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1. Introduction and preliminaries

Let R, R+ and N denote the set of reals, non-negative reals and the set of
natural numbers respectively. Let

(
G,Σ, µ

)
be a σ-finite measure space and

L0 = L0
(
G,Σ, µ

)
be the space of all (equivalence classes of) µ−measurable

complex-valued functions defined on G. By ϕ : R → [0,∞] we denote an
Orlicz function i.e. ϕ is convex, even, continuous at zero and left hand side
continuous in the extended sense (that is infinite limits are not excluded) on
R+ (see [4], [6], [9], [12],[18]). By M we denote a Musielak-Orlicz function,
that is M : G× R→ [0,∞] and

1. M(t, .) is an Orlicz function for µ-a.e. t ∈ G,

2. M(., u) ∈ L0 for any u ∈ R.

The function M generates on the space L0 the convex modular

%M (f) =

∫
G
M(t, |f(t)|)dµ.

The space

LM =
{
f ∈ L0 : %M (λf) <∞ for some λ > 0

}
513
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is called the Musielak-Orlicz space generated by M . Its subspace EM is
defined as

EM =
{
f ∈ L0 : %M (λf) <∞ for any λ > 0

}
.

The space LM endowed with the Luxemberg norm

||f ||M = inf
{
λ > 0 : %M (

f

λ
) ≤ 1

}
is a Banach space (see [13], [14]). For every Musielak-Orlicz function M we
define complementary function M∗(t, v) as

M∗(t, v) = sup
u>0

{
u|v| −M(t, u) : v ≥ 0 and t ∈ G a.e.

}
.

It is easy to see that M∗(t, v) is also Musielak-Orlicz function. We say that
Musielak-Orlicz function M satisfies ∆2-condition (write M ∈ ∆2) if there
exists a constant k > 2 and a measurable non-negative function f such that
%M (f) <∞ and

M(t, 2u) ≤ kM(t, u)

for every u ≥ f(t) and for t ∈ G a.e.. For more details see [12]. Throughout
this paper we assumed that M satisfies ∆2-condition.

If T is a non-singular measurable transformation, then the measure µT−1

is absolutely continuous with respect to the measure µ. Hence by Radon-
Nikodym derivative theorem there exists a positive measurable function f0
such that µ(T−1(E)) =

∫
E f0dµ for every E ∈ Σ. The function f0 is called

the Radon-Nikodym derivative of the measure µT−1 with respect to the

measure µ. It is denoted by f0 = dµT−1

dµ .
Let (G,Σ, µ) be a σ−finite measure space and Σ0 ⊂ Σ be a σ−finite

subalgebra. Then the conditional expectation E(·
∣∣Σ0) is defined as a lin-

ear transformation from certain Σ−measurable function spaces into their
Σ0−measurable counterparts. In particular the conditional expectation with
respect to T−1(Σ) is a bounded projection from L0(G,Σ, µ) into the space
L0(G,T−1(Σ), µ). We denote this transformation by E.
The operator E has the following properties:
(i) E(f.goT ) = E(f).(goT ).
(ii) If f ≥ g almost everywhere, then E(f) ≥ E(g) almost everywhere.
(iii)E(1) = 1.
(iv)E(f) has the form E(f) = goT for exactly one σ-measurable function g.
In particular g = E(f)oT−1 is a well defined measurable function.
(v) |E(fg)|2 ≤ (E|f |2)(E|g|2). This is a Cauchy-Schwartz inequality for
conditional expectation.
(vi) For f > 0 almost everywhere, E(f) > 0 almost everywhere.
(vii) If φ is a convex function, then φ(E(f)) ≤ E(φ(f)) µ-almost every-
where. For deeper study of properties of E see [ 11].
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We now define the types of spaces considered in this paper. For a Banach
space (X, ||.||X), denote by L0(X), the family of strongly measurable func-
tions f : G→ X identifying functions which are equal µ-almost everywhere
in G. Define a new modular %̃M on L0(X) by

%̃M (f) =

∫
G
M(t, ||f(t)||)dµ.

Let
LM (G,X) =

{
f ∈ L0(X) : ||f(t)|| = ||f(t)||X ∈ LM

}
.

