On socle and radical of modular lattices

Toma Albu and Mihai Iosif

Dedicated to Professor Nicolaie D. Cristescu in honour of his 85th birthday

Abstract - In this paper we continue the investigation of preradicals in linear modular lattices started in our previous paper [T. Albu, M. Iosif, *Lattice preradicals*, submitted 2014]. Specifically, we show that the socle and the radical define preradicals in complete linear modular lattices. Then, we present equivalent forms of these preradicals for compactly generated modular lattices.

Key words and phrases : Modular lattice, linear modular lattice, complete lattice, compactly generated lattice, essential element, small element, atom, coatom, socle, preradical, radical, Jacobson radical.

Mathematics Subject Classification (2010) : 06C05, 06C99, 06B35.

Introduction

We introduced and investigated in [4] the general concept of a *lattice pre*radical. The aim of this paper is to study two particular cases of lattice preradicals, namely the *socle* and the *radical* of complete linear modular lattices.

In Section 0 we list some notation and definitions about lattices, especially from [1] and [7]. Section 1 presents the concepts of linear morphism of lattices and lattice preradicals introduced and investigated in [2] and [4], respectively.

In Section 2 we show that the socle and the radical of a complete modular lattice L are preserved under a linear morphism of lattices. In case the complete modular lattice L is additionally compactly generated, we express in Section 3 the socle (respectively, the radical) of L as the meet of all its essential (respectively, proper maximal) elements. Usually, they are defined for any complete lattice L as the join of all atoms, respectively, small elements of L.

0. Preliminaries

All lattices considered in this paper are assumed to have a least element denoted by 0 and a greatest element denoted by 1, in other words they are bounded. Throughout this paper L will always denote such a lattice. By \mathcal{M} we shall denote the class of all (bounded) modular lattices.

For a lattice L and elements $a \leq b$ in L we write

 $b/a := [a, b] = \{ x \in L \mid a \leq x \leq b \}.$

An *initial interval* of b/a is any interval c/a for some $c \in b/a$. We denote by L^o the *opposite* or *dual* lattice of L.

An element $a \in L$ is said to be an *atom* of L if $a \neq 0$ and $a/0 = \{0, a\}$. We denote by A(L) the set, possibly empty, of all atoms of L. The *socle* Soc(L) of a complete lattice L is the join of all atoms of L, in other words, $Soc(L) := \bigvee A(L)$; if $A(L) = \emptyset$ we put Soc(L) = 0.

A coatom of L is an element $b \in L$ which is a maximal element of $L \setminus \{1\}$. We denote by M(L) the set, possibly empty, of all coatoms of L, so $M(L) = A(L^o)$.

An element $e \in L$ is said to be essential (in L) if $e \wedge x \neq 0$ for every $x \neq 0$ in L. One denotes by E(L) the set of all essential elements of L. An element $s \in L$ is called *small* or superfluous (in L) provided $s \in E(L^o)$. Thus, a small element s of L is characterized by the fact that $1 \neq s \lor a$ for every $a \in L$ with $a \neq 1$. We shall denote by S(L) the set of all small elements of L, so that $S(L) = E(L^o)$. The radical $\operatorname{Rad}(L)$ of a complete lattice L is the join of all small elements of L, so, $\operatorname{Rad}(L) := \bigvee S(L)$.

Notice that a different concept of radical, much closer to its moduletheoretical correspondent, has been considered in [6]: for a complete lattice L the radical $r_L := \bigwedge_{m \in M(L)} m$ of L is the meet of all coatoms of L, putting $r_L = 1$ if L has no coatoms. In order to avoid any confusion, we shall denote this r_L by Jac(L), and call it the Jacobson radical of L.

For all other undefined notation and terminology on lattices, the reader is referred to [1], [5], and [7].

1. Lattice preradicals

The property of a linear mapping $\varphi: M \longrightarrow N$ between two right modules M and N over a unital ring R to have a kernel Ker φ and to verify the Fundamental Theorem of Isomorphism $M/\text{Ker}\,\varphi \simeq \text{Im}\,\varphi$ has been taken in [2] as definition for the following concept.

