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Abstract - In this paper we continue the investigation of preradicals in
linear modular lattices started in our previous paper [T. Albu, M. Iosif,
Lattice preradicals, submitted 2014]. Specifically, we show that the socle
and the radical define preradicals in complete linear modular lattices. Then,
we present equivalent forms of these preradicals for compactly generated
modular lattices.
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Introduction

We introduced and investigated in [4] the general concept of a lattice pre-
radical. The aim of this paper is to study two particular cases of lattice
preradicals, namely the socle and the radical of complete linear modular
lattices.

In Section 0 we list some notation and definitions about lattices, espe-
cially from [1] and [7]. Section 1 presents the concepts of linear morphism
of lattices and lattice preradicals introduced and investigated in [2] and [4],
respectively.

In Section 2 we show that the socle and the radical of a complete mod-
ular lattice L are preserved under a linear morphism of lattices. In case
the complete modular lattice L is additionally compactly generated, we
express in Section 3 the socle (respectively, the radical) of L as the meet
of all its essential (respectively, proper maximal) elements. Usually, they
are defined for any complete lattice L as the join of all atoms, respectively,
small elements of L.

0. Preliminaries

All lattices considered in this paper are assumed to have a least element
denoted by 0 and a greatest element denoted by 1, in other words they are
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bounded. Throughout this paper L will always denote such a lattice. By
M we shall denote the class of all (bounded) modular lattices.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

An initial interval of b/a is any interval c/a for some c ∈ b/a. We denote
by Lo the opposite or dual lattice of L.

An element a ∈ L is said to be an atom of L if a 6= 0 and a/0 = {0, a}.
We denote by A(L) the set, possibly empty, of all atoms of L. The socle
Soc(L) of a complete lattice L is the join of all atoms of L, in other words,
Soc (L) :=

∨
A(L); if A(L) = ∅ we put Soc (L) = 0.

A coatom of L is an element b ∈ L which is a maximal element of
L \ {1}. We denote by M(L) the set, possibly empty, of all coatoms of L,
so M(L) = A(Lo).

An element e ∈ L is said to be essential (in L) if e ∧ x 6= 0 for every
x 6= 0 in L. One denotes by E(L) the set of all essential elements of L. An
element s ∈ L is called small or superfluous (in L) provided s ∈ E(Lo).
Thus, a small element s of L is characterized by the fact that 1 6= s ∨ a
for every a ∈ L with a 6= 1. We shall denote by S(L) the set of all small
elements of L, so that S(L) = E(Lo). The radical Rad(L) of a complete
lattice L is the join of all small elements of L, so, Rad(L) :=

∨
S(L).

Notice that a different concept of radical, much closer to its module-
theoretical correspondent, has been considered in [6]: for a complete lattice
L the radical rL :=

∧
m∈M(L)m of L is the meet of all coatoms of L,

putting rL = 1 if L has no coatoms. In order to avoid any confusion, we
shall denote this rL by Jac (L), and call it the Jacobson radical of L.

For all other undefined notation and terminology on lattices, the reader
is referred to [1], [5], and [7].

1. Lattice preradicals

The property of a linear mapping ϕ : M −→ N between two right modules
M and N over a unital ring R to have a kernel Kerϕ and to verify the
Fundamental Theorem of Isomorphism M/Kerϕ ' Imϕ has been taken in
[2] as definition for the following concept.

A mapping f : L −→ L′ between a lattice L with least element 0
and greatest element 1 and a lattice L′ with least element 0′ and greatest
element 1′ is said to be a linear morphism if there exist k ∈ L, called a
kernel of f , and a′ ∈ L′ such that the following two conditions are satisfied.

(1) f(x) = f(x ∨ k), ∀x ∈ L.

(2) f induces an isomorphism of lattices

f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.



