
Annals of the University of Bucharest (mathematical series)

4 (LXII) (2013), 525–540

Weak convergence theorems for two finite families
of asymptotically quasi-nonexpansive type

mappings in Banach spaces

Gurucharan Singh Saluja

Communicated by George Dinca

Abstract - The aim of this paper is to establish some weak conver-
gence theorems of finite step iteration process for two finite families of non-
Lipschitzian asymptotically quasi-nonexpansive type mappings to converge
to common fixed point in the framework of uniformly convex Banach spaces.

Key words and phrases : asymptotically quasi-nonexpansive type map-
ping, finite-step iteration process, common fixed point, weak convergence,
uniformly convex Banach space.

Mathematics Subject Classification (2010) : 47H09, 47H10, 47J25.

1. Introduction and preliminaries

Let K be a nonempty subset of a real Banach space E. Let T : K → K be
a mapping, then we denote the set of all fixed points of T by F (T ). The
set of common fixed points of two mappings S and T will be denoted by
F = F (S) ∩ F (T ). A mapping T : K → K is said to be:

(1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.1)

for all x, y ∈ K;

(2) quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− p‖ ≤ ‖x− p‖ (1.2)

for all x ∈ K and p ∈ F (T );
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(3) asymptotically nonexpansive [6] if there exists a sequence {kn} in
[1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖ (1.3)

for all x, y ∈ K and n ≥ 1;

(4) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a
sequence {kn} in [1,∞) with limn→∞ kn = 1 such that

‖Tnx− p‖ ≤ kn ‖x− p‖ (1.4)

for all x ∈ K, p ∈ F (T ) and n ≥ 1;

(5) uniformly L-Lipschitzian if there exists a positive constant L such
that

‖Tnx− Tny‖ ≤ L ‖x− y‖ (1.5)

for all x, y ∈ K and n ≥ 1;

(6) asymptotically nonexpansive type [8], if

lim sup
n→∞

{
sup
x,y∈K

(
‖Tnx− Tny‖ − ‖x− y‖

)}
≤ 0; (1.6)

(7) asymptotically quasi-nonexpansive type [14], if F (T ) 6= ∅ and

lim sup
n→∞

{
sup

x∈K, p∈F (T )

(
‖Tnx− p‖ − ‖x− p‖

)}
≤ 0. (1.7)

Remark 1.1. It is easy to see that if F (T ) is nonempty, then asymptot-
ically nonexpansive mapping, asymptotically quasi-nonexpansive mapping
and asymptotically nonexpansive type mapping are the special cases of
asymptotically quasi-nonexpansive type mappings.

The class of asymptotically nonexpansive self-mappings was introduced
by Goebel and Kirk [6] in 1972 as an important generalization of the class
of nonexpansive self-mappings, who proved that if K is a nonempty closed
convex subset of a real uniformly convex Banach space and T is an asymp-
totically nonexpansive self-mapping of K, then T has a fixed point.
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Since then, iteration processes for asymptotically nonexpansive map-
pings and asymptotically quasi-nonexpansive mappings in Banach spaces
have studied extensively by many authors (see [2], [5], [7]-[20]). In 2002, Xu
and Noor [23] introduced and studied a three-step iteration scheme to ap-
proximate fixed points of asymptotically nonexpansive mappings in Banach
space. Cho et al. [3] extended the work of Xu and Noor to a three-step it-
erative scheme with errors in Banach space and proved the weak and strong
convergence theorems for asymptotically nonexpansive mappings. In 2003,
Sahu and Jung [14] studied Ishikawa and Mann iteration process in Banach
spaces and they proved some weak and strong convergence theorems for
asymptotically quasi-nonexpansive type mapping. In 2006, Shahzad and
Udomene [20] gave the necessary and sufficient condition for convergence of
common fixed point of two-step modified Ishikawa iterative sequence for two
asymptotically quasi-nonexpansive mappings in real Banach space. In 2009,
Sitthikul and Saejung [21] introduced and studied a finite-step iteration
scheme for a finite family of nonexpansive and asymptotically nonexpansive
mappings and proved some weak and strong convergence theorems in the
setting of Banach spaces. Recently, Chen and Guo [1] introduced and stud-
ied a new finite-step iteration scheme with errors for two finite families of
asymptotically nonexpansive mappings as follows:

Let K be a nonempty convex subset of a Banach space E with K +
K ⊂ K. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N asymptotically nonexpansive
mappings. Then the sequence {xn} defined by

x1 = x ∈ K,
x(0)n = xn,

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn + u(1)n ,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn + u(2)n ,

...