A mapping $f : L \longrightarrow L'$ between a lattice L with least element 0 and greatest element 1 and a lattice L' with least element 0' and greatest element 1' is said to be a *linear morphism* if there exist $k \in L$, called a *kernel* of f, and $a' \in L'$ such that the following two conditions are satisfied.

(1) $f(x) = f(x \lor k), \forall x \in L.$

(2) f induces an isomorphism of lattices

 $\bar{f}: 1/k \xrightarrow{\sim} a'/0', \ \bar{f}(x) = f(x), \ \forall x \in 1/k.$

By [2, Proposition 2.2], the class \mathcal{M} of all (bounded) modular lattices becomes a category, denoted by \mathcal{LM} , and called the category of *linear modular lattices*, with morphisms between two such lattices as linear morphisms; moreover, a subobject K of an $L \in \mathcal{LM}$ is exactly an initial interval a/0of L = 1/0, and we denote this by $K \leq L$.

The latticial counterpart of the concept of preradical for modules has been introduced in [4] as follows. A *lattice preradical* is any functor

$$r:\mathcal{LM}\longrightarrow\mathcal{LM}$$

satisfying the following two conditions:

- (1) $r(L) \leq L$ for any $L \in \mathcal{LM}$.
- (2) For any morphism $f: L \longrightarrow L'$ in \mathcal{LM} , $r(f): r(L) \longrightarrow r(L')$ is the restriction and corestriction of f to r(L) and r(L'), respectively.

In other words, a lattice preradical is exactly a subfunctor of the identity functor $1_{\mathcal{LM}}$ of the category \mathcal{LM} .

Let $r : \mathcal{LM} \longrightarrow \mathcal{LM}$ be a lattice preradical. For any $L \in \mathcal{LM}$ and $a \in L$, the subobject r(a/0) of L in \mathcal{LM} is necessarily an initial interval of a/0. We denote

$$r(a/0) := a^r/0.$$

If $a \leq b$ in L, the inclusion mapping $\iota : a/0 \hookrightarrow b/0$ is clearly a linear morphism, so, applying r we obtain $r(\iota) : a^r/0 \longrightarrow b^r/0$ as a restriction of ι , and so $a^r \leq b^r$.

With notation above, $r(L) = r(1/0) = 1^r/0$. As in [4], we say that a preradical r is a radical if $r(1/1^r) = 1^r/1^r$ for all $L = 1/0 \in \mathcal{LM}$. Further, r is said to be an *idempotent* (respectively, a *left exact* or *hereditary*) preradical if for all $L \in \mathcal{LM}$, r(r(L)) = r(L) (respectively, $a^r = a \wedge 1^r$ for every $a \in L$).

2. The socle and radical of a complete modular lattice

In this section we show that the socle and the radical of a lattice define two preradicals on the full subcategory \mathcal{LM}_c of \mathcal{LM} consisting of all complete linear modular lattices.

Recall that if L is any (bounded) lattice, then A(L) denotes the set of all atoms of L, S(L) denotes the set of all small elements of L, and if L is a complete lattice then

Soc
$$(L) := \bigvee_{a \in A(L)} a = \bigvee A(L),$$

Rad $(L) := \bigvee_{s \in S(L)} s = \bigvee S(L).$

Notice that $Soc(L) = 0 \iff A(L) = \emptyset$.

For two lattices L and L' we shall denote by 0 (respectively, 1) the least (respectively, greatest) element of L, and by 0' (respectively, 1') the least (respectively, greatest) element of L'.

Lemma 2.1. Let L and L' be complete modular lattices. The following statements hold for a linear morphism $f: L \longrightarrow L'$ and an element $x \in L$.

