
Annals of the University of Bucharest (mathematical series)

4 (LXII) (2013), 491–511

Sub-optimal Logistic Models for Classification and
Prediction Tasks

Iuliana Paraschiv-Munteanu and Luminiţa State

Communicated by Ioan Tomescu

Abstract - Learning from data means to have a learning method that is an
algorithm implemented in software that estimates an unknown dependency
between a system’s inputs and outputs from the available data, namely from
known samples. Once such a dependency has been accurately estimated, it
can be used for prediction of future system outputs for known input values.

In order to learn a classification system based on a known finite size
input-output samples, a probabilistic parametric logistic model is proposed
in the paper, and several estimation methods to approximate the parame-
ters are considered. Their performances are analyzed on experimental basis
from two points of view, namely the quality of the learned model expressed
in terms of the values of the likelihood function and the behavior in classi-
fying new data coming from the same repartitions expressed in terms of the
empirical error. The estimation process is implemented on linearly separa-
ble data, while in testing the resulted performance new linearly separable
and non-linearly separable data are used. Four suboptimal types of estima-
tions are introduced in the second section of the paper. The comparative
analysis developed in the second and the third sections of the paper pointed
out their better behavior as compared to the estimates computed using the
learning algorithms MSE, perceptron, Mays and SVM.

Key words and phrases : logistic model, learning from data, supervised
learning, maximum likelihood principle, minimum squared errors, predic-
tion, classification.

Mathematics Subject Classification (2010) : 62J05, 62J12.

1. Introduction

We consider the learning environment described in [9], [10] and [13]. Let S
be a system that for any n-dimensional input x computes an m-dimensional
output y according to an unknown law. In the simplest approach we can
assume that the output y is uniquely determined by the input x. However,
the output can be influenced by a series of unobservable factors, and the de-
pendency between the inputs and outputs of S could be of non-deterministic
type. Consequently, in a more sophisticated approach we are forced to take

491

492 Iuliana Paraschiv-Munteanu and Luminiţa State

into account a non-deterministic dependency, modelled for instance in prob-
abilistic terms, as a reasonable hypothesis concerning the unknown law. In
our model we consider the Generator, denoted by G, the source that gen-
erates the inputs. Mainly, there are two ways to model G, namely when
the mechanism of generating inputs is known by the observer and when the
law according to which the inputs are generated is also unknown, respec-
tively. The third component of our learning environment denoted by L, is
responsible with possible models of the unknown dependency corresponding
to S. The learning component L implements a class of hypothesis (models)
Ω, such that to each particular hypothesis ω ∈ Ω corresponds a function
ϕω : X → Y defined on the space of inputs X and taking values in the space
of outputs Y ([2], [3], [7], [9]). For each particular input x0, ŷ0 = ϕω (x0)
is the estimate of the S’s output corresponding to x0 in case of the model
ω. Being given a criterion function C that expresses numerically the fitness
of each model with respect to the available evidence E, about S, the best
model ω0(E) is a solution of the optimization problem

arg (optimizeω∈Ω C(ω,E)) . (1.1)

In the case of supervised learning the available evidence E is represented
by a finite set of pairs {(xi, yi) , 1 ≤ i ≤ N} ⊂ X × Y, where each yi is the
actual output of S for the input xi.

Conventionally, when the output space of S is a finite set, the problem
is referred as a classification problem. Typically, in case of a classification
problem the output of S is either 0 or 1, these values corresponding to the
recognition of the class from which each input comes. The use of a set of
linear hypotheses ω for discriminating between two input classes yields poor
results, mainly because in order to bring the computed values to the domain
{0, 1} some threshold should be imposed. An alternative way is to combine
the linear regression with the logistic function in order to model the classes
in the output space in terms of a Bernoulli probability distribution ([8]).
Following the brief presentation of the logistic model, the ML estimate of
the probabilistic model on the space of outputs of S is derived in the third
section of the paper. In the final part of the paper a series of conclusions
are presented concerning the performance of the estimated model derived
on experimental basis.

