. If we associate finite element subspaces to the domain
decomposition and to the coarse grid, the abstract algorithms introduced
in Sections 3 and 4 become two-level Schwarz methods. We show that the
assumptions introduced in the previous sections hold for two-obstacle con-
vex sets and we explicitly write the constant C0 depending on the mesh and
domain decomposition parameters. In this way, we get that the convergence
rates of the two-level methods for the variational and quasi-variational in-
equalities of the second kind are similar with the convergence rates obtained
for equations, i.e., we get an optimal convergence. In the case of the two-
level methods, the convergence rate is almost independent of the mesh and
domain decomposition parameters.

2. General framework

Let V be a reflexive Banach space and V0, V11, · · · , V1m be some closed sub-
spaces of V . Subspace V0 will correspond to the coarse discretization, and
V11, · · · , V1m corresponds to the decomposition of the domain. Also, let
K ⊂ V be a non empty closed convex set of V . To introduce the algo-
rithms, we make an assumption on choice of the convex sets where we look
for the level corrections. These level convex sets depend on the current
approximation in the algorithms.

Assumption 2.1. We assume that for a given w ∈ K, we can recursively
introduce the convex sets K1 and K0 as:

0 ∈ K1, K1 ⊂ {v1 ∈ V : w + v1 ∈ K} and, for a w1 ∈ K1,

0 ∈ K0, K0 ⊂ {v0 ∈ V0 : w + w1 + v0 ∈ K}.

As we already said, we shall analyze both types of algorithms, multiplicative
and additive. In the case of the multiplicative algorithms we make the
following

Assumption 2.2. There exists a constant C0 > 0 such that for any u,w ∈
K, any w1i ∈ V1i, w11 + . . . + w1i ∈ K1, i = 1, . . . ,m, and any w0 ∈ K0,
there exist u1i ∈ V1i, i = 1, . . . ,m, and u0 ∈ V0, which satisfy

u11 ∈ K1 and w11 + . . .+ w1i−1 + u1i ∈ K1, i = 2, . . . ,m, u0 ∈ K0

u− w =
∑m

i=1 u1i + u0 and∑m
i=1 ||u1i|| ≤ C0(||u− w||+

∑m
i=1 ||w1i||+ ||w0||).

The convex sets K1 and K0 are constructed as in Assumption 2.1 using w
and w1 = w11 + . . .+ w1m.

This assumption is simpler in the case of the additive algorithms
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Assumption 2.3. There exist a constant C0 > 0 such that for any u,w ∈
K, there exist u1i ∈ V1i ∩K1, i = 1, . . . ,m, and u0 ∈ K0, which satisfy

u− w =
∑m

i=1 u1i + u0 and
∑m

i=1 ||u1i||+ ||u0|| ≤ C0||u− w||.

The convex sets K1 and K0 are constructed as in Assumption 2.1 with the
above w and w1 = 0.

Now, we consider a Gâteaux differentiable functional F : V → R, and
assume that there exist two real numbers p, q > 1 such that for any real
number M > 0 there exist two constants αM , βM > 0 for which

αM‖v − u‖p ≤ 〈F ′(v)− F ′(u), v − u〉, and (2.1)

‖F ′(v)− F ′(u)‖V ′ ≤ βM‖v − u‖q−1, (2.2)

for any u, v ∈ V with ‖u‖, ‖v‖ ≤ M . Above, we have denoted by F ′ the
Gâteaux derivative of F , and we have marked that the constants αM and
βM may depend on M . It is evident that if (2.1) and (2.2) hold, then for
any u, v ∈ V , ‖u‖, ‖v‖ ≤M , we have

αM‖v − u‖p ≤ 〈F ′(v)− F ′(u), v − u〉 ≤ βM‖v − u‖q. (2.3)

Following the way in [11], we can prove that for any u, v ∈ V , ‖u‖, ‖v‖ ≤M ,
we have

〈F ′(u), v − u〉+ αM
p ‖v − u‖

p ≤ F (v)− F (u) ≤
〈F ′(u), v − u〉+ βM

q ‖v − u‖
q.

(2.4)

We point out that since F is Gâteaux differentiable and satisfies (2.4), F is
a strictly convex functional (see Proposition 5.4 in [7], page 24). Also, we
can prove that q ≤ 2 ≤ p.

3. Subspace correction algorithm for variational inequalities of the
second kind

Let ϕ : V → R be a convex lower semicontinuous functional and we assume
that F + ϕ is coercive in the sense that

F (v) + ϕ(v)→∞, as ‖v‖ → ∞, v ∈ K, (3.1)

if K is not bounded. In the multiplicative case, in addition to the hypotheses
of Assumption 2.2, we suppose that∑m

i=1[ϕ(w +
∑i−1

j=1w1j + u1i)− ϕ(w +
∑i−1

j=1w1j + w1i)]+

ϕ(w + w1 + u0)− ϕ(w + w1 + w0) ≤
ϕ(u)− ϕ(w +

∑m
i=1w1i + w0)

(3.2)
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for u,w ∈ K, u1i, w1i ∈ V1i and u0, w0 ∈ V0 as in Assumption 2.2. Also, in
addition to Assumption 2.3, for the additive case, we suppose that

m∑
i=1

ϕ(w + u1i) + ϕ(w + u0) ≤ mϕ(w) + ϕ(u) (3.3)

for any u,w ∈ K, u1i ∈ V1i, i = 1, . . . ,m, and u0 ∈ V0 which satisfy
Assumption 2.3.

Now, we consider the problem

u ∈ K : 〈F ′(u), v − u〉+ ϕ(v)− ϕ(u) ≥ 0, for any v ∈ K, (3.4)

which is equivalent with the minimization problem

u ∈ K : F (u) + ϕ(u) ≤ F (v) + ϕ(v), for any v ∈ K. (3.5)

These problems have a unique solution (see [7], Proposition 1.2, page 34).
From (2.4) we see that, for a given M > 0 such that the solution u of (3.4)
satisfies ‖u‖ ≤M , we have

αM
p ‖v − u‖

p ≤ F (v)− F (u) + ϕ(v)− ϕ(u),

for any v ∈ K, ‖v‖ ≤M.
(3.6)

We first introduce the algorithm which is of the multiplicative type

Algorithm 3.1. We start the algorithm with an arbitrary u0 ∈ K. Assum-
ing that at iteration n ≥ 0 we have un ∈ K, we successively perform the
following steps:

- at the level 1, as in Assumption 2.1, with w = un, we construct the
convex set K1. Then, we first write wn1 = 0, and, for i = 1, . . . ,m, we

successively calculate wn+1
1i ∈ V1i, w

n+ i−1
m

1 + wn+1
1i ∈ K1, the solution of the

inequalities

〈F ′(un + w
n+ i−1

m
1 + wn+1

1i ), v1i − wn+1
1i 〉+

ϕ(un + w
n+ i−1

m
1 + v1i)− ϕ(un + w

n+ i−1
m

1 + wn+1
1i ) ≥ 0,

(3.7)

for any v1i ∈ V1i, w
n+ i−1

m
1 + v1i ∈ K1, and write w

n+ i
m

1 = w
n+ i−1

m
1 + wn+1

1i ,
- at the level 0, we construct, as in Assumption 2.1 with w = un and

w1 = wn+1
1 , the convex set K0. Then, we calculate wn+1

0 ∈ K0, the solution
of the inequality

〈F ′(un + wn+1
1 + wn+1

0 ), v0 − wn+1
0 〉+

ϕ(un + wn+1
1 + v0)− ϕ(un + wn+1

1 + wn+1
0 ) ≥ 0,

(3.8)

for any v0 ∈ K0,
- we write un+1 = un + wn+1

1 + wn+1
0 .
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The proposed additive algorithm is written as follows

