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Abstract - In this paper, we study a new class of generalized set-valued
nonlinear variational-like inequalities (GSNVLI) in Hilbert spaces. By ap-
plying the auxiliary principle technique, we establish existence and unique-
ness theorem for a solution of (GSNVLI) problem. We further suggest
an algorithm to obtain a solution of (GSNVLI) problem and establish a
convergence result in which sequence generated by the proposed algorithm
converges to a solution of the (GSNVLI) problem. Our results represent
refinement and improvement of the previously known results in variational
inequalities.
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1. Introduction

Variational inequality theory provides techniques to solve a variety of prob-
lems arising in mathematical physics, economics, optimization, nonlinear
programming, transportation and engineering; see [9, 10, 14]. In recent
years, various generalizations and extensions of variational inequalities are
suggested and analyzed in different directions using novel and innovative
techniques; for details, we refer to [24].

One of the most important problems in variational inequality theory
is the development of efficient and implementable iterative algorithms for
solving various classes of variational inequalities and variational inclusions.
The most effective numerical technique to solve variational inequalities is
the projection method and its variant forms. It is worth mentioning that
the projection type technique cannot be used to suggest iterative algorithms
for variational-like inequalities, since it is not possible to find projection of
the solution. Glowinski et al. (see [10]) suggested another technique, which
does not depend on the projection. This technique is called the auxiliary
principle technique. Noor (see [21, 22, 23]) modified and extended the aux-
iliary principle technique to study the existence of a solution of some special
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cases of variational-like inequalities and to develop some iterative algorithms.
Chidume et al. (see [2]), Huang and Deng (see [11]) and Zeng et al. (see [29])
extended this technique to suggest and analyze a number of algorithms for
solving various classes of variational inequalities. Variational-like inequality
was introduced by Parida and Sen (see [25]) in 1987. It is an important and
useful generalization of variational inequality. In recent years a number of
papers appeared to deal with variational-like inequalities see, for example,
[12, 13, 15, 16].

Motivated and inspired by the research going in this direction, in this
paper we introduce and study a generalized set-valued nonlinear variational-
like inequality, which includes several kinds of variational-like inequalities
as special cases. An existence result of solution for this problem is estab-
lished. Using auxiliary principle technique, we construct an iterative al-
gorithm for finding the approximate solution of the generalized set-valued
nonlinear variational-like inequality and obtain the convergence of the algo-
rithm under certain conditions. The results proved in this paper represent a
significant improvement and refinement of previously known results in this
field.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖·‖, respectively. Let CB(H) be the family of all nonempty closed
bounded subsets of H. Let A,B,C : H → CB(H) be set valued operators.
Given operators N : H×H×H → H and η : H×H → H, we consider the
problem of finding x ∈ H, w ∈ A(x), v ∈ B(x), u ∈ C(x) such that for a
given f ∈ H,

〈N(w, v, u)− f, η(y, x)〉+a(x, y−x)+b(x, y)−b(x, x) ≥ 0 , ∀ y ∈ H, (2.1)

where the forms a(·, ·), b(·, ·) : H×H → (−∞,+∞) have the properties :

(A1) a is a continuous function which is linear in both arguments;

(A2) ∃ ν > 0 such that a(x, x) ≥ ν ‖x‖2 , ∀x ∈ H;

(A3) ∃ ω > 0 such that a(x, y) ≤ ω ‖x‖ · ‖y‖ , ∀x, y ∈ H,

it follows from (A2) and (A3) that ν ≤ ω and

(A4) |a(x, y)| ≤ ω ‖x‖ · ‖y‖ , ∀x, y ∈ H.

The form b(·, ·) satisfies the following conditions:

(B1) b(x, y) is linear in the first argument;



Generalized set-valued nonlinear variational-like inequalities 543

(B2) b(x, y) is bounded, that is, there exists a constant % > 0 such that

|b(x, y)| ≤ % ‖x‖ · ‖y‖ , ∀x, y ∈ H .

(B3) b(x, y)− b(x, z) ≤ b(x, y − z) , ∀x, y, z ∈ H.

In view of (B2) and (B3), we can see for all x, y, z ∈ H

b(x, y)− b(x, z) ≤ b(x, y − z) ≤ % ‖x‖ ‖y − z‖
b(x, z)− b(x, y) ≤ b(x, z − y) ≤ % ‖x‖ ‖z − y‖ ,

that is

(B4) |b(x, y)− b(y, z)| ≤ % ‖x‖ ‖y − z‖, for all x, y, z ∈ H.

The problem (2.1) is called the generalized set-valued nonlinear variational-
like inequality (GSNVLI) problem. We now consider some special cases of
the inequality (2.1).

Special Cases :

1. If we consider N : H × H → H and a ≡ 0, then we get following
variational-like inequality from the inequality (2.1): find x ∈ H such
that w ∈ A(x), v ∈ B(x) such that, for a given f ∈ H,

〈N(w, v)− f, η(y, x)〉+ b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H ,

which was studied by Ding et al. (see [8]) in Banach spaces.

2. If we consider N : H×H → H, a ≡ 0 and f = 0, then we get following
variational-like inequality from the inequality (2.1): find x ∈ H, w ∈
A(x), v ∈ B(x) such that

〈N(w, v), η(y, x)〉+ b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H ,

which was studied by Ding (see [6]) and Noor (see [22]).

3. If we consider N : H × H → H, a ≡ 0, b ≡ 0 and f = 0, then we
get following variational-like inequality from the inequality (2.1): find
x ∈ H, w ∈ A(x), v ∈ B(x) such that

〈N(w, v), η(y, x)〉 ≥ 0 , ∀ y ∈ H ,

which was studied by Noor (see [23]).