2. Supervised Learning Schemes of the Logistic
Model for Classification Purposes

We denote by n the dimension of the space from which G selects the inputs
loaded into S, where for each input x the system S computes either 0 or 1.
At the level of the component L each hypothesis ω corresponds to a (n+1)-
dimensional parameter β. For any β ∈ Rn+1 let gβ : Rn+1 → (0, 1) defined

Sub-optimal Logistic Models for Classification and Prediction Tasks 493

by gβ(z) = h
(
βT z

)
, where h is the logistic function h(u) =

1

1 + e−u
.

Our approach is based on a probabilistic model of Bernoulli type con-
cerning the behavior of S, that is if β is the current hypothesis, then for
each input x, gβ(z), 1−gβ(z) are taken as the probabilities that S emits the
outputs y = 1, y = 0, respectively,

P (y = 1 | x, β) = gβ(z) ,

P (y = 0 | x, β) = 1− gβ(z) .
(2.1)

In other words, each hypothesis ω implemented at the level of the learning
component L is represented by a (n+ 1)-dimensional parameter β, the pre-
dicted values of L concerning the unknown input-output dependency of S,
being given by the probability distribution

p (y | x, β)=(gβ(z))y (1− gβ(z))1−y , y ∈ {0, 1} , x ∈ Rn, z =

(
1
x

)
.

(2.2)
Obviously,

P (y = 1 | x, β) ≥ P (y = 0 | x, β)⇐⇒ gβ(z) ≥ 1

2
⇐⇒

⌊
gβ(z) +

1

2

⌋
= 1 ,

and

P (y = 1 | x, β) < P (y = 0 | x, β)⇐⇒ gβ(z) <
1

2
⇐⇒

⌊
gβ(z) +

1

2

⌋
= 0 ,

that is the prediction yβ(x) =

⌊
gβ(z) +

1

2

⌋
corresponds to the most probable

output according to the model β.
Also, since

gβ(z) ≥ 1

2
⇐⇒ βT z ≥ 0 ,

we get that each model β defines a partition of the input space into two
regions that approximate the classes of inputs for which S emits the outputs
1/0, respectively, these regions being separated by the hyperplane Hβ :
βT z = 0. The class of inputs corresponding to the predicted output yβ = 1 is

the hyperspace S+ (Hβ) ∪Hβ, where S+ (Hβ) =

{
x ∈ Rn |βT

(
1
x

)
> 0

}
.

We consider a supervised framework as the base for identifying the op-
timal hypothesis from the point of view of least means errors criterion, that
is the search for optimal hypothesis is developed using the information con-
tained by a finite set of labeled examples

SN = {(xi, yi) |xi ∈ Rn, yi ∈ {0, 1}, 1 ≤ i ≤ N} .

494 Iuliana Paraschiv-Munteanu and Luminiţa State

Being given the model β, the predicted output for each input xi is

yβ (xi) =

⌊
gβ (zi) +

1

2

⌋
, where zi =

(
1
xi

)
.

The problem of learning from data the most suitable model β can be
approached many ways, by adopting different point of views expressed in
terms of performance functions used to evaluate to quality of each model
with respect to the evidence represented by SN .

2.1. Minimum Squared Errors (MSE) Estimates
of the Logistic Model

The performance of each model β is evaluated by the MSE criterion function

FN (β) =
1

N

N∑
i=1

‖yi − gβ (zi)‖2,

and the optimal model determined on the basis of SN is a solution of the
optimization problem

β̂MSE = arg

(
min

β∈Rn+1
FN (β)

)
. (2.3)

The computational difficulties of deriving exact solution of the problem (2.3)
justify the use of iterative learning schemes and heuristic approximations,
yielding to sub-optimal solutions, the quality of each sub-optimal solution
being evaluated experimentally.

Denoting by ∇βFN (β) the gradient of the objective function FN , the
space of critical points is the set of the solutions of the system

∇βFN (β) = 0 . (2.4)

Using straightforward computations we get

∇βFN (β) =
2

N

N∑
i=1

(gβ (zi)− yi) gβ (zi) (1− gβ (zi)) zi ,

where zi =

(
1
xi

)
.