On socle and radical of modular lattices 189

By [2, Proposition 2.2], the class M of all (bounded) modular lattices
becomes a category, denoted by LM, and called the category of linear mod-
ular lattices, with morphisms between two such lattices as linear morphisms;
moreover, a subobject K of an L ∈ LM is exactly an initial interval a/0
of L = 1/0, and we denote this by K 6 L.

The latticial counterpart of the concept of preradical for modules has
been introduced in [4] as follows. A lattice preradical is any functor

r : LM −→ LM

satisfying the following two conditions:

(1) r(L) 6 L for any L ∈ LM.

(2) For any morphism f : L −→ L′ in LM, r(f) : r(L) −→ r(L′) is the
restriction and corestriction of f to r(L) and r(L′), respectively.

In other words, a lattice preradical is exactly a subfunctor of the identity
functor 1LM of the category LM.

Let r : LM −→ LM be a lattice preradical. For any L ∈ LM and
a ∈ L, the subobject r(a/0) of L in LM is necessarily an initial interval
of a/0. We denote

r(a/0) := ar/0.

If a 6 b in L, the inclusion mapping ι : a/0 ↪→ b/0 is clearly a linear
morphism, so, applying r we obtain r(ι) : ar/0 −→ br/0 as a restriction of
ι, and so ar 6 br.

With notation above, r(L) = r(1/0) = 1r/0. As in [4], we say that a
preradical r is a radical if r(1/1r) = 1r/1r for all L = 1/0 ∈ LM. Fur-
ther, r is said to be an idempotent (respectively, a left exact or hereditary)
preradical if for all L ∈ LM, r(r(L)) = r(L) (respectively, ar = a ∧ 1r for
every a ∈ L).

2. The socle and radical of a complete modular lattice

In this section we show that the socle and the radical of a lattice define two
preradicals on the full subcategory LMc of LM consisting of all complete
linear modular lattices.

Recall that if L is any (bounded) lattice, then A(L) denotes the set of
all atoms of L, S(L) denotes the set of all small elements of L, and if L is a
complete lattice then

Soc (L) :=
∨

a∈A(L)

a =
∨
A(L),

Rad (L) :=
∨

s∈S(L)

s =
∨
S(L).
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Notice that Soc (L) = 0 ⇐⇒ A(L) = ∅.
For two lattices L and L′ we shall denote by 0 (respectively, 1) the least

(respectively, greatest) element of L, and by 0′ (respectively, 1′) the least
(respectively, greatest) element of L′.

Lemma 2.1. Let L and L′ be complete modular lattices. The following
statements hold for a linear morphism f : L −→ L′ and an element x ∈ L.

(1) x ∈ A(L) =⇒ f(x) ∈ {0′} ∪A(L′).

(2) x ∈ S(L) =⇒ f(x) ∈ S(L′).

Proof. Denote by k the kernel of f. By definition, there exists a′ ∈ L′ such
that f induces a lattice isomorphism

f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.

(1) Consider x ∈ A(L). If x 6 k, then

0′ 6 f(x) 6 f(k) = 0′,

so f(x) = 0′. Suppose that x 66 k. Then x ∧ k < x and since x is an atom,
it follows that x ∧ k = 0. By modularity, we have

x/0 = x/(x ∧ k) ' (x ∨ k)/k,

so x ∨ k ∈ A(1/k). Since f̄ is an isomorphism, we deduce that

f(x) = f(x ∨ k) = f̄(x ∨ k) ∈ A(a′/0′) ⊆ A(L′).

(2) Let x ∈ S(L). Then x ∨ k ∈ 1/k. Let y ∈ 1/k with (x ∨ k) ∨ y = 1.
Then x ∨ y = 1, and, since x is small in L, it follows that y = 1. Thus
x ∨ k ∈ S(1/k). Since f̄ is a lattice isomorphism, we have

f(x) = f(x ∨ k) = f̄(x ∨ k) ∈ S(a′/0′).