4. If we consider N : H×H → H, η(x, y) = x− y, a ≡ 0 and f = 0, then
we get following variational-like inequality from the inequality (2.1):
find x ∈ H, w ∈ A(x), v ∈ B(x) such that

〈N(w, v), y − x〉+ b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H ,

which was studied by Noor (see [22]).
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5. If we take A,B,C : H → H, then the generalized set valued nonlinear
variational-like inequality (2.1) is equivalent to find x ∈ H such that,
for a given f ∈ H,

〈N(Ax,Bx,Cx)− f, η(y, x)〉+a(x, y−x)+b(x, y)−b(x, x) ≥ 0 ,∀ y ∈ H

which was studied by Liu et al. (see [15]).

6. If we take A,B,C : H → H, N : H×H → H and f = 0, then we get
following inequality from (2.1): find x ∈ H such that

〈N(Ax,Bx), η(y, x)〉+ a(x, y − x) + b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H

which was studied by Liu et al. (see [17]) in Banach spaces.

7. If we take A,B,C : H → H, N(x, y, z) = x + y, a ≡ 0 and f = 0.
Then from the inequality (2.1), we get following: find x ∈ H such that

〈Ax+Bx, η(y, z)〉+ b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H

which was studied by Noor (see [20]).

8. If we take A,B,C : H → H, N(x, y, z) = x − y, a ≡ 0 and f = 0.
Then from the inequality (2.1), we get following: find x ∈ H such that

〈Ax−Bx, η(y, z)〉+ b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H

which was studied by Ding (see [5]) in Banach spaces.

9. If we take A,B,C : H → H, N(x, y, z) = x, η(s, t) = s− t, a ≡ 0 and
f = 0. Then from the inequality (2.1), we get following: find x ∈ H
such that

〈Ax, y − x〉+ b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H

which was studied by Bose (see [1]), Duvaut and Lions (see [9]).

10. If we take A,B,C : H → H, N(x, y, z) = x, η(s, t) = g(s)−g(t), where
g : H → H is a given mapping and f = 0, then from the inequality
(2.1), we get following: find x ∈ H such that

〈Ax, g(y)− g(x)〉+ a(x, y − x) + b(x, y)− b(x, x) ≥ 0 , ∀ y ∈ H

which was studied by Ding and Tarafdar (see [7]).

11. If we take A,B,C : H → H, N(x, y, z) = x − y, f = 0, a ≡ 0 and
b(x, y) = g(y) for all x, y ∈ H, where g : H → H be a given mapping,
then we get following variational-like inequality from the inequality
(2.1): find x ∈ H such that

〈A(x)−B(x), η(y, x)〉+ g(y)− g(x) ≥ 0 , ∀ y ∈ H ,

which was studied by Zeng (see [28]).
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12. If we take A,B,C : H → H, N(x, y, z) = x − y and a ≡ 0, b ≡ 0 and
f = 0, then we get following from (2.1): find x ∈ H such that

〈Ax−Bx, η(y, x)〉 ≥ 0 , ∀ y ∈ H

inequality of type above is studied by Noor (see [19]).

13. If we take A,B,C : H → H, N(x, y, z) = x, η(s, t) = s − t, a ≡ 0,
f = 0 and b(s, t) = φ(t) where φ : H → R∪{+∞} is a given mapping.
Then from the inequality (2.1), we get following: find x ∈ H such that

〈Ax, y − x〉+ φ(y)− φ(x) ≥ 0 , ∀ y ∈ H

which was studied by Cohen (see [3]).

14. If we take A,B,C : H → H, N(x, y, z) = x, η(s, t) = g(s)− g(t) where
g : H → H is a given mapping, a ≡ 0, b ≡ 0 and f = 0. Then from
the inequality (2.1), we get following: find x ∈ H such that

〈Ax, g(y)− g(x)〉 ≥ 0 , ∀ y ∈ H

which was studied by Yao (see [26]).

15. If we take A,B,C : H → H, N(x, y, z) = x, f = 0, a ≡ 0, η(s, t) = s−t
and b(x, y) = g(y), where g : H → H be a mapping, for all x, y ∈ H
then, we get following variational-like inequality from the inequality
(2.1): find x ∈ H such that

〈A(x), y − x〉+ g(y)− g(x) ≥ 0 , ∀ y ∈ H ,

which was studied by Zeng (see [27]).

In brief, for appropriate and suitable choice of the mappings N, η,A,B,C,
the functions a, b and choice of f ∈ H, one can obtain a number of the
known classes of variational inequalities and variational-like inequalities as
special cases from the problem (2.1).

We also need the following concepts:

Definition 2.1. For all x1, x2 ∈ H, the operator N(·, ·, ·) : H×H×H → H
is said to be

(i) strongly monotone in the first argument with constant ζ, if there exists
a constant ζ > 0 such that

〈N(w1, ·, ·)−N(w2, ·, ·), x1 − x1〉 ≥ ζ ‖x1 − x2‖2 ;

∀w1 ∈ A(x1), w2 ∈ A(x2);
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(ii) Lipschitz continuous in the first argument with constant α, if there
exists a constant α > 0 such that

‖N(x1, ·, ·)−N(x2, ·, ·)‖ ≤ α ‖x1 − x2‖ .

In a similar way, we can define Lipschitz continuity of the N(·, ·, ·) in the
second and third arguments.

Definition 2.2. An operator η(·, ·) : H×H → H is said to be

(i) strongly monotone with constant σ, if there exists a constant σ > 0
such that

〈η(x, y), x− y〉 ≥ σ ‖x− y‖2 , ∀x, y ∈ H;

(ii) Lipschitz continuous with constant τ , if there exists a constant τ > 0
such that

‖η(x, y)‖ ≤ τ ‖x− y‖ , ∀x, y ∈ H.