Moreover, the gradient of the objective function FN (β) can be written
in compact form as

∇βFN (β) =
2

N
ZD1(β) (D1(β)− IN) (Y −D1(β)u) ,

where Z, Y are the matrices of examples and the corresponding labels,

Z = (z1, . . . , zN) , Y = (y1, . . . , yN)T , (2.5)

Sub-optimal Logistic Models for Classification and Prediction Tasks 495

D1(β) denotes the diagonal matrix having as diagonal entries gβ (zi), 1 ≤
i ≤ N ,

D1(β) = diag (gβ (z1) , . . . , gβ (zN)), (2.6)

and
u = (1, . . . , 1)T ∈ RN . (2.7)

Unfortunately, the system (2.4) can not be solved and only numerical
methods and iterative learning schemes of gradient decent type can be used
to approximate the optimal MSE model. The computation of the hessian
matrix of the objective function FN (β) yields to

Hβ (FN (β)) =

2

N
ZD1(β)

(
−3D1(β)2+2D1(β)+2Ỹ D1(β)−Ỹ

)
(IN−D1(β))ZT,

(2.8)
where the matrix Ỹ is the diagonal matrix whose entries are the labels
y1, . . . , yN .

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

2

3

4

Figure 1. The sub-optimal classifier Hβ? .

If β̃ is an approxima-
tion of a solution of sys-
tem (2.4) obtained by a
numerical method, it is
computationally difficult to
check the positive definite-

ness of Hβ

(
FN

(
β̃
))

, espe-

cially because of its depen-
dency on the set of exam-
ples Z. Several tests pointed
out that there are chances
that Hβ (FN (β)) is in gen-
eral positive semi-definite in
the sense that we did not
find any set of examples Z

yielding to a negative-definite matrix Hβ

(
FN

(
β̃
))

.

The alternative approach is to develop iterative learning schemes al-
lowing the computation of approximates of local minima of the objective
function FN (β). For instance, the standard gradient descent algorithm and
its stochastic variant use the updating rules

β ← β − ρZD1(β) (D1(β)− IN) (Y −D1(β)u) ,

and
β ← β − ρ (gβ (zi)− yi) gβ (zi) (1− gβ (zi)) zi,

respectively, where ρ > 0 is the learning rate.

496 Iuliana Paraschiv-Munteanu and Luminiţa State

From experimental point of view there are not major differences between
the sub-optimal solutions computed by batch and stochastic gradient learn-
ing algorithms. Most of the tests were performed on multi-dimensional data
simulated from Gaussian repartitions.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

Figure 2: The variation of the criterion function.

For instance, in Figure 1 the
results obtained in case of
two dimensional input data
generated from the Gaus-
sian repartitions of means
(0, 3)T and (1, 0)T , respec-
tively, and equal covariance
matrices the generated data
were linearly separable. The
variation of the performance
function FN (β) is presented
in Figure 2. After 5000 it-
erations, the fluctuations of
FN (β) became insignificant
around the parameter value
β? = (2.05, 0.96, −1.62)T .
The data and the resulted separating hyperplane Hβ? are represented in
Figure 1. The quality of the learned model β? to explain the behavior of
S concerning the sequence of input x1, . . . , xN can be expressed in terms of
the likelihood function

L (β?,SN) =

N∏
i=1

P (y = yi | x = xi, β
?) =

N∏
i=1

(gβ? (zi))
yi (1− gβ? (zi))

1−yi .

In case of our example we obtained 0.44.

2.2. Maximum Likelihood (ML) Estimates of the Logistic Model

In the framework of the probabilistic model (2.1) the capacity of each model
β to explain the sequence of labeled examples SN is given by the value of
the likelihood function

L (β,SN) =
N∏
i=1

p (yi | xi, β) =
N∏
i=1

(
gβ (zi)

1− gβ (zi)

)yi
(1− gβ (zi)) .