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn + u(N−1)n ,

x(N)
n = α(N)

n TnNx
(N−1)
n + (1− α(N)

n )SnNxn + u(N)
n ,

xn+1 = x(N)
n , ∀ n ≥ 1, (1.8)

where {α(i)
n } ⊂ [0, 1] and {u(i)n } are bounded sequences in K for all i ∈ I =

{1, 2, . . . , N}, and the weak and strong convergence theorems are proved,
which improve and generalize some results in [21].
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Letting u
(i)
n = 0 for all n ≥ 1, i ∈ I in (1.8). We have the following:

x1 = x ∈ K,
x(0)n = xn,

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn,

...

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn,

x(N)
n = α(N)

n TnNx
(N−1)
n + (1− α(N)

n )SnNxn,

xn+1 = x(N)
n , ∀ n ≥ 1, (1.9)

where {α(i)
n } ⊂ [0, 1] for all i ∈ I and the author [1] proved weak convergence

theorem of iteration scheme (1.9).

The aim of this paper is to establish some weak convergence of the iter-
ation scheme (1.9) to converge to common fixed points for two finite fami-
lies of uniformly L-Lipschitzian and non-Lipschitzian asymptotically quasi-
nonexpansive type mappings in the framework of uniformly convex Banach
spaces. The results presented in this paper improve and extend the corre-
sponding results of Chen and Guo [1] and Sitthikul and Saejung [21] to the
case of more general class of nonexpansive and asymptotically nonexpansive
mappings because both these mappings include in the class of asymptoti-
cally quasi-nonexpansive type mappings.

In order to prove the main results of this paper, we need the following
concepts and lemmas.

Let E be a Banach space with its dimension greater than or equal to 2.
The modulus of convexity of E is the function δE(ε) : (0, 2]→ [0, 1] defined
by

δE(ε) = inf
{

1−
∥∥∥∥1

2
(x+ y)

∥∥∥∥ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖
}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all
ε ∈ (0, 2].

Recall that a Banach space E is said to satisfy Opial’s condition [11] if,
for any sequence {xn} in E, xn → x weakly implies that

lim sup
n−→∞

‖xn − x‖ < lim sup
n−→∞

‖xn − y‖

for all y ∈ E with y 6= x.
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A Banach space E has the Kadec-Klee property [21] if for every sequence
{xn} in E, xn → x weakly and ‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

Lemma 1.1. (see [22]) Let {an} and {bn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ an + bn, n ≥ 1.

If
∑∞

n=1 bn <∞, then limn→∞ an exists. In particular, if {an} has a subse-
quence converging to zero, then limn→∞ an = 0.

Lemma 1.2. (see [18]) Let E be a uniformly convex Banach space and
0 < α ≤ tn ≤ β < 1 for all n ∈ N. Suppose further that {xn} and {yn}
are sequences of E such that lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a
and limn→∞ ‖tnxn + (1− tn)yn‖ = a hold for some a ≥ 0. Then it holds
limn→∞ ‖xn − yn‖ = 0.

Lemma 1.3. (see [21]) Let E be a real reflexive Banach space with its dual
E∗ has the Kadec-Klee property. Let {xn} be a bounded sequence in E and
p, q ∈ ww(xn) (where ww(xn) denotes the set of all weak subsequential limits
of {xn}). Suppose limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1]. Then
p = q.

2. Main result

In this section, we first prove the following lemmas in order to prove our
main theorems.