Then LM (G,X) becomes a Banach space with the norm

||f || = || ||f(t)||X ||M = inf
{
λ : %̃M (

f

λ
) ≤ 1

}
and it is called Musielak-Orlicz space of Bochner-type (see [7]). We denote
by B(LM (G,X)) the set of all bounded linear operators from LM (G,X)
into itself. Also by B(X) we denote the set of all bounded linear operators
on X into itself.

Let w : G → B(X) be a strongly measurable operator-valued map and
T : G → G be a measurable transformation. Then a bounded linear trans-
formation Sw,T : LM (G,X)→ LM (G,X) defined by

(Sw,T f)(t) = w(T (t))f(T (t)),

for every t ∈ G and for every f ∈ LM (G,X) is called a weighted composition
operator induced by the pair (w, T ). If we take w(t) = I, the identity oper-
ator on G, we write Sw,T as CT and call it a composition operator induced
by T . In case T (t) = t for some t ∈ G, we write Sw,T as Mw and call it
a multiplication operator induced by w. A weighted composition operator
is a product of composition operator and a multiplication operator. Thus
the multiplication operators and composition operators are special types of
weighted composition operators. In the early 1930’s the composition oper-
ators were used to study problems in mathematical physics and especially
classical mechanics, see Koopman’s paper [9]. In those days these operators
were known as substitution operators. The systematic study of composition
operators has relatively a very short history. It was started by Nordgren in
1968 in his paper [15]. After this, the study of composition operators has
been extended in several directions by several mathematicians.

The study of compact weighted composition operators on Lp-spaces
(1 ≤ p < ∞) was initiated by Takagi [20] in 1992. He also determined the
spectra of these operators. In 1993, Takagi [21] characterized the weighted
composition operators on C(X) and proved that a weighted composition
operator is Fredholm if and only if it is invertible. The same equivalence
is true for weighted composition operator on Lp(µ) spaces 1 ≤ p < ∞,
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where µ is non-atomic measure. In 1994, Campbell and Hornor [1] used a
localized conditional expectation operator to characterize subnormality for
the adjoint of a weighted composition operator. In 1996, Hornor and Jami-
son [5] investigated the criteria for the hypernormality, cohyponormality
and normality of weighted composition operators acting on Hilbert spaces
of vector-valued functions. For more details on composition and weighted
composition operators see [2], [3], [5], [16], [17], [19], [22] and references
therein.

By N ||f0||(w, ε) we mean the set{
t ∈ G : E

[
M
(
I ◦ T−1(t), ||w(t)y||

)]
f0(t) ≥M(t, ε||y||) for y ∈ X

}
.

The set {t ∈ G : w(t) 6= 0} is called support of w and we shall write it as
supp w.

The main purpose of this paper is to characterize the boundedness, com-
pactness, invertibility, Fredholmness and isometry of the weighted compo-
sition operators defined on the Musielak-Orlicz function spaces of Bochner-
type.

2. Weighted composition operators

The main aim of this section is to characterize boundedness and compactness
of weighted composition operators on Musielak-Orlicz spaces of Bochner-
type. Before proving the compactness of weighted composition operator, we
first prove the necessary and sufficient condition for a weighted composition
operator to be bounded away from zero.

Theorem 2.1. Let w : G→ B(X) be a strongly measurable operator-valued
map and let T : G → G be a measurable transformation. Then Sw,T :
LM (G,X) → LM (G,X) is a bounded operator if and only if there exists a
constant K > 0 such that

E
[
M
(
I ◦ T−1(t)

)
, ||w(t)y||

]
f0(t) ≤M(t,K||y||) (2.1)

for every y ∈ X and for µ-almost all t ∈ G.

Proof. Suppose the condition (2.1) is true. Then for every f ∈ LM (G,X),
we have∫
G
M
(
t,
||(Sw,T f)(t)||

K||f ||

)
dµ(t) =

∫
G
M
(
t,
||w(T (t))f(T (t))||

K||f ||

)
dµ(t)

=

∫
G
E
[
M
(
I ◦ T−1(t), ||w(t)f(t)||

K||f ||

)]
f0(t)dµ(t)

≤
∫
G
M
(
t,
||f(t)||
||f ||

)
dµ(t)

≤ 1.
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This shows that

||Sw,T f || ≤ K||f ||.