Therefore, L (β,SN) can be taken as a performance function, the best model
being a solution of the optimization problem

β̂ML = arg

(
max

β∈Rn+1
L (β,SN)

)
, (2.9)

Sub-optimal Logistic Models for Classification and Prediction Tasks 497

or, equivalently a solution of the optimization problem involving the log-
likelihood function l (β,SN) = ln (L (β,SN)), that is

β̂ML = arg

(
max

β∈Rn+1

(
N∑
i=1

yi ln

(
gβ (zi)

1− gβ (zi)

)
+

N∑
i=1

ln(1− gβ (zi))

))
.(2.10)

The space of critical points of l (β,SN) is the set of solutions of the
system

∇βl (β,SN) = 0 , (2.11)

where ∇βl (β,SN) stands for the gradient of the log-likelihood function.

Using straightforward computations, for 1 ≤ k ≤ n+ 1,

(∇βl (β,SN))k =
∂l (β,SN)

∂βk
=

N∑
i=1

(
(yi − gβ (zi))

gβ (zi) (1− gβ (zi))

∂gβ (zi)

∂βk

)
,

and since
∂gβ (zi)

∂βk
= gβ (zi) (1− gβ (zi)) z

(k)
i ,

we finally get

∇βl (β,SN) =
N∑
i=1

(yi − gβ (zi)) zi,

that is the compact form is

∇βl (β,SN) = ZY − Z

 gβ (z1)
...

gβ (zN)

 ,

where zi =

(
1
xi

)
.

Obviously for any β ∈ Rn+1 and 1 ≤ p, k ≤ n+ 1,

∂2l (β,SN)

∂βp∂βk
=

∂

∂βp

(
N∑
i=1

(yi − gβ (zi)) z
(k)
i

)
= −

N∑
i=1

z
(k)
i

(
∂

∂βp
gβ (zi)

)
=

−
N∑
i=1

(
gβ (zi) z

(p)
i

)(
(1− gβ (zi)) z

(k)
i

)
.

therefore the Hessian matrix of the log-likelihood function is

H(l (β,SN)) =

∥∥∥∥∂2l (β,SN)

∂βp∂βk

∥∥∥∥ = −ZD1(β) (IN −D1(β))ZT . (2.12)

498 Iuliana Paraschiv-Munteanu and Luminiţa State

For any v ∈ Rn+1\ {0},

vTH(l (β,SN))v = −
(
ZT v

)
D1(β) (IN −D1(β))ZT v =

−
N∑
i=1

(
ZT v

)2
i
gβ (zi) (1− gβ (zi)) ≤ 0

(2.13)

therefore for all values of the parameter β ∈ Rn+1, H(l (β,SN)) is a sym-
metric negative semi-definite matrix.

The critical points of l (β,SN) are the values of the parameter β, solutions
of the system

Z

 gβ (z1)
...

gβ (zN)

 = ZY. (2.14)

In order to find a solution β of (2.14), one should determine first the

vector

 gβ (z1)
...

gβ (zN)

. A computable solution

 gβ (z1)
...

gβ (zN)

 of (2.14) expressed

in terms of the generalized inverse (Penrose pseudo-inverse, [6]) is gβ (z1)
...

gβ (zN)

 = Z+ZY. (2.15)

Indeed, using the well known properties of the Penrose pseudo-inverse,
ZZ+ZY = ZY , that is (2.15) satisfies (2.14).

In case of most iterative algorithms that compute the generalized in-
verse of a matrix (for instance, the Greville’s method, [11], [12]) the number
of iterations equals the number of columns of the processed matrix. Con-
sequently, being given the fact that Z has N columns, the evaluation of
Z+ could become computationally too expensive in case of large size data
sets. In the particular case when ZZT is invertible, the complexity of the
computation scheme can be slightly decreased because Z+ =

(
ZZT

)−1
Z.