Lemma 2.1. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N asymptotically
quasi-nonexpansive type mappings with F =

⋂N
i=1 F (Si) ∩ F (Ti) 6= ∅. Let

{xn} be the sequence defined by (1.9), where {α(i)
n } ⊂ [0, 1] for all i ∈ I. Put

Ain = max
{

sup
p∈F, n≥1

(
‖Tni xn − p‖ − ‖xn − p‖

)
∨

sup
p∈F, n≥1

(
‖Sni xn − p‖ − ‖xn − p‖

)
∨ 0 : 1 ≤ i ≤ N

}
(2.1)

such that
∑∞

n=1Ain < ∞ for all i ∈ I. Then the limit limn→∞ ‖xn − q‖
exists for all q ∈ F .
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Proof. Let q ∈ F . Then from (1.9) and (2.1), we have∥∥∥x(1)n − q∥∥∥ =
∥∥∥α(1)

n Tn1 xn + (1− α(1)
n )Sn1 xn − q

∥∥∥
≤ α(1)

n ‖Tn1 xn − q‖+ (1− α(1)
n ) ‖Sn1 xn − q‖

≤ α(1)
n

[
‖xn − q‖+A1n

]
+ (1− α(1)

n )
[
‖xn − q‖+A1n

]
≤ ‖xn − q‖+A1n. (2.2)

Again using (1.9)-(2.2), we obtain∥∥∥x(2)n − q∥∥∥ =
∥∥∥α(2)

n Tn2 x
(1)
n + (1− α(2)

n )Sn2 xn − q
∥∥∥

≤ α(2)
n

∥∥∥Tn2 x(1)n − q∥∥∥+ (1− α(2)
n ) ‖Sn2 xn − q‖

≤ α(2)
n

[ ∥∥∥x(1)n − q∥∥∥+A2n

]
+ (1− α(2)

n )
[
‖xn − q‖+A2n

]
≤ α(2)

n

[
‖xn − q‖+A1n

]
+ (1− α(2)

n ) ‖xn − q‖+A2n]

≤ ‖xn − q‖+ α(2)
n A1n +A2n

≤ ‖xn − q‖+A1n +A2n. (2.3)

Continuing the above process, we get that

∥∥∥x(i)n − q∥∥∥ ≤ ‖xn − q‖+
i∑

k=1

Akn. (2.4)

In particular,

‖xn+1 − q‖ =
∥∥∥x(N)

n − q
∥∥∥ ≤ ‖xn − q‖+

N∑
k=1

Akn. (2.5)

Since by assumption of the theorem
∑∞

n=1Ain <∞ for all n ≥ 1 and i ∈ I, it
follows by Lemma 1.1, we have that limn→∞ ‖xn − q‖ exists. This completes
the proof. 2

Lemma 2.2. Let E be a real uniformly convex Banach space and K be a
nonempty closed convex subset of E. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N
uniformly L-Lipschitzian asymptotically quasi-nonexpansive type mappings
such that F =

⋂N
i=1 F (Si) ∩ F (Ti) 6= ∅. Let {xn} be the sequence defined by

(1.9), where {α(i)
n } ⊂ [a, 1− a] for some a ∈ (0, 1) and all i ∈ I. Put

Ain = max
{

sup
p∈F, n≥1

(
‖Tni xn − p‖ − ‖xn − p‖

)
∨

sup
p∈F, n≥1

(
‖Sni xn − p‖ − ‖xn − p‖

)
∨ 0 : 1 ≤ i ≤ N

}
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such that
∑∞

n=1Ain <∞ for all i ∈ I. Then limn→∞

∥∥∥Sni xn − Tni x(i−1)n

∥∥∥ =

0 for all i ∈ I.

Proof. By Lemma 2.1, we know that limn→∞ ‖xn − q‖ exists. So we can
assume that

lim
n→∞

‖xn − q‖ = d (2.6)

for all q ∈ F , where d ≥ 0 is nonnegative number. It follows from (2.4) and
(2.6) that

lim sup
n→∞

∥∥∥x(N−1)n − q
∥∥∥ ≤ d (2.7)

and so

lim sup
n→∞

∥∥∥TnNx(N−1)n − q
∥∥∥ ≤ d. (2.8)

Also,

lim sup
n→∞

‖SnNxn − q‖ ≤ d. (2.9)

Further, from (1.9) and (2.6), we have

d = lim
n→∞

‖x(N)
n − q‖

= lim
n→∞

‖α(N)
n (TnNx

(N−1)
n − q)

+ (1− α(N)
n )(SnNxn − q)‖.