Conversely, suppose that the condition (2.1) is not true. Then for every
positive integer k, there exists a measurable set Gk ⊂ G and some yk ∈ X
such that

E
[
M(I ◦ T−1(t), ||w(t)yk||)

]
f0(t) ≥M(t,K||yk||)

for µ-almost every t ∈ Gk. Choose a measurable subset Fk of Gk such that
χFk
∈ LM (G,X). Let fk = ykχFk

. Then∫
G
M
(
t,
||Kfk(t)||
||Sw,T fk||

)
dµ(t) =

∫
Fk

M
(
t,
||Kyk||
||Sw,T fk||

)
dµ(t)

≤
∫
Fk

E
[
M
(
I ◦ T−1(t), ||w(t)yk||

||Sw,T fk||

)]
f0(t)dµ(t)

=

∫
G
M
(
t,
||(Sw,T fk)(t)||
||Sw,T fk||

)
dµ(t)

≤ 1.

This implies that

||Sw,T fk|| ≥ K||fk||.

This contradicts the boundedness of Sw,T . Hence the condition (2.1) must
be true. 2

Theorem 2.2. Let w : G → B(X) be a strongly measurable operator-
valued map and T : G → G be a measurable transformation. Then Sw,T :
LM (G,X)→ LM (G,X) is bounded away from zero if and only if

E
[
M
(
I ◦ T−1(t), ||w(t)g||

)]
f0(t) ≥M(t, δ||g||) (2.2)

for each t ∈ G and g ∈ X.

Proof. We first suppose that the condition (2.2) is true. Then for every
f ∈ LM (G,X), we have∫
G
M
(
t,
||δf(t)||
||Sw,T f ||

)
dµ(t) ≤

∫
G
E
[
M
(
I ◦ T−1(t), ||w(t)f(t)||

||Sw,T f ||

)]
f0(t)dµ(t)

=

∫
G
M
(
t,
||(Sw,T f)(t)||
||Sw,T f ||

)
dµ(t)

≤ 1.

Therefore, ||Sw,T f || ≥ δ||f || for all f ∈ LM (G,X). This shows that Sw,T is
bounded away from zero.



518 Kuldip Raj, Seema Jamwal and Sunil K. Sharma

Conversely, suppose that the condition (2.2) is not true. Then for every
integer k, there exists gk ∈ X and a measurable subset Gk of G such that

E
[
M(I ◦ T−1(t), ||w(t)gk||)

]
f0(t) ≤M

(
t,
||gk||
K

)
.

Choose a measurable subset Fk of Gk such that χFk
∈ LM (G,X). Let

fk = KχFk
. Then

∫
G
M
(
t,
||K(Sw,T fk)(t)|

||fk||

)
dµ(t) =

∫
Fk

E
[
M
(
I ◦ T−1(t), ||Kw(t)gk||

||fk||

)]
f0(t)dµ(t)

<

∫
Fk

M
(
t,
||gk||
||fk||

)
dµ(t)

=

∫
G
M
(
t,
||fk(t)||
||fk||

)
dµ(t)

≤ 1.

Hence

||Sw,T fk|| ≤
1

K
||fk||,

which shows that Sw,T is not bounded away from zero. Hence the condition
of the theorem must be true. 2

Theorem 2.3. Suppose Sw,T ∈ B
(
LM (G,X)

)
. Then Sw,T is compact if

and only if the space LM

[
(G,X), N ||f0||(w, ε)

]
is finite dimensional for each

ε > 0, where

LM [(G,X), N ||f0||(w, ε)] =
{
f ∈ LM (G,X) : f(t) = 0,∀ t /∈ N ||f0||(w, ε)

}
.

Proof. We first suppose that the space LM

[
(G,X), N ||f0||(w, 1n)

]
is finite

dimensional for each n = 1, 2, 3, · · · . Define

wn(t) =

{
w(t), if t ∈ N ||f0||

(
w, 1n

)
0, if t /∈ N ||f0||

(
w, 1n

)
.