Now we are going to show that S(a′/0′) ⊆ S(L′). To see this, pick x′ ∈
S(a′/0′), and let y′ ∈ L′ be such that 1′ = x′ ∨ y′. By modularity, we have
a′ = (x′ ∨ y′) ∧ a′ = x′ ∨ (y′ ∧ a′). Since y′ ∧ a′ ∈ a′/0′ and x′ ∈ S(a′/0′),
we deduce that y′ ∧ a′ = a′, so x′ 6 a′ 6 y′. Thus 1′ = x′ ∨ y′ = y′. Hence
x′ ∈ S(L′). Therefore f(x) ∈ S(L′), as desired. 2

Proposition 2.2. Let L and L′ be complete modular lattices. For any
linear morphism f : L −→ L′ in LM we have

f(Soc (L)) 6 Soc (L′) and f(Rad (L)) 6 Rad (L′).
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Proof. Set s := Soc (L). By the proof of Lemma 2.1, we have

s ∨ k =
( ∨
x∈A(L)

x
)
∨ k =

∨
x∈A(L)

(x ∨ k)

=
( ∨
x∈A(L), x6k

(x ∨ k)
)
∨
( ∨
x∈A(L), x 66k

(x ∨ k)
)

= k ∨
( ∨
x∈A(L), x 66k

(x ∨ k)
)

=
∨

x∈A(L), x 66k

(x ∨ k) 6 Soc (1/k).

Now, using the fact that f̄ is a lattice isomorphism and the fact that
any lattice isomorphism between complete lattices commutes with arbitrary
joins, we obtain

f(s) = f(s ∨ k) 6 f(Soc (1/k)) = f̄(Soc (1/k)) = Soc (a′/0′) 6 Soc (L′).

For the second statement, set q := Rad (L). Using again the proof of
Lemma 2.1, we have

q ∨ k =
( ∨
x∈S(L)

x
)
∨ k =

∨
x∈S(L)

(x ∨ k) 6
∨

z∈S(1/k)

z = Rad (1/k).

Since f̄ is a lattice isomorphism, we obtain

f(q) = f(q ∨ k) 6 f(Rad (1/k)) = f̄(Rad (1/k)) = Rad (a′/0′).

But S(a′/0′) ⊆ S(L′), so Rad (a′/0′) 6 Rad (L′), and hence f(q) 6 Rad (L′),
as desired. 2

Let LMc be the full subcategory of LM consisting of all complete
modular lattices. Clearly we may define a preradical on LMc as being a
subfunctor of the identity functor 1LMc of LMc.

Proposition 2.2 can now be reformulated as follows: the “socle” and
“radical” define the preradicals

σ : LMc −→ LMc , σ(L) = Soc (L)/0,

and

% : LMc −→ LMc , %(L) = Rad (L)/0,

on LMc , respectively.

Remark 2.3. The fact that the functor σ defined above is a lattice pre-
radical on LMc follows from a more general result of [4] involving the trace
Tr (X , L) of a cohereditary class of lattices X in a complete modular lattice
L. However, we preferred in this paper to provide a direct proof of it. �
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3. The socle, radical, and Jacobson radical of compactly generated
modular lattices

In this section we present equivalent forms of the socle and radical of a
complete modular lattice L in case additionally L is compactly generated.
In particular, we show that for such an L we have Rad (L) = Jac (L).

Recall that an element c of a lattice L is called compact in L if when-
ever c 6

∨
x∈A x for a subset A of L, there exists a finite subset F of A

such that c 6
∨

x∈F x. One denotes by K(L) the set of all compact ele-
ments of L. The lattice L is said to be compact if 1 is a compact element
in L, and compactly generated if it is complete and every element of L is a
join of compact elements.

Also, recall that for a lattice L we have denoted by M(L) the set,
possibly empty, of all maximal elements of L \ {1} and by Jac (L) the
Jacobson radical of L, i.e.,

Jac (L) :=
∧
M(L).

Proposition 3.1. The following assertions hold for a complete lattice L.

(1) Soc (L) 6
∧
E(L) and Rad (L) 6 Jac (L).