- (1) $x \in A(L) \Longrightarrow f(x) \in \{0'\} \cup A(L').$
- (2) $x \in S(L) \Longrightarrow f(x) \in S(L').$

Proof. Denote by k the kernel of f. By definition, there exists $a' \in L'$ such that f induces a lattice isomorphism

$$\bar{f}: 1/k \xrightarrow{\sim} a'/0', \ \bar{f}(x) = f(x), \ \forall x \in 1/k.$$

(1) Consider $x \in A(L)$. If $x \leq k$, then

$$0' \leqslant f(x) \leqslant f(k) = 0',$$

so f(x) = 0'. Suppose that $x \leq k$. Then $x \wedge k < x$ and since x is an atom, it follows that $x \wedge k = 0$. By modularity, we have

$$x/0 = x/(x \wedge k) \simeq (x \vee k)/k,$$

so $x \vee k \in A(1/k)$. Since \overline{f} is an isomorphism, we deduce that

$$f(x) = f(x \lor k) = \overline{f}(x \lor k) \in A(a'/0') \subseteq A(L').$$

(2) Let $x \in S(L)$. Then $x \lor k \in 1/k$. Let $y \in 1/k$ with $(x \lor k) \lor y = 1$. Then $x \lor y = 1$, and, since x is small in L, it follows that y = 1. Thus $x \lor k \in S(1/k)$. Since \overline{f} is a lattice isomorphism, we have

$$f(x) = f(x \lor k) = \overline{f}(x \lor k) \in S(a'/0').$$

Now we are going to show that $S(a'/0') \subseteq S(L')$. To see this, pick $x' \in S(a'/0')$, and let $y' \in L'$ be such that $1' = x' \vee y'$. By modularity, we have $a' = (x' \vee y') \wedge a' = x' \vee (y' \wedge a')$. Since $y' \wedge a' \in a'/0'$ and $x' \in S(a'/0')$, we deduce that $y' \wedge a' = a'$, so $x' \leq a' \leq y'$. Thus $1' = x' \vee y' = y'$. Hence $x' \in S(L')$. Therefore $f(x) \in S(L')$, as desired. \Box

Proposition 2.2. Let L and L' be complete modular lattices. For any linear morphism $f: L \longrightarrow L'$ in \mathcal{LM} we have

$$f(\text{Soc}(L)) \leq \text{Soc}(L') \text{ and } f(\text{Rad}(L)) \leq \text{Rad}(L').$$

Proof. Set s := Soc(L). By the proof of Lemma 2.1, we have

$$s \lor k = \left(\bigvee_{x \in A(L)} x\right) \lor k = \bigvee_{x \in A(L)} (x \lor k)$$

= $\left(\bigvee_{x \in A(L), x \leqslant k} (x \lor k)\right) \lor \left(\bigvee_{x \in A(L), x \notin k} (x \lor k)\right)$
= $k \lor \left(\bigvee_{x \notin A(L), x \notin k} (x \lor k)\right) = \bigvee_{x \in A(L), x \notin k} (x \lor k) \leqslant \operatorname{Soc}(1/k).$

Now, using the fact that \overline{f} is a lattice isomorphism and the fact that any lattice isomorphism between complete lattices commutes with arbitrary joins, we obtain

$$f(s) = f(s \lor k) \le f(\operatorname{Soc}(1/k)) = \overline{f}(\operatorname{Soc}(1/k)) = \operatorname{Soc}(a'/0') \le \operatorname{Soc}(L').$$

For the second statement, set q := Rad(L). Using again the proof of Lemma 2.1, we have

$$q \lor k = \left(\bigvee_{x \in S(L)} x\right) \lor k = \bigvee_{x \in S(L)} (x \lor k) \leqslant \bigvee_{z \in S(1/k)} z = \operatorname{Rad}\left(1/k\right).$$

Since \bar{f} is a lattice isomorphism, we obtain

$$f(q) = f(q \lor k) \leqslant f(\operatorname{Rad}(1/k)) = \overline{f}(\operatorname{Rad}(1/k)) = \operatorname{Rad}(a'/0').$$

But $S(a'/0') \subseteq S(L')$, so Rad $(a'/0') \leq \text{Rad}(L')$, and hence $f(q) \leq \text{Rad}(L')$, as desired.

Let \mathcal{LM}_c be the full subcategory of \mathcal{LM} consisting of all complete modular lattices. Clearly we may define a preradical on \mathcal{LM}_c as being a subfunctor of the identity functor $1_{\mathcal{LM}_c}$ of \mathcal{LM}_c .