By Lemma 1.2, we get that

lim
n→∞

∥∥∥SnNxn − TnNx(N−1)n

∥∥∥ = 0

and

lim
n→∞

∥∥∥TnNx(N−1)n − q
∥∥∥ = d.

From (2.7), we have

d = lim inf
n→∞

∥∥∥TnNx(N−1)n − q
∥∥∥

≤ lim inf
n→∞

[
∥∥∥x(N−1)n − q

∥∥∥+ANn]

= lim inf
n→∞

∥∥∥x(N−1)n − q
∥∥∥ ≤ lim sup

n→∞

∥∥∥x(N−1)n − q
∥∥∥ ≤ d

and so

lim
n→∞

∥∥∥x(N−1)n − q
∥∥∥ = d. (2.10)
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It follows from (2.4) and (2.6) that

lim sup
n→∞

∥∥∥x(N−2)n − q
∥∥∥ ≤ d.

Further, we know that

lim sup
n→∞

∥∥∥TnN−1x(N−2)n − q
∥∥∥ ≤ d (2.11)

and

lim sup
n→∞

∥∥SnN−1xn − q∥∥ ≤ d. (2.12)

From (1.9) and (2.10), we have

d = lim
n→∞

‖x(N−1)n − q‖

= lim
n→∞

‖α(N−1)
n (TnN−1x

(N−2)
n − q)

+ (1− α(N−1)
n )(SnN−1xn − q)‖. (2.13)

It follows from (2.11)-(2.13) and Lemma 1.2 that

lim
n→∞

∥∥∥SnN−1xn − TnN−1x(N−2)n

∥∥∥ = 0.

Continuing the above process, we obtain the result of Lemma 2.2. This
completes the proof. 2

Lemma 2.3. Under the assumptions of Lemma 2.2, if

lim
n→∞

‖xn − Sni xn‖ = 0 (2.14)

for all i ∈ I, then

lim
n→∞

‖xn − Tixn‖ = 0, ∀ i ∈ I.

Proof. Since limn→∞

∥∥∥Sni xn − Tni x(i−1)n

∥∥∥ = 0 for all i ∈ I by Lemma 2.2.

It follows from (2.14) that

lim
n→∞

∥∥∥xn − Tni x(i−1)n

∥∥∥ = 0 (2.15)

for all i ∈ I. Next, from (1.9), we have

‖xn − xn+1‖ ≤ α(N)
n

∥∥∥xn − TnNx(N−1)n

∥∥∥+ (1− α(N)
n ) ‖xn − SnNxn‖ .
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Using (2.14) and (2.15), we have

lim
n→∞

‖xn − xn+1‖ = 0. (2.16)

Since limn→∞ ‖xn − Tn1 xn‖ = 0 by (2.15) and

‖xn − Tni xn‖ ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥+
∥∥∥Tni x(i−1)n − Tni xn

∥∥∥
≤

∥∥∥xn − Tni x(i−1)n

∥∥∥+ L
∥∥∥x(i−1)n − xn

∥∥∥
≤

∥∥∥xn − Tni x(i−1)n

∥∥∥+ Lα(i−1)
n

∥∥∥Tni−1x(i−2)n − xn
∥∥∥

+L(1− α(i−1)
n )

∥∥Sni−1xn − xn∥∥ (2.17)

for all i = 1, 2, . . . , N . From (2.14), (2.15) and (2.17), we have

lim
n→∞

‖xn − Tni xn‖ = 0 (2.18)

for all i ∈ I. It follows from (2.16) and (2.18) that

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+
∥∥xn+1 − Tn+1

i xn+1

∥∥
+
∥∥Tn+1

i xn+1 − Tn+1
i xn

∥∥+
∥∥Tn+1

i xn − Tixn
∥∥

≤ ‖xn − xn+1‖+
∥∥xn+1 − Tn+1

i xn+1

∥∥+ L ‖xn+1 − xn‖
+L ‖Tni xn − xn‖

≤ (1 + L) ‖xn − xn+1‖+
∥∥xn+1 − Tn+1

i xn+1

∥∥
+L ‖Tni xn − xn‖ . (2.19)

Using (2.16) and (2.18), we get that

lim
n→∞

‖xn − Tixn‖ = 0,

for all i ∈ I. This completes the proof. 2

Lemma 2.4. Under the assumptions of Lemma 2.2, if

‖x− Tiy‖ ≤ ‖Six− Tiy‖ (2.20)

for all x, y ∈ K and i ∈ I, then

lim
n→∞

‖xn − Sixn‖ = lim
n→∞

‖xn − Tixn‖ = 0, ∀ i ∈ I.