Algorithm 3.2. We start the algorithm with an u0 ∈ K. Assuming that at
iteration n ≥ 0 we have un ∈ K, we simultaneously perform, the following
steps:

- we construct the convex sets K1 and K0 as in Assumption 2.1 with
w = un and w1 = 0,

- we simultaneously calculate,

· wn+1
1i ∈ V1i ∩K1, the solutions of the inequalities

〈F ′(un + wn+1
1i ), v1i − wn+1

1i 〉+ ϕ(un + v1i)− ϕ(un + wn+1
1i ) ≥ 0, (3.9)

for any v1i ∈ V1i ∩K1, write wn+1
1 =

∑m
i=1w

n+1
1i , and

· wn+1
0 K0, the solution of the inequality

〈F ′(un + wn+1
0 ), v0 − wn+1

0 〉+ ϕ(un + v0)− ϕ(un + wn+1
0 ) ≥ 0, (3.10)

for any v0 ∈ K0,

Then, we write un+1 = un + r
m+1(wn+1

1 + wn+1
0 ), with a fixed 0 < r ≤ 1.

These algorithms do not suppose a decomposition of the convex set K de-
pending on the subspaces of V . Like problem (3.4), problems (3.7)–(3.10)
have unique solutions, and they are equivalent with minimization problems.
We have the following general convergence result.

Theorem 3.1. Let V be a reflexive Banach, V0, V11, · · · , V1m some closed
subspaces of V , and K a non empty closed convex subset of V which satisfies
Assumption 2.1, Assumption 2.2 when we apply Algorithm 3.1, and Assump-
tion 2.3 in the case of Algorithm 3.2. Also, we assume that F is Gâteaux
differentiable and satisfies (2.1) and (2.2), the functional ϕ is convex and
lower semicontinuous, satisfies (3.2) for Algorithm 3.1, (3.3) for Algorithm
3.2, and F + ϕ is coercive if K is not bounded. Let

M = sup{||v|| : F (v) + ϕ(v) ≤ F (u0) + ϕ(u0)} (3.11)

where u0 is the starting point in Algorithms 3.1 or 3.2. Then, the norms of
the approximations of the solution u of problem (3.4) obtained from these
algorithms are bounded by M and we have the following error estimations:

(i) if p = q = 2 we have

F (un) + ϕ(un)− F (u)− ϕ(u) ≤
( C1
C1+1)n[F (u0) + ϕ(u0)− F (u)− ϕ(u)],

(3.12)

‖un − u‖2 ≤ 2
αM

( C1
C1+1)n[F (u0) + ϕ(u0)− F (u)− ϕ(u)]. (3.13)
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(ii) if p > q we have

F (un) + ϕ(un)− F (u)− ϕ(u) ≤
F (u0)+ϕ(u0)−F (u)−ϕ(u)

[1+nC2(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1 ]

q−1
p−q

, (3.14)

‖u− un‖p ≤ p
αM

F (u0)+ϕ(u0)−F (u)−ϕ(u)

[1+nC2(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1 ]

q−1
p−q

. (3.15)

The constants C1 > 0 and C2 > 0 depend on the functional F , the solution
u, the initial approximation u0, m, and the constant C0.

Remark 3.1. For Algorithm 3.1, constants C1 and C2 can be written as,

C1 = βM (1 + 2C0)(m+ 1)
2− q

p ( p
αM

)
q
p (F (u0)− F (u)

+ϕ(u0)− ϕ(u))
p−q
p(p−1) + βMC0(m+ 1)

p−q+1
p 1

ε
1
p−1

( p
αM

)
q−1
p−1

(3.16)

C2 =
p− q

(p− 1)(F (u0) + ϕ(u0)− F (u)− ϕ(u))
p−q
q−1 + (q − 1)C

p−1
q−1

1

(3.17)

where
ε = αM/(pβMC0(m+ 1)

p−q+1
p ) . (3.18)

Also, in the case of Algorithm 3.2, these constants can be written as,

C1 = m+1
r [1− r

m+1 + (1 + C0)(m+ 1) βMαM
2

+

C2
0 (m+ 1)( βMαM

2

)2]
(3.19)

C2 =
p−q

(p−1)(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1 +(q−1)C

p−1
q−1
3

. (3.20)

where

C3 = m+1−r
r [F (u0)− F (u) + ϕ(u0)− ϕ(u)]

p−q
p−1 +

(m+1
r )

q
p
βM (1+C0)(m+1)

(p−1)q
p

(
αM
p

)
q
p

·

(F (u0)− F (u) + ϕ(u0)− ϕ(u))
p−q
p(p−1) +

(m+1
r )

q−1
p−1

β
p
p−1
M C

p
p−1
0 (m+1)q−1

(
αM
p

)
q
p−1

(3.21)

Proof of Theorem 3.1. Except the changes of notation due to the intro-
duction of the convex sets K1 and K0, the proof in the case of the multi-
plicative Algorithm 3.1 is identical with that of Theorem 1 in [4] and will
be omitted. Also, the proof for the additive Algorithm 3.2 uses the same
techniques as that given for the minimization of non-quadratic functionals
in [3]. The proof is divided into several steps.
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Step 1. The existence of M defined in (3.11) follows from the coercivity
of F + ϕ. In view of the convexity of F , we get

F (un+1) = F (un + r
m+1(

∑m
i=1w

n+1
1i + wn+1

0 )) =

F ((1− r)un + r
m+1(

∑m
i=1(u

n + wn+1
1i ) + un + wn+1

0 )) ≤
(1− r)F (un) + r

m+1 [
∑m

i=1 F (un + wn+1
1i ) + F (un + wn+1

0 )]

A similar result can be obtained for ϕ, i.e., we have

F (un+1) ≤ (1− r)F (un)+
r

m+1 [
∑m

i=1 F (un + wn+1
1i ) + F (un + wn+1

0 )]

ϕ(un+1) ≤ (1− r)ϕ(un)+
r

m+1 [
∑m

i=1 ϕ(un + wn+1
1i ) + ϕ(un + wn+1

0 )]

(3.22)

From (3.9), (3.10) and these inequalities, we get

F (un+1) + ϕ(un+1) ≤ F (un) + ϕ(un)

Therefore, for any n ≥ 0 and i = 1, · · · ,m, we get

max{F (un + wn+1
1i ) + ϕ(un + wn+1

1i ),

F (un + wn+1
0 ) + ϕ(un + wn+1

0 )} ≤
F (un) + ϕ(un) ≤ F (u0) + ϕ(u0).