Indeed, using the well known properties of the generalized inverse, if ZZT

is invertible, then(
ZZT

)−1
=
(
ZZT

)+
=
(
ZT
)+
Z+ =

(
Z+
)T
Z+,

therefore(
ZZT

)−1
Z =

(
Z+
)T
Z+Z =

(
Z+
)T (

Z+Z
)T

=
(
Z+ZZ+

)T
= Z+,

and consequently, (2.15) becomes gβ (z1)
...

gβ (zN)

 = ZT
(
ZZT

)−1
ZY. (2.16)

Sub-optimal Logistic Models for Classification and Prediction Tasks 499

The aim is to find a parameter value β̂ML that maximizes the log-
likelihood function. Two main problems arise in solving (2.15). On one
hand, since the entries of Z and Y are determined by the set of examples,
some entries of Z+ZY could happen to lay outside the interval (0, 1). Unfor-
tunately, a long series of tests based on simulated data confirmed that this
case occurs very often. On the other hand, even when all entries of Z+ZY
belong to (0, 1), the resulted solution β̃ is not guaranteed to maximize the

log-likelihood function because H
(
l
(
β̃,SN

))
can happen to be singular.

If all entries of Z+ZY (or ZT
(
ZZT

)−1
ZY , in case it exists) belong to

the interval (0, 1), in order to find a suitable parameter β̃ we should proceed
as follows. If we denote vi = (Z+ZY)i, 1 ≤ i ≤ N , then (2.15) can be
written as

−βT zi = ln

(
1

vi
− 1

)
, 1 ≤ i ≤ N , (2.17)

its compact form being
βTZ = V,

or equivalently,
ZTβ = V T ,

where the entries of V are ln

(
vi

1− vi

)
, 1 ≤ i ≤ N .

Using standard MSE arguments, by minimizing
∥∥ZTβ − V T

∥∥, we get

β̂ =
(
ZT
)+
V T =

(
Z+
)T
V T =

(
V Z+

)T
. (2.18)

We refer β̂ as a quasi-optimal model.
In case some of the entries of Z+ZY lay outside the interval (0,1), ob-

viously it does not exists β ∈ Rn+1 when such that (2.15) holds. Based
on the continuous dependency of the log-likelihood function on β, several
attempts to overpass this difficulty could be intuitively justified, yielding to
sub-optimal models. One possibility is to try to find out a point in the (n+1)-
dimensional hypercube (0, 1)n+1 at the smallest distance to Z+ZY , that is to

minimize the objective function ϕ(β) =
∥∥∥(gβ (z1) , . . . , gβ (zN))T − Z+ZY

∥∥∥2
,

yielding to a sub-optimal model

β̂ (1) = arg

(
min

β∈Rn+1
ϕ(β)

)
. (2.19)

Another idea is to use a ”brute force” approach inspired by the expression
of the quasi-optimal model (2.18) that would result if all entries of Z+ZY
were inside the interval (0, 1). Let ε ∈ (0, 1) be a relatively small threshold
value and define

hi =


(
Z+ZY

)
i
, if (Z+ZY)i ∈ (0, 1)

ε , if (Z+ZY)i ≤ 0
1− ε , if (Z+ZY)i ≥ 1

, 1 ≤ i ≤ N.

500 Iuliana Paraschiv-Munteanu and Luminiţa State

If we denote by V̂ the vector having as entries ln

(
hi

1− hi

)
then β̂ (2) is an

ε-sub-optimal model, where

β̂ (2) =
(
V̂ Z+

)T
(2.20)

Finally, standard learning schemes of gradient ascent and stochastic gra-
dient ascent types to maximize the log-likelihood function could be a base
for providing sub-optimal models. The adaptive learning of a sub-optimal
ML-model using a gradient based approach can be described as follows.
Obviously,

∇βl (β,SN) = Z (Y −D1(β)u) , (2.21)

where the matrix D1(β) and the vector u are given by (2.6) and (2.7).
Let β0 ∈ Rn+1 be an arbitrary parameter value, ρ > 0 a small learning

rate and C a conventionally stopping condition expressed in terms of an
upper threshold of a number of iterations and/or a threshold to control
the accuracy. The updating phases of the gradient ascent and stochastic
gradient ascent learning algorithms to maximize the log-likelihood function
are