Proof. By (2.20), we obtain that

0 ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥ ≤ ∥∥∥Sixn − Tni x(i−1)n

∥∥∥
≤

∥∥∥Sni xn − Tni x(i−1)n

∥∥∥ (2.21)



534 Gurucharan Singh Saluja

for all i ∈ I. It follows from (2.21) and Lemma 2.2 that

lim
n→∞

∥∥∥Sixn − Tni x(i−1)n

∥∥∥ = lim
n→∞

∥∥∥xn − Tni x(i−1)n

∥∥∥ = 0. (2.22)

Since

‖xn − Sixn‖ ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥+
∥∥∥Tni x(i−1)n − Sixn

∥∥∥ . (2.23)

Using (2.22) in (2.23), we obtain

lim
n→∞

‖xn − Sixn‖ = 0 (2.24)

for all i ∈ I. Also,

‖xn − Sni xn‖ ≤
∥∥∥xn − Tni x(i−1)n

∥∥∥+
∥∥∥Tni x(i−1)n − Sni xn

∥∥∥ . (2.25)

Using (2.22) and Lemma 2.2 in (2.25), we obtain

lim
n→∞

‖xn − Sni xn‖ = 0 (2.26)

for all i ∈ I. Thus limn→∞ ‖xn − Tixn‖ = 0 for all i ∈ I by Lemma 2.3.
This completes the proof. 2

Theorem 2.1. Under the assumptions of Lemma 2.4, if E satisfying Opial’s
condition. Assume that the mappings I − Si and I − Ti for all i ∈ I,
where I denotes the identity mapping, are demiclosed at zero. Then the
sequence {xn} converges weakly to a common fixed point of the mappings
{T1, T2, . . . , TN , S1, S2, . . . , SN}.

Proof. Let q ∈ F , from Lemma 2.1 the sequence {‖xn − q‖} is convergent
and hence bounded. Since E is uniformly convex, every bounded subset of
E is weakly compact. Thus there exists a subsequence {xnk

} ⊂ {xn} such
that {xnk

} converges weakly to q∗ ∈ K. From Lemma 2.4, we get that

lim
n→∞

‖xnk
− Sixnk

‖ = 0 and lim
n→∞

‖xnk
− Tixnk

‖ = 0

for all i ∈ I. Since the mappings I−Si and I−Ti for all i ∈ I are demiclosed
at zero, therefore Siq

∗ = q∗ and Tiq
∗ = q∗, which means q∗ ∈ F . Finally,

let us prove that {xn} converges weakly to q∗. Suppose on contrary that
there is a subsequence {xnj} ⊂ {xn} such that {xnj} converges weakly to
p∗ ∈ K and q∗ 6= p∗. Then by the same method as given above, we can
also prove that p∗ ∈ F . From Lemma 2.1 the limits limn→∞ ‖xn − q∗‖ and
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limn→∞ ‖xn − p∗‖ exist. By virtue of the Opial condition of E, we obtain

lim
n→∞

‖xn − q∗‖ = lim
nk→∞

‖xnk
− q∗‖

< lim
nk→∞

‖xnk
− p∗‖

= lim
n→∞

‖xn − p∗‖

= lim
nj→∞

∥∥xnj − p∗
∥∥

< lim
nj→∞

∥∥xnj − q∗
∥∥

= lim
n→∞

‖xn − q∗‖

which is a contradiction so q∗ = p∗. Thus {xn} converges weakly to a
common fixed point of the mappings {T1, T2, . . . , TN , S1, S2, . . . , SN}. This
completes the proof. 2