Then Swn,T is a compact operator for each n ∈ N. Thus,
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∫
G
M
(
t,
||n(Swn,T − Sw,T )f(t)||

||f ||

)
dµ(t)

=

∫
G
E
[
M
(
I ◦ T−1(t),

||n
(
wn(t)− w(t)

)
f(t)||

||f ||

)]
f0(t)dµ(t)

=

∫(
N ||f0||

(
w, 1

n

))′ E[M(I ◦ T−1(t), ||nw(t)f(t)||
||f ||

)]
f0(t)dµ(t)

<

∫(
N ||f0||

(
w, 1

n

))′M(t, ||f(t)||
||f ||

)
dµ(t)

≤
∫
G
M
(
t,
||f(t)||
||f ||

)
dµ(t)

≤ 1.

Hence

||(Swn,T − Sw,T )f || ≤ 1

n
||f ||

→ 0 as n→∞.

This proves that Sw,T is a compact operator.

Conversely, suppose that LM

[
(G,X), N ||f0||(w, ε)

]
is infinite dimensional

for some ε > 0. Then the closed unit ball of LM

[
(G,X), N ||f0||(w, ε)

]
is

not compact. Therefore, there exists a bounded sequence {fn} in the closed

unit ball of LM

[
(G,X), N ||f0||(w, ε)

]
such that it has a subsequence {fnk

}
of {fn} for which ||fnk

− fnj || ≥ δ for some δ > 0. Now

1 ≥
∫
G
M
(
t,
||(Sw,T fnk

− Sw,T fnj )(t)||
ε||Sw,T fnk

− Sw,T fnj ||

)
dµ(t)

=

∫
G
E
[
M
(
I ◦ T−1(t),

||w(t)fnk
(t)− w(t)fnj (t)||

||Sw,T fnk
− Sw,T fnj ||

)]
f0(t)dµ(t)

>

∫
N ||f0||(w,ε)

M
(
t,
||ε
(
fnk

(t)− fnj (t)
)
||

||Sw,T fnk
− Sw,T fnj ||

)
dµ(t)

=

∫
G
M
(
t,
||ε(fnk

(t)− fnj (t))||
||Sw,T fnk

− Sw,T fnj ||

)
dµ(t).

Hence

||Sw,T fnk
− Sw,T fnj || ≥ ε||fnk

− fnj ||
≥ εδ.

This proves that {Sw,T fn} cannot have convergent subsequence. Therefore,

Sw,T is not compact. Thus, the space LM

[
(G,X), N ||f0||(w, ε)

]
must be

finite dimensional. 2
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Corollary 2.1. Let Sw,T ∈ B(LM (G,X)). Then Sw,T is compact if and
only if Sw,T = 0.

3. Isometric and invertible weighted composition operators on
Musielak-Orlicz spaces of Bochner-type

In this section we investigate a necessary and sufficient condition for a
weighted composition operator to be invertible and then we make the use of
it to characterize Fredholm weighted composition operators. We also make
an effort to characterize the isometric weighted composition operator on
Musielak-Orlicz spaces of Bochner-type.

Theorem 3.1. Let Sw,T ∈ B(LM (G,X)). Then Sw,T is invertible if and
only if
(i) T is invertible and
(ii) there exists δ > 0 such that

E
[
M
(
I ◦ T−1(t), ||w(t)y||

)]
f0(t) ≥M(t, δ||y||)

for µ-almost all t ∈ G and y ∈ (X, ||.||X).

Proof. Suppose Sw,T is invertible. Then clearly T is surjective. If T is
not surjective, we can find a measurable subset F ⊂ G \ T (G) for which
χF ∈ LM (G,X). We see that Sw,TχF = 0, which shows that Sw,T has non-
trivial kernel. Hence T must be surjective. Similarly if T is not injective,
then Sw,T has not dense range. By Hahn-Banach theorem there exists 0 6=
g∗ ∈ L∗M (G,X) such that g∗(Sw,T f) = 0 for all f ∈ LM (G,X). Now
by the Riesz-Representation theorem for linear functionals there exists g ∈
L∗M (G,X) such that g∗(h) =

∫
h.gdµ. Thus,

(S∗w,T g
∗)(f) = g∗(Sw,T f) = 0.