(3.23)

Step 2. Now, from (3.9), (3.10) and (2.4), for any n ≥ 0 and i = 1, · · · ,m,
we have

F (un)− F (un + wn+1
1i ) + ϕ(un)− ϕ(un + wn+1

1i ) ≥
αM
p ‖w

n+1
1i ‖p and

F (un)− F (un + wn+1
0 ) + ϕ(un)− ϕ(un + wn+1

0 ) ≥
αM
p ‖w

n+1
0 ‖p

(3.24)

In view of (3.22) and (3.24), we get

F (un+1) ≤ (1− r)F (un) + r
m+1 [

∑m
i=1 F (un + wn+1

1i ) + F (un + wn+1
0 )] ≤

F (un)− r
m+1

αM
p [

∑m
i=1 ||w

n+1
1i ||p + ||wn+1

0 ||p]+
r

m+1 [
∑m

i=1(ϕ(un)− ϕ(un + wn+1
1i )) + ϕ(un)− ϕ(un + wn+1

0 )]

Consequently, we have

r
m+1

αM
p [

∑m
i=1 ||w

n+1
1i ||p + ||wn+1

0 ||p] ≤ F (un)− F (un+1)
r

m+1 [
∑m

i=1(ϕ(un)− ϕ(un + wn+1
1i )) + ϕ(un)− ϕ(un + wn+1

0 )]
(3.25)

But, in view of (3.22), we have

r
m+1 [

∑m
i=1(ϕ(un)− ϕ(un + wn+1

1i )) + ϕ(un)− ϕ(un + wn+1
0 )] ≤

ϕ(un)− ϕ(un+1),
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and consequently,

∑m
i=1 ||w

n+1
1i ||p + ||wn+1

0 ||p ≤
m+1
r

p
αM

[F (un)− F (un+1) + ϕ(un)− ϕ(un+1)]
(3.26)

Step 3. Writing

ũn+1 = un +
m∑
i=1

wn+1
1i + wn+1

0 , (3.27)

from the convexity of F , we get

F (un+1) ≤ (1− r

m+ 1
)F (un) +

r

m+ 1
F (ũn+1) (3.28)

Applying Assumption 2.3 for w = un and v = u, we get a decomposition
un11, · · · , un1m, un0 , of u− un, and we can replace v1i and v0 by un1i and un0 in
(3.9) and (3.10), respectively. From (3.28), (2.4), (3.9) and (3.10), we obtain

F (un+1)− F (u) + ϕ(un+1)− ϕ(u) + r
m+1

αM
p ||u− ũ

n+1||p ≤
(1− r

m+1)[F (un)− F (u)]+
r

m+1 [F (ũn+1)− F (u) + αM
p ||u− ũ

n+1||p] + ϕ(un+1)− ϕ(u) ≤
(1− r

m+1)[F (un)− F (u)]+
r

m+1〈F
′(ũn+1), ũn+1 − u〉+ ϕ(un+1)− ϕ(u) ≤

(1− r
m+1)[F (un)− F (u)]+

r
m+1

∑m
i=1〈F ′(un + wn+1

1i )− F ′(ũn+1), un1i − w
n+1
1i 〉+

r
m+1〈F

′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉+

r
m+1

∑m
i=1[ϕ(un + un1i)− ϕ(un + wn+1

1i )]+
r

m+1 [ϕ(un + un0 )− ϕ(un + wn+1
0 )] + ϕ(un+1)− ϕ(u)

Consequently, we have

F (un+1)− F (u) + ϕ(un+1)− ϕ(u) + r
m+1

αM
p ||u− ũ

n+1||p ≤
(1− r

m+1)[F (un)− F (u) + ϕ(un)− ϕ(u)]+
r

m+1

∑m
i=1〈F ′(un + wn+1

1i )− F ′(ũn+1), un1i − w
n+1
1i 〉+

r
m+1〈F

′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉+

r
m+1

∑m
i=1[ϕ(un + un1i)− ϕ(un + wn+1

1i )]+
r

m+1 [ϕ(un + un0 )− ϕ(un + wn+1
0 )]

r
m+1 [ϕ(un)− ϕ(u)] + ϕ(un+1)− ϕ(un)

(3.29)
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As in [3], using (2.2) and Assumption 2.3, we get∑m
i=1〈F ′(un + wn+1

1i )− F ′(ũn+1), un1i − w
n+1
1i 〉+

〈F ′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉 ≤

βM (
∑m

i=1 ||w
n+1
1i ||+||w

n+1
0 ||)q−1[

∑m
i=1 ||un1i − w

n+1
1i ||+||un0 − w

n+1
0 ||] ≤

βM (m+ 1)
(p−1)(q−1)

p (
∑m

i=1 ||w
n+1
1i ||p + ||wn+1

0 ||p)
q−1
p ·

[
∑m

i=1(||un1i||+ ||w
n+1
1i ||) + ||un0 ||+ ||w

n+1
0 ||] ≤

βM (m+ 1)
(p−1)(q−1)

p (
∑m

i=1 ||w
n+1
1i ||p + ||wn+1

0 ||p)
q−1
p ·

(C0||u− un||+
∑m

i=1 ||w
n+1
1i ||+ ||w

n+1
0 ||) ≤

βM (m+ 1)
(p−1)(q−1)

p (
∑m

i=1 ||w
n+1
1i ||p + ||wn+1

0 ||p)
q−1
p ·

(C0||u− ūn+1||+ (1 + C0)(
∑m

i=1 ||w
n+1
1i ||+ ||w

n+1
0 ||)) ≤

βMC0(m+ 1)
(p−1)(q−1)

p (
∑m

i=1 ||w
n+1
1i ||p + ||wn+1

0 ||p)
q−1
p ||u− ūn+1||+

βM (1 + C0)(m+ 1)
(p−1)q
p (

∑m
i=1 ||w

n+1
1i ||p + ||wn+1

0 ||p)
q
p

But, for any ε > 0, r > 1 and x, y ≥ 0, we have x
1
r y ≤ εx + 1

ε
1
r−1

y
r
r−1 .

Therefore, we get∑m
i=1〈F ′(un + wn+1

1i )− F ′(ũn+1), un1i − w
n+1
1i 〉+

〈F ′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉 ≤

βM (1 + C0)(m+ 1)
(p−1)q
p (

∑m
i=1 ||w

n+1
1i ||p + ||wn+1

0 ||p)
q
p+

βMC0
(m+1)

(p−1)(q−1)
p

ε
1
p−1

(
∑m

i=1 ||w
n+1
1i ||p + ||wn+1

0 ||p)
q−1
p−1 +

βMC0ε(m+ 1)
(p−1)(q−1)

p ||u− ūn+1||p

(3.30)

for any ε > 0. Also, using (3.22) and (3.3), we get

r
m+1

∑m
i=1[ϕ(un + un1i)− ϕ(un + wn+1

1i )]+
r

m+1 [ϕ(un + un0 )− ϕ(un + wn+1
0 )]+

r
m+1 [ϕ(un)− ϕ(u)] + ϕ(un+1)− ϕ(un) ≤
r

m+1 [
∑m

i=1 ϕ(un + un1i) + ϕ(un + un0 )−mϕ(un)− ϕ(u)] ≤ 0

From (3.29) and (3.30), we have

F (un+1)− F (u) + ϕ(un+1)− ϕ(u)+

r
m+1 [αMp − βMC0ε(m+ 1)

(p−1)(q−1)
p ]||u− ũn+1||p ≤

(1− r
m+1)[F (un)− F (u) + ϕ(un)− ϕ(u)]+

r
m+1βM [(1 + C0)(m+ 1)

(p−1)q
p (

∑m
i=1 ||w

n+1
1i ||p + ||wn+1

0 ||p)
q
p+

C0
(m+1)

(p−1)(q−1)
p

ε
1
p−1

(
∑m

i=1 ||w
n+1
1i ||p + ||wn+1

0 ||p)
q−1
p−1 ]

(3.31)

for any ε > 0.
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Step 4. From (3.31) and (3.26), we get