Proposition 2.2 can now be reformulated as follows: the "socle" and "radical" define the preradicals

$$\sigma: \mathcal{LM}_c \longrightarrow \mathcal{LM}_c, \ \sigma(L) = \operatorname{Soc}(L)/0,$$

and

$$\varrho: \mathcal{LM}_c \longrightarrow \mathcal{LM}_c, \ \varrho(L) = \operatorname{Rad}(L)/0,$$

on \mathcal{LM}_c , respectively.

Remark 2.3. The fact that the functor σ defined above is a lattice preradical on \mathcal{LM}_c follows from a more general result of [4] involving the trace $\operatorname{Tr}(\mathcal{X}, L)$ of a cohereditary class of lattices \mathcal{X} in a complete modular lattice L. However, we preferred in this paper to provide a direct proof of it. \Box

3. The socle, radical, and Jacobson radical of compactly generated modular lattices

In this section we present equivalent forms of the socle and radical of a complete modular lattice L in case additionally L is compactly generated. In particular, we show that for such an L we have Rad(L) = Jac(L).

Recall that an element c of a lattice L is called *compact* in L if whenever $c \leq \bigvee_{x \in A} x$ for a subset A of L, there exists a finite subset F of Asuch that $c \leq \bigvee_{x \in F} x$. One denotes by K(L) the set of all compact elements of L. The lattice L is said to be *compact* if 1 is a compact element in L, and *compactly generated* if it is complete and every element of L is a join of compact elements.

Also, recall that for a lattice L we have denoted by M(L) the set, possibly empty, of all maximal elements of $L \setminus \{1\}$ and by Jac(L) the *Jacobson radical* of L, i.e.,

$$\operatorname{Jac}(L) := \bigwedge M(L).$$

Proposition 3.1. The following assertions hold for a complete lattice L.

- (1) Soc $(L) \leq \bigwedge E(L)$ and Rad $(L) \leq Jac (L)$.
- (2) If additionally L is a compactly generated modular lattice, then

$$\operatorname{Soc}(L) = \bigwedge E(L) \quad and \quad \operatorname{Rad}(L) = \operatorname{Jac}(L).$$

Proof. (1) If $a \in A(L)$ and $e \in E(L)$, then $a \wedge e \neq 0$, and since a is an atom, it follows that $a \leq e$. Thus, because L is complete, we have

$$\operatorname{Soc}(L) = \bigvee_{a \in A(L)} a \leqslant \bigwedge_{e \in E(L)} e = \bigwedge E(L).$$

Now, let $s \in S(L)$ and $m \in M(L)$. If we assume that $s \notin m$, then we have $m < s \lor m$, so $s \lor m = 1$. Because s is small in L, it follows that m = 1, which is a contradiction. Consequently, $s \leqslant m$. Because L is complete, we have

$$\operatorname{Rad}\left(L\right) = \bigvee_{s \in S(L)} s \leqslant \bigwedge_{m \in M(L)} m = \bigwedge M(L).$$

(2) Assume that L is a compactly generated modular lattice. Then, the equality $\operatorname{Soc}(L) = \bigwedge E(L)$ is exactly [7, Chapter III, Proposition 6.7].

We are now going to show that $\operatorname{Jac}(L) \leq \operatorname{Rad}(L)$. Because L is compactly generated, $\operatorname{Jac}(L)$ is a join of compact elements of L.

Let $c \in K(L)$ with $c \leq \text{Jac}(L)$. We claim that $c \in S(L)$. Indeed, let $y \in L$ with $c \vee y = 1$, and show that y = 1. If not, we have $y \in L \setminus \{1\}$, and then, clearly $c \leq y$.

Set $A_y := \{z \in L \mid y \leq z, c \leq z\}$. Clearly $A_y \neq \emptyset$ because $y \in A_y$. Let $\emptyset \neq T \subseteq A_y$ be a chain, and set $t := \bigvee T$. Then $t \in A_y$, for otherwise we would have $c \leq t$, and hence it would exist a finite subset F of T such that $c \leq \bigvee F$, i.e., $c \leq a$ for some $a \in T$ (because T is a chain), which is a contradiction. This shows that A_y is an inductive set. By Zorn's Lemma, A_y has a maximal element, say m.