(2) If additionally L is a compactly generated modular lattice, then

Soc (L) =
∧
E(L) and Rad (L) = Jac (L).

Proof. (1) If a ∈ A(L) and e ∈ E(L), then a ∧ e 6= 0, and since a is an
atom, it follows that a 6 e. Thus, because L is complete, we have

Soc (L) =
∨

a∈A(L)

a 6
∧

e∈E(L)

e =
∧
E(L).

Now, let s ∈ S(L) and m ∈ M(L). If we assume that s 66 m, then
we have m < s ∨ m, so s ∨ m = 1. Because s is small in L, it follows
that m = 1, which is a contradiction. Consequently, s 6 m. Because L is
complete, we have

Rad (L) =
∨

s∈S(L)

s 6
∧

m∈M(L)

m =
∧
M(L).

(2) Assume that L is a compactly generated modular lattice. Then, the
equality Soc (L) =

∧
E(L) is exactly [7, Chapter III, Proposition 6.7].

We are now going to show that Jac (L) 6 Rad (L). Because L is com-
pactly generated, Jac (L) is a join of compact elements of L.

Let c ∈ K(L) with c 6 Jac (L). We claim that c ∈ S(L). Indeed, let
y ∈ L with c ∨ y = 1, and show that y = 1. If not, we have y ∈ L \ {1},
and then, clearly c 66 y.
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Set Ay := { z ∈ L | y 6 z, c 66 z }. Clearly Ay 6= ∅ because y ∈ Ay.
Let ∅ 6= T ⊆ Ay be a chain, and set t :=

∨
T . Then t ∈ Ay, for otherwise

we would have c 6 t, and hence it would exist a finite subset F of T such
that c 6

∨
F , i.e., c 6 a for some a ∈ T (because T is a chain), which is a

contradiction. This shows that Ay is an inductive set. By Zorn’s Lemma,
Ay has a maximal element, say m.

Now, we are going to prove that m ∈M(L). To do that, let u ∈ L with
m 6 u. If c 6 u, then we deduce that 1 = c∨ y 6 u∨m 6 u, i.e., u = 1. If
c 66 u, then u ∈ Ay, so, because m is a maximal element of Ay, we deduce
that u = m. This shows that m ∈ M(L). Then c 6 Jac (L) 6 m, which
contradicts the fact that m ∈ Ay.

In conclusion, the assumption that y 6= 1 produces a contradiction, and
therefore we have necessarily y = 1, which shows that c ∈ S(L). This
proves our claim. Consequently,

Jac (L) =
∨
{ c ∈ K(L) | c 6 Jac (L)} 6

∨
S(L) = Rad (L),

which finishes the proof. 2

We denote by LMu (respectively, LMcg) the full subcategory of LM
consisting of all upper continuous (respectively, compactly generated) mod-
ular lattices.

Proposition 3.2. The following statements hold for an upper continuous
modular lattice L.

(1) Rad (1/Rad (L)) = Rad (L) if additionally L is assumed to be com-
pactly generated, i.e., % is a radical on LMcg.

(2) Soc (Soc (L)/0) = Soc (L), i.e., σ is an idempotent preradical on
LMc.

(3) Soc (a/0) = a∧ Soc (L) for any a ∈ L, i.e., σ is a hereditary prerad-
ical on LMu.

Proof. (1) First, observe that for any a ∈ L, the interval 1/a is compactly
generated if L is so. By Lemma 3.1, Rad (L) =

∧
M(L), hence, if we

denote q := Rad (L), then we have

Rad (1/Rad (L)) = Rad (1/q) =
∧
M(1/q) =

∧
M(L) = Rad (L)

because M(1/q) = M(L).

(2) Clearly, A(L) = A(Soc (L)/0) entails the desired equality.

(3) Follows at once from [3, Proposition 1.1(1)]. 2

Remark 3.3. The results in Propositions 3.1 and 3.2(1) are also true for
classes of complete modular lattices other than the compactly generated
ones (see [4]). �
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