F (un+1)− F (u) + ϕ(un+1)− ϕ(u)+

r
m+1 [αMp − βMC0ε(m+ 1)

(p−1)(q−1)
p ]||u− ũn+1||p ≤

(1− r
m+1)[F (un)− F (u) + ϕ(un)− ϕ(u)]+

r
m+1βM [(m+1

r )
q
p
(1+C0)(m+1)

(p−1)q
p

(
αM
p

)
q
p

·

(F (un)− F (un+1) + ϕ(un)− ϕ(un+1))
q
p+

(m+1
r )

q−1
p−1

C0(m+1)
(p−1)(q−1)

p

(
αM
p

)
q−1
p−1 ε

1
p−1

·

(F (un)− F (un+1) + ϕ(un)− ϕ(un+1))
q−1
p−1 ]

With

ε =
αM
p

1

βMC0(m+ 1)
(p−1)(q−1)

p

,

the above equation becomes,

F (un+1)− F (u) + ϕ(un+1)− ϕ(u) ≤
m+1−r

r [F (un)− F (un+1) + ϕ(un)− ϕ(un+1)]+

βM [(m+1
r )

q
p
(1+C0)(m+1)

(p−1)q
p

(
αM
p

)
q
p

·

(F (un)− F (un+1) + ϕ(un)− ϕ(un+1))
q
p+

(m+1
r )

q−1
p−1

β
1
p−1
M C

p
p−1
0 (m+1)q−1

(
αM
p

)
q
p−1

·

(F (un)− F (un+1) + ϕ(un)− ϕ(un+1))
q−1
p−1 ]

(3.32)

Using (3.6), we see that error estimations in (3.13) and (3.15) can be
obtained from (3.12) and (3.14), respectively.

Now, if p = q = 2, from the above equation, we easily get equation
(3.12), where C1 is given in (3.19).

Finally, if q < p, from (3.22), (3.23) and (3.32), we get

F (un+1) + ϕ(un+1)− F (u)− ϕ(u) ≤
C3[F (un) + ϕ(un)− F (un+1)− ϕ(un+1)]

q−1
p−1 .

(3.33)

where C3 is given in (3.21). Now, from (3.33), we get

F (un+1) + ϕ(un+1)− F (u)− ϕ(u) + 1

C
p−1
q−1
3

[F (un+1) + ϕ(un+1)−

F (u)− ϕ(u)]
p−1
q−1 ≤ F (un) + ϕ(un)− F (u)− ϕ(u),

and, like in [3], for instance, we have

F (un+1) + ϕ(un+1)− F (u)− ϕ(u) ≤
[(n+ 1)C2 + (F (u0) + ϕ(u0)− F (u)− ϕ(u))

q−p
q−1 ]

q−1
q−p ,

(3.34)

where C2 is given in (3.20). Equation (3.34) is another form of (3.14). 2



206 Lori Badea

4. Subspace correction algorithms for quasi-variational inequali-
ties

Let ϕ : V ×V → R be a functional such that, for any u ∈ K, ϕ(u, ·) : K → R
is convex and lower semicontinuous. We assume that F + ϕ is coercive in
the sense that

F (v) + ϕ(u, v)→∞, as ‖v‖ → ∞, v ∈ K, for any u ∈ K (4.1)

if K is not bounded.
In this section we assume that p = q = 2 in (2.1) and (2.2). Also, we

assume that for any M > 0 there exists cM > 0 such that

|ϕ(v1, w2) + ϕ(v2, w1)− ϕ(v1, w1)− ϕ(v2, w2)| ≤
cM‖v1 − v2‖‖w1 − w2‖

(4.2)

for any v1, v2, w1 w2 ∈ K, ‖v1‖, ‖v2‖, ‖w1‖ ‖w2‖ ≤ M . As in the
previous section, we introduce additional conditions concerning ϕ. In the
multiplicative case, we suppose that∑m

i=1[ϕ(u,w +
∑i−1

j=1w1j + u1i)− ϕ(u,w +
∑i−1

j=1w1j + w1i)]+

ϕ(u,w + w1 + u0)− ϕ(w + w1 + w0) ≤
ϕ(u, v)− ϕ(u,w +

∑m
i=1w1i + w0)

(4.3)

for u,w ∈ K, u1i, w1i ∈ V1i and u0, w0 ∈ V0 satisfying Assumption 2.2. Also,
for the additive case, we suppose that

m∑
i=1

ϕ(u,w + u1i) + ϕ(u,w + u0) ≤ mϕ(u,w) + ϕ(u, u) (4.4)

for any u,w ∈ K, u1i ∈ V1i, i = 1, . . . ,m, and u0 ∈ V0 which satisfy
Assumption 2.3.

Now, we consider the quasi-variational inequality

u ∈ K : 〈F ′(u), v − u〉+ ϕ(u, v)− ϕ(u, u) ≥ 0, for any v ∈ K. (4.5)

Since ϕ is convex in the second variable and F is differentiable and satisfies
(2.1), problem (4.5) is equivalent with the minimization problem

u ∈ K : F (u) + ϕ(u, u) ≤ F (v) + ϕ(u, v), for any v ∈ K. (4.6)

As in [4], we can show that problem (4.5) has a unique solution if there
exists a constant κ < 1 such that cM

αM
≤ κ, for any M > 0. In view of (2.4)

we see that, for a given M > 0 such that the solution u of (4.5) satisfies
‖u‖ ≤M , we have

αM
2 ‖v − u‖

2 ≤ F (v)− F (u) + ϕ(u, v)− ϕ(u, u),
for any v ∈ K, ‖v‖ ≤M.

(4.7)

To solve problem (4.5), we can introduce three multiplicative algorithms.
The first one can be written as,
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Algorithm 4.1. We start the algorithm with an arbitrary u0 ∈ K. Assum-
ing that at iteration n ≥ 0 we have un ∈ K, we successively perform the
following steps:

- at the level 1, as in Assumption 2.1, with w = un, we construct the
convex set K1. Then, we first write wn1 = 0, and, for i = 1, . . . ,m, we

successively calculate wn+1
1i ∈ V1i, w

n+ i−1
m

1 + wn+1
1i ∈ K1, the solution of the

inequalities

〈F ′(un + w
n+ i−1

m
1 + wn+1

1i ), v1i − wn+1
1i 〉+

ϕ(vn+1
1i , un + w

n+ i−1
m

1 + v1i)−
ϕ(vn+1

1i , un + w
n+ i−1

m
1 + wn+1

1i ) ≥ 0,

(4.8)

for any v1i ∈ V1i, w
n+ i−1

m
1 + v1i ∈ K1, and write w

n+ i
m

1 = w
n+ i−1

m
1 + wn+1

1i .
Above, the first argument of ϕ is

vn+1
1i = un + w

n+ i−1
m

1 + wn+1
1i . (4.9)

- at the level 0, as in Assumption 2.1, we construct the convex set K0

with w = un and w1 = wn+1
1 . Then, we calculate wn+1

0 ∈ K0, the solution
of the inequality

〈F ′(un + wn+1
1 + wn+1

0 ), v0 − wn+1
0 〉+

ϕ(vn+1
0 , un + wn+1

1 + v0)− ϕ(vn+1
0 , un + wn+1

1 + wn+1
0 ) ≥ 0,

(4.10)

for any v0 ∈ K0, where

vn+1
0 = un + wn+1

1 + wn+1
0 . (4.11)

- we write un+1 = un + wn+1
1 + wn+1

0 .