Assumption 2.1. The operator η : H × H → H satisfies the following
conditions:

(1) η(x, y) = η(x, z) + η(z, y) , ∀x, y, z ∈ H;

(2) η(x, y) = −η(y, x) , ∀x, y ∈ H.

Clearly η(x, x) = 0 for all x ∈ H.

Let Ĥ(·, ·) be the Hausdorff metric on CB(H) defined by

Ĥ(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
, ∀A,B ∈ CB(H).

Definition 2.3. An operator A : H → CB(H) is said to be Ĥ−Lipschitz
continuous with constant λ if there exists a constant λ > 0 such that

Ĥ(Ax,Ay) ≤ λ ‖x− y‖ , ∀ x, y ∈ H .

Lemma 2.1. (see [18]) Let (X, d) be a complete metric space, T : X →
CB(X) be a set-valued mapping. Then for any ε > 0 and x, y ∈ X, u ∈
T (x), there exists v ∈ T (y) such that

d(u, v) ≤ (1 + ε) Ĥ(T (x), T (y)) .

Lemma 2.2. (see [18]) Let (X, d) be a complete metric space, T : X →
CB(X) be a set-valued mapping satisfying

Ĥ(T (x), T (y)) ≤ k d(x, y) ∀x, y ∈ X ,

where 0 ≤ k < 1 is a constant. Then the mapping T has a fixed point in X.
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3. Auxiliary problem and existence of solution

Theorem 3.1. Let the operator N(·, ·, ·) be strongly monotone in the first
argument with constant ζ > 0 and Lipschitz continuous in the first, second
and third arguments with constants α, β, γ > 0 respectively. Let A,B,C :
H → CB(H) be set valued Ĥ−Lipschitz continuous mappings with constants
λ, µ, δ respectively. Let η(·, ·) : H×H → H be strongly monotone with con-
stant σ > 0 and Lipschitz continuous with constant τ > 0 and let the forms
a(·, ·), b(·, ·) satisfy the conditions (A1)-(A3) and (B1)-(B3), respectively. If
Assumption 2.1 holds and

0 < ρ <
2 (ζ − (κ+ ϑ)

β2λ2 + (κ+ ϑ)2
, ρ(κ+ ϑ) < 1, (κ+ ϑ) < ζ , (3.1)

where

κ = αλ
√

1− 2σ + τ2

ϑ = τ (βµ+ γδ) + (ω + %) ,
(3.2)

then the generalized set-valued variational-like inequality problem (2.1) has
a unique solution.

Proof. (a) Uniqueness.

Let x1, x2 ∈ H, x1 6= x2 be two solutions of (2.1), that is

〈N(w1, v1, u1)−f, η(y, x1)〉+a(x1, y−x1) + b(x1, y)− b(x1, x1) ≥ 0, ∀y ∈ K,
(3.3)

and

〈N(w2, v2, u2)−f, η(y, x2)〉+a(x2, y−x2)+b(x2, y)−b(x2, x2) ≥ 0, ∀y ∈ K.
(3.4)

Taking y = x2 in (3.3) and y = x1 in (3.4), we get

〈N(w1, v1, u1)−f, η(x2, x1)〉+a(x1, x2−x1)+b(x1, x2)−b(x1, x1)≥0, ∀y ∈ K,
(3.5)

and

〈N(w2, v2, u2)−f, η(x1, x2)〉+a(x2, x1−x2)+b(x2, x1)−b(x2, x2)≥0, ∀y ∈ K.
(3.6)

Adding inequalities (3.5) and (3.6), using assumptions on a(·, ·) and b(·, ·),
we obtain

〈N(w1, v1, u1)−N(w2, v2, u2), η(x1, x2)〉
≤ b(x1 − x2, x2 − x1) + a(x1 − x2, x2 − x1). (3.7)
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Inequality (3.7) can be written as

〈N(w1, v1, u1)−N(w2, v1, u1), x1 − x2〉
≤ 〈N(w1, v1, u1)−N(w2, v1, u1), x1 − x2 − η(x1, x2)〉

+ 〈N(w2, v2, u2)−N(w2, v1, u1), η(x1, x2)〉
+ b(x1 − x2, x2 − x1) + a(x1 − x2, x2 − x1)

= 〈N(w1, v1, u1)−N(w2, v1, u1), x1 − x2 − η(x1, x2)〉
+ 〈N(w2, v2, u2)−N(w2, v2, u1), η(x1, x2)〉
+ 〈N(w2, v2, u1)−N(w2, v1, u1), η(x1, x2)〉
+ b(x1 − x2, x2 − x1) + a(x1 − x2, x2 − x1). (3.8)

Using the strong monotonicity of N(·, ·, ·) in the first argument with constant
ζ, the Cauchy-Schwartz inequality and (3.8), we obtain

ζ ‖x1 − x2‖2 ≤ ‖N(w1, v1, u1)−N(w2, v1, u1)‖ ‖x1 − x2 − η(x1, x2)‖
+ ‖N(w2, v2, u2)−N(w2, v2, u1)‖ ‖η(x1, x2)‖
+ ‖N(w2, v2, u1)−N(w2, v1, u1)‖ ‖η(x1, x2)‖
+ % ‖x1 − x2‖2 + ω ‖x1 − x2‖2 . (3.9)

Since η is strongly monotone with constant σ and Lipschitz continuous with
constant τ , so we have

‖x1 − x2 − η(x1, x2)‖2 = ‖x1 − x2‖2 − 2 〈η(x1, x2), x1 − x2〉+
∥∥η(x1, x2)

2
∥∥

≤ (1− 2σ + τ2) ‖x1 − x2‖2 . (3.10)

Using the Lipschitz continuity of N(·, ·, ·) in the first argument with constant
α and Ĥ−Lipschitz continuity of A with constant λ, we have