Lemma 2.5. Let E be a real uniformly convex Banach space and K be a
nonempty closed convex subset of E. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N
uniformly L-Lipschitzian asymptotically quasi-nonexpansive type mappings
such that F =

⋂N
i=1 F (Si) ∩ F (Ti) 6= ∅. Let {xn} be the sequence defined by

(1.9), where {α(i)
n } ⊂ [a, 1− a] for some a ∈ (0, 1) and all i ∈ I. Put

Ain = max
{

sup
p∈F, n≥1

(
‖Tni xn − p‖ − ‖xn − p‖

)
∨

sup
p∈F, n≥1

(
‖Sni xn − p‖ − ‖xn − p‖

)
∨ 0 : 1 ≤ i ≤ N

}
such that

∑∞
n=1Ain < ∞ for all i ∈ I. Then limn→∞ ‖txn + (1− t)p− q‖

exists for all p, q ∈ F and t ∈ [0, 1].

Proof. By Lemma 2.1, we know that {xn} is bounded. Letting

an(t) = ‖txn + (1− t)p− q‖

for all t ∈ [0, 1]. Then limn→∞ an(0) = ‖p− q‖ and limn→∞ an(1) =
‖xn − q‖ exists by Lemma 2.1. It, therefore, remains to prove the Lemma
2.5 for t ∈ (0, 1). For all x ∈ K, we define the mapping Rn : K → K by

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn,

...

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn,

Rn(x) = α(N)
n TnNx

(N−1) + (1− α(N)
n )SnNx.
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It is easy to prove

‖Rnx−Rny‖ ≤ ‖x− y‖+ANn, (2.27)

for all x, y ∈ K, with
∑∞

n=1ANn <∞. Setting

Sn,m = Rn+m−1Rn+m−2 . . . Rn, m ≥ 1 (2.28)

and

bn,m = ‖Sn,m(txn + (1− t)p)− (tSn,mxn + (1− t)Sn,mq)‖ . (2.29)

From (2.27) and (2.28), we have

‖Sn,mx− Sn,my‖ ≤ ‖x− y‖+

n+m−1∑
k=n

Akn (2.30)

for all x, y ∈ K and Sn,mxn = xn+m, Sn,mp = p for all p ∈ F . Thus

an+m(t) = ‖txn+m + (1− t)p− q‖
≤ bn,m + ‖Sn,m(txn + (1− t)p)− q‖

≤ bn,m + an(t) +

n+m−1∑
k=n

Akn. (2.31)

By using [4, Theorem 2.3],we have

bn,m ≤ φ−1(‖xn − p‖ − ‖Sn,mxn − Sn,mp‖)
≤ φ−1(‖xn − p‖ − ‖xn+m − p+ p− Sn,mp‖)

≤ φ−1
(
‖xn − p‖ − (‖xn+m − p‖ − ‖Sn,mp− p‖)

)
, (2.32)

and so the sequence {bn,m} converges to 0 as n → ∞ for all m ≥ 1. Thus,
fixing n and letting m→∞ in (2.32), we have

lim sup
m→∞

an+m(t) ≤ φ−1
(
‖xn − p‖ −

(
lim
m→∞

‖xm − p‖ − ‖Sn,mp− p‖
))

+an(t) +

n+m−1∑
k=n

Akn, (2.33)

and again letting n→∞, we obtain

lim sup
n→∞

an(t) ≤ φ−1(0) + lim inf
n→∞

an(t) + 0 = lim inf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is,

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1]. This completes the proof. 2
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Theorem 2.2. Let E be a real uniformly convex Banach space such that its
dual E∗ has the Kadec-Klee property and K be a nonempty closed convex
subset of E. Let {Si}Ni=1, {Ti}Ni=1 : K → K be 2N uniformly L-Lipschitzian
asymptotically quasi-nonexpansive type mappings such that F =

⋂N
i=1 F (Si)∩

F (Ti) 6= ∅. Let {xn} be the sequence defined by (1.9), where {α(i)
n } ⊂ [a, 1−a]

for some a ∈ (0, 1) and all i ∈ I. Put

Ain = max
{

sup
p∈F, n≥1

(
‖Tni xn − p‖ − ‖xn − p‖

)
∨

sup
p∈F, n≥1

(
‖Sni xn − p‖ − ‖xn − p‖

)
∨ 0 : 1 ≤ i ≤ N

}
such that

∑∞
n=1Ain < ∞ for all i ∈ I. If the mappings I − Si and I −

Ti for all i ∈ I, where I denotes the identity mapping, are demiclosed at
zero, then {xn} converges weakly to a common fixed point of the mappings
{T1, T2, . . . , TN , S1, S2, . . . , SN}.