The other algorithms are variants of the above algorithm in which we change
the first argument of ϕ, taking

vn+1
1i = un + w

n+ i−1
m

1 and vn+1
0 = un + wn+1

1 (4.12)

or

vn+1
1i = vn+1

0 = un (4.13)

Also, we introduce two additive algorithms. A first algorithm corresponding
to the subspaces V0, V11, · · · , V1m and the convex set K is written as follows

Algorithm 4.2. We start the algorithm with an u0 ∈ K. Assuming that at
iteration n ≥ 0 we have un ∈ K, we simultaneously perform, the following
steps:
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- we construct the convex sets K1 and K0 as in Assumption 2.1 with
w = un and w1 = 0,

- we simultaneously calculate,

· wn+1
1i ∈ V1i ∩K1, the solutions of the inequalities

〈F ′(un + wn+1
1i ), v1i − wn+1

1i 〉+
ϕ(vn+1

1i , un + v1i)− ϕ(vn+1
1i , un + wn+1

1i ) ≥ 0,
(4.14)

for any v1i ∈ V1i ∩K1, write wn+1
1 =

∑m
i=1w

n+1
1i , and

· wn+1
0 K0, the solution of the inequality

〈F ′(un + wn+1
0 ), v0 − wn+1

0 〉+
ϕ(vn+1

0 , un + v0)− ϕ(vn+1
0 , un + wn+1

0 ) ≥ 0,
(4.15)

for any v0 ∈ K0, where

vn+1
1i = vn+1

0 = un + wn+1
1i . (4.16)

Then, we write un+1 = un + r
m+1(wn+1

1 + wn+1
0 ), with a fixed 0 < r ≤ 1.

A simplified variant of Algorithm 4.2 is obtained by taking

vn+1
1i = un + wn+1

1i and vn+1
0 = un + wn+1

0 . (4.17)

Like for problem (4.5), we can prove that the problems in the above algo-
rithms are equivalent with minimization problems, and they have unique
solutions if there exists a constant κ < 1 such that cM

αM
≤ κ, for any M > 0.

The following theorem proves that if cM is small enough, then Algorithms
4.1, 4.2 and their variants are convergent.

Theorem 4.1. Let V be a reflexive Banach, V0, V11, · · · , V1m some closed
subspaces of V , and K a non empty closed convex subset of V which sat-
isfies Assumption 2.1, Assumption 2.2 when we apply Algorithms 4.1, and
Assumption 2.3 in the case of Algorithms 4.2. Also, we assume that F is
Gâteaux differentiable and satisfies (2.1) and (2.2) with p = q = 2, the func-
tional ϕ is convex and lower semicontinuous in the second variable, satisfies
(4.2), (4.3) for Algorithm 4.1, (4.4) for Algorithm 4.2, and F + ϕ satisfies
the coercivity condition (4.1) if K is not bounded. Let

M = sup{||v|| : F (v) + ϕ(u, v) ≤ F (u0) + ϕ(u, u0)} (4.18)

where u is the solution of problem (4.5) and u0 is its initial approximation in
Algorithms 4.1 or 4.2. On these conditions, there exists a constant χM > 0
and if

cM
αM
≤ χM (4.19)
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then, the norms of the approximations of the solution u of problem (4.5)
obtained from these algorithms are bounded by M and we have the following
error estimations:

F (un) + ϕ(u, un)− F (u)− ϕ(u, u) ≤
( C1
C1+1)n[F (u0) + ϕ(u, u0)− F (u)− ϕ(u, u)],

(4.20)

‖un − u‖2 ≤ 2
αM

( C1
C1+1)n[F (u0) + ϕ(u, u0)− F (u)− ϕ(u, u)]. (4.21)

The constant C1 > 0 depends on the functionals F and ϕ, the solution u,
the initial approximation u0, m, and the constant C0.

Remark 4.1. For Algorithm 4.1, constant C1 can be written as,

C1 = C2/C3

C2 = βM (m+ 1)(1 + 2C0 + C0
ε1

)+

cM (m+ 1)(1 + 2C0 + 1+3C0
ε2

)

C3 = αM
2 − cM (1 + ε3)(m+ 1)

(4.22)

where

ε1 = ε2 =
2cM (m+ 1)

αM
2 − cM (m+ 1)

, ε3 =
αM
2 − cM (m+ 1)

2cM (m+ 1)
, (4.23)

and χM is the smallest positive solution of equation

(m+ 1)χM +

√
2(m+ 1)(25C0 + 8)

βM
αM

χM −
1

2
= 0. (4.24)

Also, in the case of Algorithm 4.2, constant C1 can be written as,

C1 = m+1−r
r + C2

m+1
r

C2 = m+1
C3

[βM (1 + C0(1 + 1
2ε2

))+

cM (1 + C0 + 1+2C0
2ε3

)]

C3 = αM
2 − cM (1 + 1

2ε1
)(m+ 1)

(4.25)

where

ε1 = ε2 = ε3 =
cM (m+ 1)

αM
2 − cM (m+ 1)

, (4.26)

and χM is the smallest positive solution of equation

(12 − C0χM )αMβM =

(1 + 3C0)
χM (m+1)

1
2
−χM (m+1)

+ 2(1 + C0)
(χM )2(m+1)2

[ 1
2
−χM (m+1)]2

(4.27)
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Proof of Theorem 4.1. As for Theorem 3.1, the proof in the case of the
multiplicative Algorithms 4.1 is identical with that of Theorem 2 in [4],
except the changes of notation due to the introduction of the convex sets
K1 and K0, and will be omitted. Moreover, we shall prove the theorem only
for Algorithm 4.2, the proof of its variant with vn+1

1i and vn+1
0 in (4.17) is

similar.
Step 1. Evidently, the existence of M > 0 satisfying (4.18) follows from

the coercivity of F + ϕ. Now, we show that this M has the properties in
the statement of the theorem. In this proof, equations (2.1), (2.2) and (4.2)
will be used with u, v, v1, v2, w1 and w2 replaced only with the solution
u of problem (4.5) or its approximations obtained from Algorithms 4.1, 4.2
or their variants. Let us assume that Mn is the maximum of the norms of
these approximations obtained after n iterations. With this Mn, we shall
get that error estimation (4.20) holds until the iteration n. Even if C1

depends on Mn, this error estimation implies F (un)+ϕ(un) ≤ F (u0)+ϕ(u0).
Moreover, using the minimization problems equivalent with the inequalities
in the algorithms we get that the other approximations of u satisfy a similar
equation, i.e. Mn ≤M .