‖N(w1, v1, u1)−N(w2, v1, u1)‖ ≤ α ‖v1 − v2‖

≤ α(1 + ε)Ĥ(Ax1, Ax2)

≤ αλ(1 + ε) ‖x1 − x2‖ . (3.11)

Similarly, using the Lipschitz continuity of N(·, ·, ·) in the second argument
with constant β and Ĥ−Lipschitz continuity of B with constant µ, we get

‖N(w2, v2, u1)−N(w2, v1, u1)‖ ≤ βµ(1 + ε) ‖x1 − x2‖ . (3.12)

Also, the Lipschitz continuity ofN(·, ·, ·) in the third argument with constant
γ and Ĥ−Lipschitz continuity of C with constant δ, gives

‖N(w2, v2, u1)−N(w2, v2, u2)‖ ≤ γδ(1 + ε) ‖x1 − x2‖ . (3.13)

Combining (3.9), (3.10), (3.11), (3.12), (3.13) and Lipschitz continuity of η
with constant τ , we have

ζ ‖x1−x2‖2≤
[
(1 + ε)

{
αλ
√

1− 2σ + τ2+τ(γδ + βµ)
}

+(%+ ω)
]
‖x1−x2‖2 .
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Letting ε→ 0, we get

ζ ‖x1 − x2‖2 ≤
[
αλ
√

1− 2σ + τ2 + τ(γδ + βµ) + (%+ ω)
]
‖x1 − x2‖2

= (κ+ ϑ) ‖x1 − x2‖2 , using (3.2)

which implies that
(ζ − (κ+ ϑ) ‖x1 − x2‖2 ≤ 0 ,

since (κ+ ϑ) < ζ, it follows that x1 = x2, the uniqueness of the solution.

(b) Existence.
We use the auxiliary principle technique of Glowinski et al. (see [10]) as

developed by Noor (see [21, 22, 23]) to prove the existence of a solution of the
generalized set-valued variational-like inequality (2.1). For a given x ∈ H,
we consider the problem of finding z ∈ H, w ∈ A(x), v ∈ B(x), u ∈ C(x)
satisfying the variational-like inequality

〈z, y − z〉 ≥ 〈x, y − z〉 − ρ 〈N(w, v, u)− f, η(y, z)〉
− ρa(x, y − z)− ρb(x, y) + ρb(x, z), (3.14)

for all y ∈ H, where ρ > 0 is a constant.
The relation (3.14) defines a mapping x 7→ z. In order to prove the

existence of a solution of (2.1), it is sufficient to show that the mapping
x 7→ z defined by (3.14) has a fixed point belongs to H satisfying (2.1). We
denote the mapping x 7→ z by F .

For any x1 ∈ H, there exist z1 ∈ F (x1), w1 ∈ A(x1), v1 ∈ B(x1) and
u1 ∈ C(x1) such that

〈z1, y − z1〉 ≥ 〈x1, y − z1〉 − ρ 〈N(w1, v1, u1)− f, η(y, z1)〉
− ρa(x1, y − z1)− ρb(x1, y) + ρb(x1, z1) , ∀ y ∈ H . (3.15)

For any x2 ∈ H, there exist z2 ∈ F (x2), w2 ∈ A(x2), v2 ∈ B(x2) and
u2 ∈ C(x2) such that

〈z2, y − z2〉 ≥ 〈x2, y − z2〉 − ρ 〈N(w2, v2, u2)− f, η(y, z2)〉
− ρa(x2, y − z2)− ρb(x2, y) + ρb(x2, z2) , ∀ y ∈ H . (3.16)

Since (3.15) and (3.16) hold for all y ∈ H, replacing y in (3.15) and (3.16)
by z2 and z1 respectively, we get

〈z1, z2 − z1〉 ≥ 〈x1, z2 − z1〉 − ρ 〈N(w1, v1, u1)− f, η(z2, z1)〉
− ρa(x1, z2 − z1)− ρb(x1, z2) + ρb(x1, z1) . (3.17)

〈z2, z1 − z2〉 ≥ 〈x2, z1 − z2〉 − ρ 〈N(w2, v2, u2)− f, η(z1, z2)〉
− ρa(x2, z1 − z2)− ρb(x2, z1) + ρb(x2, z2) . (3.18)
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Adding (3.17) and (3.18) and rearranging the terms we get

〈z1 − z2 , z1 − z2〉
≤ 〈x1 − x2 , z1 − z2〉 − ρ 〈N(w1, v1, u1)−N(w2, v2, u2), η(z1, z2)〉

− ρa(x1 − x2, z1 − z2) + ρb(x1 − x2, z2 − z1)
≤ 〈x1 − x2 , z1 − z2〉 − ρ 〈N(w1, v1, u1)−N(w2, v1, u1), η(z1, z2)〉

− ρ 〈N(w2, v1, u1)−N(w2, v2, u2), η(z1, z2)〉
− ρa(x1 − x2, z1 − z2) + ρb(x1 − x2, z2 − z1)

≤ 〈x1 − x2 , z1 − z2〉 − ρ 〈N(w1, v1, u1)−N(w2, v1, u1), z1 − z2〉
+ ρ 〈N(w1, v1, u1)−N(w2, v1, u1), z1 − z2 − η(z1, z2)〉
− ρ 〈N(w2, v1, u1)−N(w2, v2, u2), η(z1, z2)〉
− ρa(x1 − x2, z1 − z2) + ρb(x1 − x2, z2 − z1)

≤ 〈x1 − x2 − ρ {N(w1, v1, u1)−N(w2, v1, u1)} , z1 − z2〉
+ ρ 〈N(w1, v1, u1)−N(w2, v1, u1), z1 − z2 − η(z1, z2)〉
− ρ 〈N(w2, v1, u1)−N(w2, v2, u2), η(z1, z2)〉
− ρa(x1 − x2, z1 − z2) + ρb(x1 − x2, z2 − z1) . (3.19)