Proof. By Lemma 2.1, we know that {xn} is bounded and since E is
reflexive, there exists a subsequence {xnj} of {xn} which converges weakly
to some p ∈ K. By Lemma 2.4 we get that

lim
n→∞

∥∥xnj − Sixnj

∥∥ = 0 and lim
n→∞

∥∥xnj − Tixnj

∥∥ = 0

for all i ∈ I. Since the mappings I−Si and I−Ti for all i ∈ I are demiclosed
at zero, therefore Sip = p and Tip = p for all i ∈ I which means p ∈ F .
Now, we show that {xn} converges weakly to p. Suppose {xni} is another
subsequence of {xn} converges weakly to some q ∈ K. By the same method
as above, we have q ∈ F and p, q ∈ ww(xn). By Lemma 2.5, the limit

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1] and so p = q by Lemma 1.3. Thus, the sequence {xn}
converges weakly to p ∈ F . This completes the proof. 2

Remark 2.1. Our results extend and improve the corresponding results of
[1] to the case of more general class of asymptotically nonexpansive mappings
considered in this paper.

Remark 2.2. Our results also extend and improve the corresponding re-
sults of [21] to the case of more general class of nonexpansive and asymp-
totically nonexpansive mappings considered in this paper.

Example 2.1. Let E = [−π, π] and let T be defined by

Tx = x cosx
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for each x ∈ E. Clearly F (T ) = {0}. T is a quasi-nonexpansive mapping
since if x ∈ E and z = 0, then

|Tx− z| = |Tx− 0| = |x|| cosx| ≤ |x| = |x− z|,

and T is asymptotically quasi-nonexpansive mapping with constant sequence
{kn} = {1}. Hence by Remark 1.1, T is asymptotically quasi-nonexpansive
type mapping. But it is not a nonexpansive mapping and hence asymptoti-
cally nonexpansive mapping. In fact, if we take x = π

2 and y = π, then

|Tx− Ty| =
∣∣∣π
2

cos
π

2
− π cosπ

∣∣∣ = π,

whereas

|x− y| =
∣∣∣π
2
− π

∣∣∣ =
π

2
.

Example 2.2. Let E = R and let T be defined by

T (x) =

{
x
2 cos 1

x , if x 6= 0,
0, if x = 0.

If x 6= 0 and Tx = x, then x = x
2 cos 1

x . Thus 2 = cos 1
x . This is imposssible.

T is a quasi-nonexpansive mapping since if x ∈ E and z = 0, then

|Tx− z| = |Tx− 0| = |x
2
|| cos

1

x
| ≤ |x|

2
< |x| = |x− z|,

and T is asymptotically quasi-nonexpansive mapping with constant sequence
{kn} = {1}. Hence by Remark 1.1, T is asymptotically quasi-nonexpansive
type mapping. But it is not a nonexpansive mapping and hence asymp-
totically nonexpansive mapping. In fact, if we take x = 2

3π and y = 1
π ,

then

|Tx− Ty| =
∣∣∣ 1

3π
cos

3π

2
− 1

2π
cosπ

∣∣∣ =
1

2π
,

whereas

|x− y| =
∣∣∣ 2

3π
− 1

π

∣∣∣ =
1

3π
.

3. Conclusion

By Remark 1.1 it is clear that if F (T ) is nonempty, then asymptotically
nonexpansive mapping and asymptotically quasi-nonexpansive mappings
are asymptotically quasi-nonexpansive type mappings, thus the results pre-
sented in this paper are good improvement and generalization of correspond-
ing results of [1, 21] and many others from the current literature.
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