Step 2. From (4.14), (4.15) and (2.4), we get that, for any n ≥ 0 and
i = 1, · · · ,m,

F (un)− F (un + wn+1
1i ) + ϕ(vn+1

1i , un)−
ϕ(vn+1

1i , un + wn+1
1i ) ≥ αM

2 ||w
n+1
1i ||2,

F (un)− F (un + wn+1
0 ) + ϕ(vn+1

0 , un)−
ϕ(vn+1

0 , un + wn+1
0 ) ≥ αM

2 ||w
n+1
0 ||2

(4.28)

Also, in view of (4.7), we get

F (un + wn+1
1i )− F (u) + ϕ(u, un + wn+1

1i )−
ϕ(u, u) ≥ αM

2 ‖u
n + wn+1

1i − u‖2
F (un + wn+1

0 )− F (u) + ϕ(u, un + wn+1
0 )−

ϕ(u, u) ≥ αM
2 ‖u

n + wn+1
0 − u‖2

(4.29)

for n ≥ 0 and i = 1, · · · ,m. From (3.22) and (4.28), we have

F (un+1) ≤ (1− r)F (un) + r
m+1 [

∑m
i=1 F (un + wn+1

1i ) + F (un + wn+1
0 )] ≤

F (un)− r
m+1

αM
2 [

∑m
i=1 ||w

n+1
1i ||2 + ||wn+1

0 ||2]+
r

m+1 [
∑m

i=1(ϕ(vn+1
1i , un)− ϕ(vn+1

1i , un + wn+1
1i ))+

ϕ(vn+1
0 , un)− ϕ(vn+1

0 , un + wn+1
0 )]

Consequently, we have

r
m+1

αM
2 [

∑m
i=1 ||w

n+1
1i ||2 + ||wn+1

0 ||2] ≤ F (un)− F (un+1)+
r

m+1 [
∑m

i=1(ϕ(vn+1
1i , un)− ϕ(vn+1

1i , un + wn+1
1i ))+

ϕ(vn+1
0 , un)− ϕ(vn+1

0 , un + wn+1
0 ))]

(4.30)
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Using (4.2) and the convexity of ϕ in the second variable, we have

r
m+1 [

∑m
i=1(ϕ(vn+1

1i , un)− ϕ(vn+1
1i , un + wn+1

1i ))+

ϕ(vn+1
0 , un)− ϕ(vn+1

0 , un + wn+1
0 )]− ϕ(u, un) + ϕ(u, un+1) ≤

r
m+1 [

∑m
i=1(ϕ(vn+1

1i , un)− ϕ(vn+1
1i , un + wn+1

1i ))+

ϕ(vn+1
0 , un)− ϕ(vn+1

0 , un + wn+1
0 )]+

r
m+1 [

∑m
i=1(ϕ(u, un + wn+1

1i )− ϕ(u, un))+

ϕ(u, un + wn+1
0 )− ϕ(u, un)] ≤

r
m+1cM [

∑m
i=1 ||un + wn+1

1i − u||||w
n+1
1i ||+

||un + wn+1
0 − u||||wn+1

0 ||] ≤
r

m+1cM [
∑m

i=1 ||w
n+1
1i ||+ ||w

n+1
0 ||+

||ũn+1 − u||][
∑m

i=1 ||w
n+1
1i ||+ ||w

n+1
0 ||] ≤

r
m+1cM (1 + 1

2ε1
)(m+ 1)[

∑m
i=1 ||w

n+1
1i ||2 + ||wn+1

0 ||2]+
r

m+1cM
ε1
2 ||ũ

n+1 − u||2

(4.31)

for any ε1 > 0, where ũn+1 is defined in (3.27). In view of (4.30) and (4.31),
we get

[αM2 − cM (1 + 1
2ε1

)(m+ 1)][
∑m

i=1 ||w
n+1
1i ||2 + ||wn+1

0 ||2] ≤
m+1
r [F (un)− F (un+1) + ϕ(u, un)− ϕ(u, un+1)]+

cM
ε1
2 ||ũ

n+1 − u||2
(4.32)

for any ε1 > 0.

Step 3. Applying Assumption 2.3 for w = un and v = u, we get a
decomposition un0 , un11, · · · , un1m of u − un. From Assumption 2.3, we can
replace v1i and v0 by un1i and un0 in (4.14) and (4.15), respectively, and in
view of the convexity of F , (2.4), (4.14) and (4.15), we obtain

F (un+1)− F (u) + ϕ(u, un+1)− ϕ(u, u) + r
m+1

αM
2 ||u− ũ

n+1||2 ≤
(1− r

m+1)[F (un)− F (u)] + r
m+1 [F (ũn+1)− F (u)+

αM
2 ||u− ũ

n+1||2] + ϕ(u, un+1)− ϕ(u, u) ≤ (1− r
m+1)[F (un)− F (u)]+

r
m+1〈F

′(ũn+1), ũn+1 − u〉+ ϕ(u, un+1)− ϕ(u, u) ≤
(1− r

m+1)[F (un)− F (u)]+
r

m+1 [
∑m

i=1〈F ′(un + wn+1
1i )− F ′(ũn+1), un1i − w

n+1
1i 〉+

〈F ′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉]+

r
m+1 [

∑m
i=1(ϕ(vn+1

1i , un + un1i)− ϕ(vn+1
1i , un + wn+1

1i ))+

ϕ(vn+1
0 , un + un0 )− ϕ(vn+1

0 , un + wn+1
0 )]+

ϕ(u, un+1)− ϕ(u, u)
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Consequently, we have

F (un+1)− F (u) + ϕ(u, un+1)− ϕ(u, u)+
r

m+1
αM
2 ||u− ũ

n+1||2 ≤
(1− r

m+1)[F (un)− F (u) + ϕ(u, un)− ϕ(u, u)]+
r

m+1 [
∑m

i=1〈F ′(un + wn+1
1i )− F ′(ũn+1), un1i − w

n+1
1i 〉+

〈F ′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉]+

r
m+1 [

∑m
i=1(ϕ(vn+1

1i , un + un1i)− ϕ(vn+1
1i , un + wn+1

1i ))+

ϕ(vn+1
0 , un + un0 )− ϕ(vn+1

0 , un + wn+1
0 )]+

r
m+1 [ϕ(u, un)− ϕ(u, u)] + ϕ(u, un+1)− ϕ(u, un)

(4.33)

Using (2.2) for p = q = 2, Assumption 2.3 and the Hölder inequality, simi-
larly with (3.30), we get∑m

i=1〈F ′(un + wn+1
1i )− F ′(ũn+1), un1i − w

n+1
1i 〉+

〈F ′(un + wn+1
0 )− F ′(ũn+1), un0 − w

n+1
0 〉 ≤

βM (m+ 1)[1 + C0(1 + 1
2ε2

)][
∑m

i=1 ||w
n+1
1i ||2 + ||wn+1

0 ||2]+
βMC0

ε2
2 ||u− ũ

n+1||2
(4.34)

for any ε2 > 0. Similarly with (3.22), from the convexity of ϕ in the second
variable, we get

ϕ(u, un+1) ≤ (1−r)ϕ(u, un)+
r

m+ 1
[
m∑
i=1

ϕ(u, un+wn+1
1i )+ϕ(u, un+wn+1

0 )]