It follows from (3.19) that

‖z1 − z2‖2 ≤ ‖x1 − x2 − ρ {N(w1, v1, u1)−N(w2, v2, u1)}‖ ‖z1 − z2‖
+ ρ ‖N(w1, v1, u1)−N(w2, v1, u1)‖ ‖z1 − z2 − η(z1, z2)‖
+ ρ ‖N(w2, v1, u1)−N(w2, v2, u2)‖ ‖η(z1, z2)‖
+ ρω ‖x1 − x2‖ ‖z1 − z2‖+ ρ% ‖x1 − x2‖ ‖z2 − z1‖ . (3.20)

Using strong monotonicity and Lipschitz continuity of N(·, ·, ·) in the first
argument with constants ζ and α respectively, and Ĥ−Lipschitz continuity
of A with constant λ, we have

‖x1 − x2 − ρ {N(w1, v1, u1)−N(w2, v1, u1)}‖2

= ‖x1 − x2‖2 − 2ρ 〈N(w1, v1, u1)−N(w2, v1, u1), x1 − x2〉
+ ρ2 ‖N(w1, v1, u1)−N(w2, v1, u1)‖2

≤ (1− 2ρζ) ‖x1 − x2‖2 + ρ2α2 ‖w1 − w2‖2

≤ (1− 2ρζ) ‖x1 − x2‖2 + ρ2α2
{

(1 + ε)Ĥ(Ax1, Ax2)
}2

≤
(
1− 2ρζ + ρ2α2λ2(1 + ε)2

)
‖x1 − x2‖2 . (3.21)

Using the strong monotonicity and Lipschitz continuity of η with constants
σ and τ respectively, we have

‖z1 − z2 − η(z1, z2)‖2 ≤ ‖z1 − z2‖2 − 2 〈η(z1, z2), z1 − z2〉+ ‖η(z1, z2)‖2

≤ (1− 2σ + τ2) ‖z1 − z2‖2 . (3.22)
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Using the Lipschitz continuity of N(·, ·, ·) in the first argument with constant
α and Ĥ−Lipschitz continuity of A, we get

‖N(w1, v1, u1)−N(w2, v1, u1)‖ ≤ α ‖w1 − w2‖ ≤ αλ(1 + ε) ‖x1 − x2‖ .
(3.23)

Also, by using the Lipschitz continuity of N(·, ·, ·) in the second and third
arguments with constants β and γ respectively, Ĥ−Lipschitz continuity of
B with constant µ and Ĥ−Lipschitz continuity of C with constant δ, we
have

‖N(w2, v1, u1)−N(w2, v2, u2)‖ ≤ ‖N(w2, v1, u1)−N(w2, v2, u1)‖
+ ‖N(w2, v2, u1)−N(w2, v2, u2)‖

≤ β ‖v1 − v2‖+ γ ‖u1 − u2‖
≤ (βµ+ γδ)(1 + ε) ‖x1 − x2‖ . (3.24)

Substituting (3.21), (3.22), (3.23) and (3.24) into (3.20), we get

‖z1−z2‖≤
[√

1− 2ρζ + ρ2α2λ2(1 + ε)2

+ ρ(1 + ε)
{
αλ
√

1− 2σ + τ2+τ(βµ+ γδ)
}

+ρ(ω + %)
]
‖x1−x2‖

= (t(ρε) + ρ (κε + ϑε)) ‖x1 − x2‖
= θε ‖x1 − x2‖ , (3.25)

where

θε = t(ρε) + ρ (κε + ϑε) ,

t(ρε) =
√

1− 2ρζ + ρ2α2λ2(1 + ε)2,

κε = αλ(1 + ε)
√

1− 2σ + τ2,

ϑε = τ(1 + ε)(βµ+ γδ) + (ω + %).

Using (3.25), we get

d (z1, F (x2)) = inf
z2∈F (x2)

‖z1 − z2‖ ≤ θε ‖x1 − x2‖ .

Since z1 ∈ F (x1) is arbitrary, we get

sup
z1∈F (x1)

d (z1, F (x2)) ≤ θε ‖x1 − x2‖ . (3.26)

Similarly, we get that

sup
z2∈F (x2)

d (z2, F (x1)) ≤ θε ‖x1 − x2‖ . (3.27)



552 Balwant Singh Thakur and Suja Varghese

From the definition of Hausdorff metric Ĥ, it follows from (3.26) and (3.27)
that

Ĥ (F (x1), F (x2)) ≤ θε ‖x1 − x2‖ , ∀x1, x2 ∈ H .

Letting ε→ 0, we get

Ĥ (F (x1), F (x2)) ≤ θ ‖x1 − x2‖ , ∀x1, x2 ∈ H,

where,

θ = t(ρ) + ρ (κ+ ϑ) ,

t(ρ) =
√

1− 2ρζ + ρ2α2λ2,

κ = αλ
√

1− 2σ + τ2,

ϑ = τ(βµ+ γδ) + (ω + %).

It follows from (3.1) that θ < 1, hence F is a set valued contraction mapping,
by Lemma 2.2, it has a fixed point in H, that is, the mapping x 7→ z, defined
by (3.14) has a fixed point in H, which is the solution of the generalized
variational-like inequality (2.1). This completes the proof. 2

4. Algorithm and convergence result

For a given x0 ∈ H, w0 ∈ Ax0, v0 ∈ Bx0, u0 ∈ Cx0, from Theorem 3.1, we
know that the auxiliary problem (3.14) has a solution x1, i.e.