Now, we are going to prove that $m \in M(L)$. To do that, let $u \in L$ with $m \leq u$. If $c \leq u$, then we deduce that $1 = c \lor y \leq u \lor m \leq u$, i.e., u = 1. If $c \leq u$, then $u \in A_y$, so, because m is a maximal element of A_y , we deduce that u = m. This shows that $m \in M(L)$. Then $c \leq \operatorname{Jac}(L) \leq m$, which contradicts the fact that $m \in A_y$.

In conclusion, the assumption that $y \neq 1$ produces a contradiction, and therefore we have necessarily y = 1, which shows that $c \in S(L)$. This proves our claim. Consequently,

$$\operatorname{Jac}(L) = \bigvee \{ c \in K(L) \, | \, c \leq \operatorname{Jac}(L) \} \leq \bigvee S(L) = \operatorname{Rad}(L),$$

which finishes the proof.

We denote by \mathcal{LM}_u (respectively, \mathcal{LM}_{cg}) the full subcategory of \mathcal{LM} consisting of all upper continuous (respectively, compactly generated) modular lattices.

Proposition 3.2. The following statements hold for an upper continuous modular lattice L.

- (1) $\operatorname{Rad}(1/\operatorname{Rad}(L)) = \operatorname{Rad}(L)$ if additionally L is assumed to be compactly generated, i.e., ϱ is a radical on \mathcal{LM}_{cq} .
- (2) Soc (Soc (L)/0) = Soc (L), *i.e.*, σ is an idempotent preradical on \mathcal{LM}_c .
- (3) Soc $(a/0) = a \wedge \text{Soc}(L)$ for any $a \in L$, i.e., σ is a hereditary preradical on \mathcal{LM}_u .

Proof. (1) First, observe that for any $a \in L$, the interval 1/a is compactly generated if L is so. By Lemma 3.1, $\operatorname{Rad}(L) = \bigwedge M(L)$, hence, if we denote $q := \operatorname{Rad}(L)$, then we have

$$\operatorname{Rad}\left(1/\operatorname{Rad}\left(L\right)\right) = \operatorname{Rad}\left(1/q\right) = \bigwedge M(1/q) = \bigwedge M(L) = \operatorname{Rad}\left(L\right)$$

because M(1/q) = M(L).

- (2) Clearly, A(L) = A(Soc(L)/0) entails the desired equality.
- (3) Follows at once from [3, Proposition 1.1(1)].

Remark 3.3. The results in Propositions 3.1 and 3.2(1) are also true for classes of complete modular lattices other than the compactly generated ones (see [4]).

References

- T. ALBU, "Topics in Lattice Theory with Applications to Rings, Modules, and Categories", Lecture Notes, XXIII Brazilian Algebra Meeting, Maringá, Paraná, Brasil, 2014, 80 pages.
- [2] T. ALBU and M. IOSIF, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie, 56 (104) (2013), 33-46.
- [3] T. ALBU and M. IOSIF, New results on C_{11} and C_{12} lattices, with applications to Grothendieck categories and torsion theories, *submitted* 2014.
- [4] T. ALBU and M. IOSIF, Lattice preradicals, submitted 2014.
- [5] P. CRAWLEY and R.P. DILWORTH, "Algebraic Theory of Lattices", Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
- [6] C. NĂSTĂSESCU and F. VAN OYSTAEYEN, "Dimensions of Ring Theory", D. Reidel Publishing Company, Dordrecht Boston Lancaster Tokyo, 1987, http://dx.doi.org/10.1007/978-94-009-3835-9.
- [7] B. STENSTRÖM, "Rings of Quotients", Springer-Verlag, Berlin Heidelberg New York, 1975, http://dx.doi.org/10.1007/978-3-642-66066-5.

$Toma \ Albu$

Simion Stoilow Institute of Mathematics of the Romanian Academy Research Unit 5, P.O. Box 1 - 764 RO - 010145 Bucharest 1, Romania E-mail: Toma.Albu@imar.ro

Mihai Iosif

Bucharest University, Department of Mathematics Academiei Str. 14, RO - 010014 Bucharest 1, Romania E-mail: miosif@gta.math.unibuc.ro