Using this equation, in view of (4.4), (4.2) and Assumption 2.3, we have

r
m+1 [

∑m
i=1(ϕ(vn+1

1i , un + un1i)− ϕ(vn+1
1i , un + wn+1

1i ))+

ϕ(vn+1
0 , un + un0 )− ϕ(vn+1

0 , un + wn+1
0 )]+

r
m+1 [ϕ(u, un)− ϕ(u, u)] + ϕ(u, un+1)− ϕ(u, un) ≤
r

m+1 [
∑m

i=1(ϕ(vn+1
1i , un + un1i)− ϕ(vn+1

1i , un + wn+1
1i ))+

ϕ(vn+1
0 , un + un0 )− ϕ(vn+1

0 , un + wn+1
0 )]+

r
m+1 [

∑m
i=1 ϕ(u, un + wn+1

1i ) + ϕ(u, un + wn+1
0 )]−

r
m+1 [mϕ(u, un) + ϕ(u, u)] ≤
r

m+1 [
∑m

i=1(ϕ(vn+1
1i , un + un1i)− ϕ(vn+1

1i , un + wn+1
1i ))+

ϕ(vn+1
0 , un + un0 )− ϕ(vn+1

0 , un + wn+1
0 )]+

+ r
m+1 [

∑m
i=1(ϕ(u, un + wn+1

1i )− ϕ(u, un + un1i))+

ϕ(u, un + wn+1
0 )− ϕ(u, un + un0 )] ≤

r
m+1cM [

∑m
i=1 ‖un + wn+1

1i − u‖‖w
n+1
1i − uni ‖+

‖un + wn+1
0 − u‖‖wn+1

0 − un0‖] ≤
r

m+1cM [‖ũn+1 − u‖+
∑m

i=1 ‖w
n+1
1i ‖+ ‖wn+1

0 ‖]
[
∑m

i=1(‖w
n+1
1i ‖+ ‖uni ‖) + ‖wn+1

0 ‖+ ‖un0‖] ≤
r

m+1cM [‖ũn+1 − u‖+
∑m

i=1 ‖w
n+1
1i ‖+ ‖wn+1

0 ‖]·
[C0‖ũn+1 − u‖+ (1 + C0)(

∑m
i=1 ‖w

n+1
1i ‖+ ‖wn+1

0 )] ≤
r

m+1cM [C0 + (1 + 2C0)
ε3
2 ]‖ũn+1 − u‖2+

rcM [1 + C0 + 1+2C0
2ε3

][
∑m

i=1 ‖w
n+1
1i ‖2 + ‖wn+1

0 ‖2]

(4.35)
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for any ε3 > 0. Consequently, from (4.33)–(4.35), we have

F (un+1)− F (u) + ϕ(u, un+1)− ϕ(u, u)+
{αM2 − βMC0

ε2
2 − cM [C0 + (1 + 2C0)

ε3
2 ]}||u− ũn+1||2 ≤

m+1−r
r [F (un)− F (un+1) + ϕ(u, un)− ϕ(u, un+1)]+

(m+ 1){βM [1 + C0(1 + 1
2ε2

)] + cM [1 + C0 + 1+2C0
2ε3

]}·
[
∑m

i=1 ||w
n+1
1i ||2 + ||wn+1

0 ||2]

(4.36)

for any ε2, ε3 > 0.
Step4. Writing C1, C2 and C3 as in (4.25), and

C4 = αM
2 − βMC0

ε2
2 − cM (C0 + 1+2C0

2 ε3)− cM ε1
2 C2

then, from (4.36) and (4.32), on the condition C3 > 0, we get

F (un+1)− F (u) + ϕ(u, un+1)− ϕ(u, u) + C4||u− ũn+1||2 ≤
C1[F (un)− F (un+1) + ϕ(u, un)− ϕ(u, un+1)]

(4.37)

Now, if C4 ≥ 0, then (4.20) can be obtained from (4.37). Also, in view of
(4.7), (4.21) can be obtained from (4.20).

We can easily see that C4, as a function of ε1, ε2, and ε3, reaches its
maximum for the values given in (4.26), and this is C4max = αM

2 − cMC0 −
[βMC0+cM (1+2C0)]

cM (m+1)
αM
2
−cM (m+1)

−(1+C0)(βM +cM )
c2M (m+1)2

[
αM
2
−cM (m+1)]2

. Con-

dition C4max ≥ 0 is satisfied if (12 − C0
cM
αM

)αMβM ≥ (1 + 3C0)
cM
αM

(m+1)

1
2
− cM
αM

(m+1)

+ 2(1 + C0)
(
cM
αM

)2(m+1)2

[ 1
2
− cM
αM

(m+1)]2
. Writing χM = cM

αM
, we see that equation (4.27)

has a solution χM ∈ (0, 1
2C0

), and if it is the smallest one and we take
cM
αM
≤ χM , then C4max ≥ 0. The value of C3 for ε1 in (4.26) is C3max =

1
2(αM2 − cM (m + 1)). Since we can always take C0 ≥ m + 1, the above
solution χM of equation (4.27) satisfies χM < 1

2(m+1) , and therefore, we get

C3max > 0 for any cM
αM
≤ χM . 2

5. Convergence rate of the two-level methods

Algorithms in the previous sections can be viewed as two-level Schwarz meth-
ods in a subspace correction variant if we use the finite element spaces. The
convergence rates given in Theorems 3.1 and 4.1 depend on the functionals
F and ϕ, the number m of the subspaces and the constant C0 introduced in
Assumption 2.2 or 2.3. Since, in the multiplicative methods, the number of
subspaces can be associated with the number of colors needed to mark the
subdomains such that the subdomains with the same color do not intersect
with each other, and we can use multiprocessor machines for the additive
methods, we can conclude that our convergence rates essentially depend on
the constant C0.
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We prove in this section that Assumptions 2.2 and 2.3 as well as condi-
tions (3.2), (3.3), (4.3) and (4.4) hold for closed convex setsK of two-obstacle
type for which we construct level convex sets K1 and K2 as in Assumption
2.1. Also, we are able to explicitly write the dependence of C0 on the do-
main decomposition and mesh parameters. Therefore, from Theorems 3.1
and 4.1, we can conclude that the two-level methods globally converge for
variational inequalities of the second kind and quasi-variational inequalities.
Moreover, the introduced methods have an optimal computing complexity
per iteration, in view of the dependence of C0 on the mesh and domain
decomposition parameters, the convergence rate is optimal for the varia-
tional inequalities of the second kind. This convergence rate depends very
weakly on the mesh and domain decomposition parameters, and it is even
independent of them for some particular choices.

We consider two simplicial mesh partitions Th and TH of the domain
Ω ⊂ Rd of mesh sizes h and H, respectively. The mesh Th is a refinement
of TH , and we assume that both the families, of fine and coarse meshes,
are regular (see [6], p. 124, for instance). We assume that the domain Ω is
decomposed as

Ω =
m⋃
i=1

Ωi (5.1)

and that Th supplies a mesh partition for each subdomain Ωi, i = 1, . . . ,m.
The overlapping parameter of this decomposition will be denoted by δ. In
addition, we suppose that there exists a constant C, independent of both
meshes, such that the diameter of the connected components of each Ωi

is less than CH. We point out that the domain Ω may be different from
Ω0 = ∪τ∈TH τ , but we assume that if a node of TH lies on ∂Ω0 then it also
lies on ∂Ω, and there exists a constant C, independent of both meshes, such
that dist(x,Ω0) ≤ CH for any node x of Th.