〈x1, y − x1〉 ≥ 〈x0, y − x1〉 − ρ 〈N(w0, v0, u0)− f, η(y, x1)〉
− ρa(x0, y − x1)− ρb(x0, y) + ρb(x0, x1), (4.1)

for all y ∈ H, where ρ > 0 is a constant.
Since w0 ∈ Ax0 ∈ CB(H), v0 ∈ Bx0 ∈ CB(H), u0 ∈ Cx0 ∈ CB(H), by
Lemma 2.1 there exist w1 ∈ Ax1, v1 ∈ Bx1 and u1 ∈ Cx1 such that

‖w0 − w1‖ ≤ (1 + 1) Ĥ(Ax0, Ax1)

‖v0 − v1‖ ≤ (1 + 1) Ĥ(Bx0, Bx1)

‖u0 − u1‖ ≤ (1 + 1) Ĥ(Cx0, Cx1).

Again by Theorem 3.1, the auxiliary problem (4.1) has a solution x2 ∈ H,
that is

〈x2, y − x2〉 ≥ 〈x1, y − x2〉 − ρ 〈N(w1, v1, u1)− f, η(y, x2)〉
− ρa(x1, y − x2)− ρb(x1, y) + ρb(x1, x2), (4.2)

for all y ∈ H, where ρ > 0 is a constant.
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For w1 ∈ Ax1, v1 ∈ Bx1, u1 ∈ Cx1, by Lemma 2.1 there exist w2 ∈ Ax2,
v2 ∈ Bx2 and u2 ∈ Cx2 such that

‖w1 − w2‖ ≤
(

1 +
1

2

)
Ĥ(Ax1, Ax2)

‖v1 − v2‖ ≤
(

1 +
1

2

)
Ĥ(Bx1, Bx2)

‖u1 − u2‖ ≤
(

1 +
1

2

)
Ĥ(Cx1, Cx2).

By induction, we can get the iterative algorithm for solving the problem
(2.1), as follows:

Algorithm 4.1. For given x0 ∈ H, w0 ∈ Ax0, v0 ∈ Bx0, u0 ∈ Cx0, there
exist {wn}, {vn}, {un} such that

wn ∈ Axn , ‖wn − wn+1‖ ≤
(

1 +
1

n+ 1

)
Ĥ(Axn, Axn+1)

vn ∈ Bxn , ‖vn − vn+1‖ ≤
(

1 +
1

n+ 1

)
Ĥ(Bxn, Bxn+1)

un ∈ Cxn , ‖un − un+1‖ ≤
(

1 +
1

n+ 1

)
Ĥ(Cxn, Cxn+1),

and

〈xn+1, y − xn+1〉 ≥ 〈xn, y − xn+1〉 − ρ 〈N(wn, vn, un)− f, η(y, xn+1)〉
− ρa(xn, y − xn+1)− ρb(xn, y) + ρb(xn, xn+1), (4.3)

for all y ∈ H, where ρ > 0 is a constant.

We now prove that the sequences {xn}, {wn}, {vn}, {un} generated by
Algorithm 4.1 converge strongly to a solution (x∗, w∗, v∗, u∗) of the problem
(2.1), where x∗ ∈ H, w∗ ∈ A(x∗), v∗ ∈ B(x∗) and u∗ ∈ C(x∗).

Theorem 4.1. Let a, b, A,B,C,N, η be as in Theorem 3.1. If Assumption
2.1 holds and (3.1), (3.2) are satisfied, then the sequences {xn}, {wn}, {vn},
{un} generated by Algorithm 4.1 converge strongly to x∗, w∗, v∗, u∗ respec-
tively, and (x∗, w∗, v∗, u∗) is a solution of the problem (2.1), where x∗ ∈ H,
w∗ ∈ A(x∗), v∗ ∈ B(x∗) and u∗ ∈ C(x∗).

Proof. It follows from (4.3), that for any y ∈ H,

〈xn, y − xn〉 ≥ 〈xn−1, y − xn〉 − ρ 〈N(wn−1, vn−1, un−1)− f, η(y, xn)〉
− ρa(xn−1, y − xn)− ρb(xn−1, y) + ρb(xn−1, xn), (4.4)
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and

〈xn+1, y − xn+1〉 ≥ 〈xn, y − xn+1〉 − ρ 〈N(wn, vn, un)− f, η(y, xn+1)〉
− ρa(xn, y − xn+1)− ρb(xn, y) + ρb(xn, xn+1). (4.5)

Taking y = xn+1 in (4.4) and y = xn in (4.5), we get

〈xn, xn+1 − xn〉
≥ 〈xn−1, xn+1 − xn〉 − ρ 〈N(wn−1, vn−1, un−1)− f, η(xn+1, xn)〉
− ρa(xn−1, xn+1 − xn)− ρb(xn−1, xn+1) + ρb(xn−1, xn), (4.6)

and

〈xn+1, xn−xn+1〉 ≥ 〈xn, xn−xn+1〉−ρ 〈N(wn, vn, un)−f, η(xn, xn+1)〉
− ρa(xn, xn − xn+1)− ρb(xn, xn) + ρb(xn, xn+1). (4.7)

Adding (4.6) and (4.7), we get

〈xn+1 − xn, xn − xn+1〉
≥ 〈xn − xn−1, xn − xn+1〉
− ρ 〈N(wn, vn, un)−N(wn−1, vn−1, un−1), η(xn, xn+1)〉
− ρa(xn−1, xn+1 − xn)− ρa(xn, xn − xn+1)

− ρb(xn−1, xn+1) + ρb(xn−1, xn)−ρb(xn−1, xn+1) + ρb(xn−1, xn).

and therefore,

〈xn − xn+1, xn − xn+1〉
≤ 〈xn−1 − xn, xn − xn+1〉
− ρ 〈N(wn−1, vn−1, un−1)−N(wn, vn, un), η(xn, xn+1)〉
+ ρa (xn − xn−1, xn − xn+1) + ρb (xn − xn−1, xn − xn+1)