Also

(kerSw,T )∗ = (ranSw,T )⊥ 6= {0},

which shows ranSw,T is not dense. This contradicts that Sw,T has dense
range. Hence T must be injective. Thus, T is invertible. Also Sw,T is
bounded away from zero. Therefore, the condition (2.2) is satisfied.
Conversely, if the conditions (i) and (ii) hold, then Sw,T is bounded away
from zero and has dense range. Hence Sw,T is invertible. 2

Theorem 3.2. Let Sw,T ∈ B(LM (G,X)). Then Sw,T is Fredholm if and
only if Sw,T is invertible.
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Proof. Suppose Sw,T is invertible. Then clearly Sw,T is Fredholm. Con-
versely, suppose that Sw,T is Fredholm. Then kerSw,T is finite dimensional.
We know that kerSw,T is either zero dimensional or infinite dimensional.
Hence kerSw,T = 0, which shows that w ◦ T 6= 0 and T is surjective.
Next, if (ranSw,T )⊥ 6= {0}, then there exists a bounded linear functional
0 6= g∗ ∈ (L∗M (G,X) such that g∗(Sw,T f) = 0 that is (S∗w,T g

∗)(f) = 0. By
the Representation theorem for functionals there exists g ∈ LM∗(G,X) such
that g∗(Sw,T f) =

∫
G Sw,T fgdµ = 0. Let F = supp g and {Fn} be a sequence

of disjoint measurable sets such that ∪∞n=1Fn = F and χFn ∈ LM (G,X).
Take g∗n = g∗χFn . Clearly S∗w,T g

∗
n = 0 for all n = 1, 2, 3, · · · . This proves

that ranSw,T is dense, since ranSw,T is closed. Therefore there exists δ > 0
such that

E
[
M
(
I ◦ T−1(t), ||w(t)y||

)]
f0(t) ≥M(t, δ||y||)

for µ-almost all t ∈ G and for all y ∈ (X, ||.||X). This proves that Sw,T is
invertible. 2

Theorem 3.3. Let Sw,T ∈ B(LM (G,X)) and

E
[
M
(
I ◦ T−1(t), ||w(t)y||

)]
f0(t) = M(t, ||y||)

for µ-almost all t ∈ G and y ∈ X. Then Sw,T is an isometry if and only if
||w(t)|| = 1 a.e.

Proof. Suppose ||w(t)|| = 1 for µ-almost all t ∈ G. Then for f ∈
LM (G,X), we have∫
G
M
(
t,
||(Sw,T f)(t)||
||f ||

)
dµ(t) =

∫
G
M
(
t,
||w(t)f(t)||
||f ||

)
dµ(t)

=

∫
G
E
[(
I ◦ T−1(t), ||w(t)f(t)||

||f ||

)]
f0(t)dµ(t)

=

∫
G
M
(
t,
||f(t)||
||f ||

)
dµ(t)

≤ 1.

Therefore,
||Sw,T f || ≤ ||f ||. (3.1)

Again∫
G
M
(
t,
||f(t)||
||Sw,T f ||

)
dµ(t) =

∫
G
M
(
t,
||w(t)f(t)||
||Sw,T f ||

)
dµ(t)

=

∫
G
E
[(
I ◦ T−1(t), ||w(t)f(t)||

||Sw,T f ||

)]
f0(t)dµ(t)

=

∫
G
M
(
t,
||(Sw,T f)(t)||
||Sw,T f ||

)
dµ(t)

≤ 1.
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Therefore,

||Sw,T f || ≥ ||f ||. (3.2)

Hence

||Sw,T f || = ||f ||.

This proves that Sw,T is an isometry.
Conversely, suppose that the condition of the theorem is not true. Then
||w(t)|| 6= 1 a.e. Suppose ||w(t)|| < 1 a.e.. Then the set F = {t ∈ G :
||w(t)|| < 1 − ε} is of positive measure for some ε > 0. We can choose a
subset A of F such that χA ∈ LM (G,X). Now∫
G
M
(
t,
||(Sw,TχA)(t)||
(1− ε)||χA||

)
dµ(t) =

∫
A
E
[
M
(
I ◦ T−1(t), ||w(t)χA(t)||

(1− ε)||χA||

)]
f0(t)dµ(t)

=

∫
G
M
(
t,
||w(t)χA(t)||
(1− ε)||χA||

)
dµ(t)

≤ 1.

Therefore,

||Sw,TχA|| ≤ (1− ε)||χA||,

which is a contradiction. Similarly, for ||w(t)|| > 1 a.e. we again get a
contradiction. Hence ||w(t)|| = 1 a.e.. 2
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