We consider the piecewise linear finite element space

Vh = {v ∈ C0(Ω̄) : v|τ ∈ P1(τ), τ ∈ Th, v = 0 on ∂Ω}, (5.2)

and also, for i = 1, . . . ,m, let

V i
h = {v ∈ Vh : v = 0 in Ω\Ωi} (5.3)

be the subspaces of Vh corresponding to the domain decomposition Ω1, . . . ,
Ωm. We also introduce the continuous, piecewise linear finite element space
corresponding to the H-level,

V 0
H = {v ∈ C0(Ω̄0) : v|τ ∈ P1(τ), τ ∈ TH , v = 0 on ∂Ω0}, (5.4)

where the functions v are extended with zero in Ω\Ω0. The spaces Vh and
V i
h , i = 1, . . . ,m, and V 0

H are considered as subspaces of W 1,s, for some fixed
1 < s <∞. We denote by ‖ · ‖0,s the norm in Ls, and by ‖ · ‖1,s and | · |1,s
the norm and seminorm in W 1,s, respectively.
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We consider problems (3.4) and (4.5) in the space V = Vh with the
convex set of the form

K = {v ∈ Vh : a ≤ v ≤ b}, (5.5)

where a, b ∈ Vh, a ≤ b. The two-level methods are obtained from the
algorithms in the previous sections with V0 = V 0

H , V11 = V 1
h , . . . , V1m = V m

h .
In general, the functionals ϕ in the original problems do not satisfy the

technical conditions (3.2), (3.3) and (4.4), (4.3). For this reason, they have
been replaced in [4] by approximations, obtained by numerical quadrature in
Vh. In the case of the variational inequalities of the second kind, we assume
that the functional ϕ is of the form

ϕ(v) =
∑
k∈Nh

sk(h)φ(v(xk)) (5.6)

where φ : R→ R is a continuous and convex function, Nh is the set of nodes
of the mesh partition Th, and sk(h) ≥ 0, k ∈ Nh, are some non-negative real
numbers which may depend on the mesh size h. For the quasi-variational
inequalities, we assume that the functional ϕ is of the form

ϕ(u, v) =
∑
k∈Nh

sk(h)φ(u, v(xk)) (5.7)

where φ : Vh × R → R is continuous, and, as above, sk(h) ≥ 0, k ∈ Nh,
are some non-negative real numbers which may depend on the mesh size h.
Also, we assume that φ(u, ·) : R→ R is convex for any u ∈ Vh.

To verify that Assumptions 2.1–2.3, conditions (3.2) and (3.3) (for func-
tionals ϕ of the form (5.6)) and (4.4) and (4.3) (for the functionals ϕ in
(5.7)) hold for the convex set in (5.5), we use the nonlinear interpolation
operator IH : Vh → V 0

H which has been introduced in [2].
Now, we define the level convex sets K1 and K0, satisfying Assumption

2.1. Let K be the convex set defined in (5.5), and w ∈ K. We consider

K1 = [a1, b1], a1 = a− w, b1 = b− w,
K0 = [a0, b0], a0 = IH(a1 − w1), b0 = IH(b1 − w1)

(5.8)

where w1 has been chosen in K1. Similar level convex sets have been con-
structed in [5] for a multilevel method applied to the constrained minimiza-
tion of differentiable functionals. The following proposition is the two-level
variant of Proposition 3.1 in [5].

Proposition 5.1. Assumption 2.1 holds for the convex sets K1 and K0

defined in (5.8) for any w ∈ K and w1 ∈ K1.

Now, let us consider u,w ∈ K and define

u1 = u− w − IH(u− w − w1) and u0 = IH(u− w − w1). (5.9)

where w1 ∈ K1. The following result is a particular case of Lemmas 3.2 and
3.3 in [5],
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Lemma 5.1. If K1 and K2 are defined in (5.8), and u1 and u2 are defined
in (5.9), then

u1 ∈ K1, u0 ∈ K0 and u− w = u1 + u0 (5.10)

and

|u0|1,s, |u1|1,s ≤ CCd,s(H,h)[|w1|1,s + |u− w|1,s],
||u1||0,s ≤ ||w1||0,s + CHCd,s(H,h)[|w1|1,s + |u− w|1,s]
||u0||0,s ≤ C[||u− w||0,s + ||w1||0,s].

(5.11)

where

Cd,s(H,h) =


1 if d = s = 1 or

1 ≤ d < s ≤ ∞
(ln H

h + 1)
d−1
d if 1 < d = s <∞

(Hh )
d−s
s if 1 ≤ s < d <∞,

(5.12)

To prove that Assumption 2.2 holds, we associate to the decomposition
(5.1) of Ω some functions θi ∈ C(Ω̄i), θi|τ ∈ P1(τ) for any τ ∈ Th, i =
1, · · · ,m, such that

0 ≤ θi ≤ 1 on Ω, θi = 0 on ∪mj=i+1 Ωj\Ωi and

θi = 1 on Ωi\ ∪mj=i+1 Ωj .
(5.13)

Such functions θi with the above properties have been introduced in [1]
and they are constructed using unity partitions of the domains ∪mj=iΩj , i =
1, . . . ,m. Using these functions we define

u11 = Lh(θ1u1 + (1− θ1)w11) and

u1i = Lh(θi(u1 −
∑i−1

j=1 u1j) + (1− θi)w1i), i = 2, . . . ,m,
(5.14)

Lh being the P1-Lagrangian interpolation. Also, to prove that Assump-
tion 2.3 holds, we associate to the decomposition (5.1), a unity partition
{θi}1≤i≤m, with θi ∈ C0(Ω̄), θi|τ ∈ P1(τ) for any τ ∈ Th, i = 1, · · · ,m,

0 ≤ θi ≤ 1 on Ω, supp θi ⊂ Ωi and
∑m

i=1 θi = 1 (5.15)

and write

u1i = Lh(θiu1), i = 1, . . . ,m. (5.16)

Since the overlapping size of the domain decomposition is δ, the functions
θi in (5.13) and (5.15) can be chosen to satisfy

|∂xkθi| ≤ C/δ, a.e. in Ω, for any k = 1, . . . , d (5.17)

As in (5.17), we denote in the following by C a generic constant which does
not depend on either the mesh or the decomposition of the domain.
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Using the u0 in (5.9) and u1i, i = 1, . . . ,m in (5.14) or in (5.16) we can
prove the following proposition which shows that the convergence rate of
the algorithms depends very weakly (through constant C0 in Assumptions
2.2 and 2.3) on the the mesh and domain decomposition parameters and is
independent of them if H/δ and H/h are kept constant when h → 0. The
result concerning Assumption 2.2 is a particular case of Proposition 3.4 in
[5] and the proof for Assumption 2.3 is very similar. Also, the proof of con-
ditions (3.2) and (4.3), for the multiplicative algorithms, is almost identical
with that in Proposition 2 in [4]. In the case of the additive algorithms, the
proof of conditions (3.3) and (4.4) uses the same techniques and is similar.

Proposition 5.2. Assumptions 2.2 and 2.3 hold for the convex sets K1 and
K0 defined in (5.8) with the constant C0 written as

C0 = C(m+ 1)Cd,s(H,h)[1 + (m− 1)Hδ ] (5.18)

where C is independent of the mesh and domain decomposition parameters,
and Cd,s(H,h) is given in (5.12). Also, conditions (3.2) and (3.3), for func-
tionals ϕ of the form (5.6), and (4.3) and (4.4), for the functionals ϕ in
(5.7), are satisfied.

Remark 5.1. In this Section 5, we have assumed that, in the case of the
quasi-variational inequalities, the functional ϕ is of the form (5.7). We notice
that the proofs of Proposition 5.2 also holds if we replace the functional
ϕ(u, v) in (5.7) with

ϕ(u, v) =
∑
k∈Nh

sk(h)φ(u(xk), v(xk)) (5.19)

where sk(h) ≥ 0, and φ : R×R→ R is continuous and convex in the second
variable. In general, (5.6), (5.7) or (5.19) represent numerical approxima-
tions of some integrals.

The results have referred to problems in W 1,s with Dirichlet boundary
conditions. We point out that similar results can be obtained for problems
in (W 1,s)d or problems with mixed boundary conditions.
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