= 〈xn−1 − xn, xn − xn+1〉
− ρ 〈N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1), η(xn, xn+1)〉
− ρ 〈N(wn, vn−1, un−1)−N(wn, vn, un), η(xn, xn+1)〉
+ ρa (xn − xn−1, xn − xn+1) + ρb (xn − xn−1, xn − xn+1)

= 〈xn−1 − xn, xn − xn+1〉
− ρ 〈N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1), xn − xn+1〉
+ ρ 〈N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1), xn−xn+1−η(xn, xn+1)〉
− ρ 〈N(wn, vn−1, un−1)−N(wn, vn, un), η(xn, xn+1)〉
+ ρa (xn − xn−1, xn − xn+1) + ρb (xn − xn−1, xn − xn+1)

= 〈xn−1 − xn − ρ (N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1)) , xn−xn+1〉
+ ρ 〈N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1), xn−xn+1−η(xn, xn+1)〉
− ρ 〈N(wn, vn−1, un−1)−N(wn, vn, un), η(xn, xn+1)〉
+ ρa (xn − xn−1, xn − xn+1) + ρb (xn − xn−1, xn − xn+1) . (4.8)
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It follows from (4.8), that

‖xn − xn+1‖2

≤ ‖xn−1−xn−ρ (N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1))‖ ‖xn − xn+1‖
+ρ ‖N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1)‖ ‖xn−xn+1−η(xn, xn+1)‖
+ρ ‖N(wn, vn−1, un−1)−N(wn, vn, un)‖ ‖η(xn, xn+1)‖
+ρω ‖xn − xn−1‖ ‖xn − xn+1‖+ ρ% ‖xn − xn−1‖ ‖xn − xn+1‖ . (4.9)

Using strong monotonicity and Lipschitz continuity of N(·, ·, ·) in the first
argument with constants ζ and α respectively, and Ĥ−Lipschitz continuity
of A with constant λ, we have

‖xn−1 − xn − ρ (N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1))‖2

= ‖xn−1−xn‖2−2ρ 〈N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1), xn−1−xn〉
+ ρ2 ‖N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1)‖2

≤ (1− 2ρζ) ‖xn−1 − xn‖2 + ρ2α2 ‖wn−1 − wn‖2

≤ (1− 2ρζ) ‖xn−1 − xn‖2 + ρ2α2

(
1 +

1

n

)2

Ĥ(A(xn−1), A(xn))2

≤

(
1− 2ρζ + ρ2α2λ2

(
1 +

1

n

)2
)
‖xn−1 − xn‖2 . (4.10)

Using the strong monotonicity and Lipschitz continuity of η with constants
σ and τ respectively, we have

‖xn − xn+1 − η(xn, xn+1)‖2

= ‖xn − xn+1‖2 − 2 〈η(xn, xn+1), xn − xn+1〉+ ‖η(xn, xn+1)‖2

≤ (1− 2σ + τ2) ‖xn − xn+1‖2 . (4.11)

Using the Lipschitz continuity of N(·, ·, ·) in the first argument with constant
α and Ĥ−Lipschitz continuity of A with constant α, we get

‖N(wn−1, vn−1, un−1)−N(wn, vn−1, un−1)‖ ≤ α ‖wn−1 − wn‖

≤ α
(

1 +
1

n

)
Ĥ(Axn−1, Axn)

≤ αλ
(

1 +
1

n

)
‖xn−1 − xn‖ .

(4.12)

By using Lipschitz continuity of N(·, ·, ·) in the second and third argument
with constants β, γ respectively, Ĥ−Lipschitz continuity of B with constant
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µ and Ĥ−Lipschitz continuity of C with constant δ, we get

‖N(wn, vn−1, un−1)−N(wn, vn, un)‖
≤ ‖N(wn, vn−1, un−1)−N(wn, vn, un−1)‖

+ ‖N(wn, vn, un−1)−N(wn, vn, un)‖
≤ β ‖vn−1 − vn‖+ γ ‖un−1 − un‖

≤ β
(

1 +
1

n

)
Ĥ(Bxn−1, Bxn) + γ

(
1 +

1

n

)
Ĥ(Cxn−1, Cxn)

≤ (βµ+ γδ)

(
1 +

1

n

)
‖xn−1 − xn‖ . (4.13)

Substituting (4.10), (4.11), (4.12) and (4.13) in (4.9), we get

‖xn − xn+1‖2

≤

√
1− 2ρζ + ρ2α2λ2

(
1 +

1

n

)2

‖xn−1 − xn‖ ‖xn − xn+1‖

+ ραλ

(
1 +

1

n

)√
1− 2σ + τ2 ‖xn−1 − xn‖ ‖xn − xn+1‖

+ ρτ(βµ+ γδ)

(
1 +

1

n

)
‖xn−1 − xn‖ ‖xn − xn+1‖

+ ρ (ω + %) ‖xn − xn−1‖ ‖xn − xn+1‖ . (4.14)

It follows from (4.14) that

‖xn − xn+1‖ ≤ θn ‖xn − xn−1‖ , (4.15)

where

θn = t(ρn) + ρ (κn + ϑn) ,

t(ρn) =

√
1− 2ρζ + ρ2α2λ2

(
1 +

1

n

)2

,

κn = αλ

(
1 +

1

n

)√
1− 2σ + τ2,

ϑn = τ(βµ+ γδ)

(
1 +

1

n

)
+ (ω + %).

We can see that θn → θ, where

θ = t(ρ) + ρ (κ+ ϑ) ,

t(ρ) =
√

1− 2ρζ + ρ2α2λ2 ,

κ = αλ
√

1− 2σ + τ2 ,

ϑ = τ(βµ+ γδ) + (ω + %).



Generalized set-valued nonlinear variational-like inequalities 557

By (3.1) and (3.2), we get that θ < 1. Hence, there is a number θ0 < 1
and an integer n0 ≥ 1 such that θn ≤ θ0 < 1 for all n ≥ n0. Therefore, it
follows from (4.15) that {xn} is a Cauchy sequence and we may assume that
{xn} converges to some x∗ ∈ H. Since the set-valued mapping A,B,C are
Ĥ−Lipschitz continuous, from Algorithm 4.1, we get

‖wn − wn+1‖ ≤
(

1 +
1

n+ 1

)
Ĥ(Axn, Axn+1) ≤

(
1 +

1

n+ 1

)
λ ‖xn − xn1‖

‖vn − vn+1‖ ≤
(

1 +
1

n+ 1

)
Ĥ(Bxn, Bxn+1) ≤

(
1 +

1

n+ 1

)
µ ‖xn − xn1‖

‖un − un+1‖ ≤
(

1 +
1

n+ 1

)
Ĥ(Cxn, Cxn+1) ≤

(
1 +

1

n+ 1

)
δ ‖xn − xn1‖ .

Therefore {wn}, {vn} and {un} are Cauchy sequences in H. Let wn → w∗,
vn → v∗ and un → u∗ strongly as n→∞.

Since wn ∈ Axn, we have

d(w∗, Ax∗) ≤ ‖w∗ − wn‖+ d(wn, Axn) + Ĥ(Axn, Ax
∗)

‖w∗ − wn‖+ λ ‖xn − x∗‖
→ 0 , as n→∞.

Hence we must have w∗ ∈ Ax∗. Similarly, we can obtain v∗ ∈ Bx∗ and
u∗ ∈ Cx∗.

Auxiliary inequality (4.3) is rewritten as

〈xn+1 − xn, y − xn+1〉+ ρ 〈N(wn, vn, un)− f, η(y, xn+1)〉
+ ρ [a(xn, y − xn+1) + b(xn, y)− b(xn, xn+1)] ≥ 0.

(4.16)

Since xn → x∗ as n→∞, we have

|〈xn+1 − xn, y − xn+1〉| ≤ ‖xn+1 − xn‖ ‖y − xn+1‖ → 0, as n→∞.
(4.17)

Since xn → x∗, wn → w∗, vn → v∗, un → u∗, wn ∈ A(xn), vn ∈ B(xn) and
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un ∈ C(xn), we have

|〈N(wn, vn, un)− f, η(y, xn+1)〉 − 〈N(w∗, v∗, u∗)− f, η(y, x∗)〉|
≤ |〈N(wn, vn, un)−N(w∗, v∗, u∗), η(y, xn+1)〉|

+ |〈N(w∗, v∗, u∗)− f, η(y, xn+1)− η(y, x∗)〉|
≤ ‖N(wn, vn, un)−N(w∗, v∗, u∗)‖ ‖η(y, xn+1)‖

+ ‖N(w∗, v∗, u∗)− f‖ ‖η(y, xn+1)− η(y, x∗)‖
≤ {‖N(wn, vn, un)−N(w∗, vn, un)‖+‖N(w∗, vn, un)−N(w∗, v∗, un)‖

+ ‖N(w∗, v∗, un)−N(w∗, v∗, un)‖} ‖η(y, xn+1)‖
+ ‖N(w∗, v∗, u∗)− f‖ ‖η(xn+1, x

∗)‖
≤ τ {α ‖wn − w∗‖+ β ‖vn − v∗‖+ γ ‖un − u∗‖} ‖y − xn+1‖

+ τ ‖N(w∗, v∗, u∗)− f‖ ‖xn+1 − x∗‖
→ 0, as n→∞.

Furthermore, from the property of b, it follows that

|b(xn, xn+1)− b(x∗, x∗)| ≤ |b(xn, xn+1)− b(xn, x∗)|+ |b(xn, x∗)− b(x∗, x∗)|
≤ |b(xn, xn+1 − x∗)|+ |b(xn − x∗, x∗)|
≤ % ‖xn‖ ‖xn+1 − x∗‖+ % ‖xn − x∗‖ ‖x∗‖
→ 0 , as n→∞. (4.18)

Also,
|b(xn, y)− b(x∗, y)| ≤ % ‖xn − x∗‖ ‖y‖ → 0, as n→∞.

Hence b(xn, xn+1)→ b(x∗, x∗) and b(xn, y)→ b(x∗, y) as n→∞.

From property of a, it follows that

a(xn, y − xn+1) = a(xn − x∗, y − xn+1) + a(x∗, y − xn+1)

= a(xn − x∗, y − x∗) + a(xn − x∗, x∗ − xn+1)

+ a(x∗, y − x∗) + a(x∗, x∗ − xn+1)

this gives that

a(xn, y − xn+1)−a(x∗, y − x∗) = a(xn − x∗, y − x∗)+a(xn − x∗, x∗ − xn+1)

+ a(x∗, x∗ − xn+1)

= a(xn − x∗, y − x∗) + a(xn, x
∗ − xn+1)

|a(xn, y − xn+1)− a(x∗, y − x∗)| ≤ |a(xn − x∗, y − x∗)|+ |a(xn, x
∗ − xn+1)|

≤ ‖xn − x∗‖ ‖y − x∗‖+ ‖xn‖ ‖x∗ − xn+1‖
→ 0, as n→∞.
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Letting n→∞ in (4.16), we obtain

〈N(w∗, v∗, u∗)− f, η(y, x∗)〉+ a(x∗, y − x∗) + b(x∗, y)− b(x∗, x∗) ≥ 0.

Therefore, (x∗, w∗, v∗, u∗) is a solution of the problem (2.1).
This completes the proof. 2
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