β(old) ← β0

repeat

D1 ← diag
(
gβ(old) (x1) , . . . , gβ(old) (xN)

)
β(new) ← β(old) + ρZ (Y −D1u)
β(old) ← β(new)

until C

and

β(old) ← β0

repeat

β ← β(old)

for i = 1, N
for k = 1, n+ 1

β
(new)
k ← βk + ρz

(k)
i (yi − gβ (zi))

endfor

β ← β(new)

endfor

β(old) ← β(new)

until C

respectively.
The sub-optimal models β̂ (3) and β̂ (4) computed by these two algorithms

respectively are represented by the parameter value β(old) resulted when the
stopping condition C holds.

Sub-optimal Logistic Models for Classification and Prediction Tasks 501

2.3. The performance analysis of ML-estimates of the logistic
model

The performance analysis of the ML-estimates of the logistic model obtained
by the approaches presented in the previous section is performed experi-
mentally on design and test data generated from the same repartitions. The
quality of each computed model β has to be evaluated from two points of
view. On one hand, since each parameter value β corresponds to a particular
hypothesis implemented at the level of the component L one way to evaluate
its performance in estimating the unknown input-output dependency of S
is to express quantitatively its capacity to predict the output of S in terms
of the values of the likelihood function taken on the examples used in the
design phase as well as on test data generated from the same repartitions.
In other words, the generating mechanism G according to which the inputs
from the input space are selected is stationary during the learning and the
test phases. On the other hand, for each model β, since for any input x,

gβ(z) ≥ 1

2
⇔ βT z ≥ 0, where z =

(
1
x

)
, another way to express the quality

of β is by its performance when it is used as a linear classifier. The aim of
this section is to provide a series of experimentally derived conclusions con-
cerning the qualities of the proposed sub-optimal ML estimates from these
two points of view. In our tests the data were represented by samples of dif-
ferent sizes generated from multidimensional Gaussian repartitions. One of
the conclusions is that the sub-optimal models β̂(3) and β̂(4) are equivalent
from both points of view.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ML1

ML2

ML3

Figure 3: The variation of the likelihood function.

From the point of view
of the criterion referring to
the predictive capacity our
tests pointed out that mod-
els β̂(3) and β̂(4) supply the
best estimates of the un-
known input-output depen-
dency of S, the values of
the likelihood function be-
ing around 0.95. Concern-
ing the estimate β̂(2) the val-
ues of the likelihood func-
tion were around 0.84, the
values corresponding to the
likelihood function in case of
β̂(1) being very small. The
generalization capacities of β̂(1), β̂(2), β̂(3) and β̂(4) expressed in terms of
the values of likelihood function are quite small but again the models β̂(3)

and β̂(4) supply the largest values. Used as parameters of linear classifiers

502 Iuliana Paraschiv-Munteanu and Luminiţa State

all models managed to correctly classify the design data sets.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

2

3

4

samples 0

samples 1

ML1

ML2

ML3

ML4

Figure 4. The ML-estimated linear classifiers .

In most cases β̂(3) and β̂(4)

classify without errors most
of the test data, while the
error rates corresponding to
β̂(2) and β̂(1) were about 4%
and 1.5% respectively. We
can conclude that the best
logistic models are given by
the solutions computed by
the gradient and stochastic
gradient respectively viewed
as ML-suboptimal hypothe-
ses as well as the parameters
of linear classifiers in the in-
put space. However, the so-
lution β̂(2) is computed di-
rectly from data, without invoking an iterative method proves almost as
good as the solution β̂(3), β̂(4) also in learning the parameters of the logistic
model and as classifier, while the solution β̂(1) supplies poor behavior from
both points of view.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

test samples 0

test samples 1

ML1

ML2

ML3

ML4

Figure 5: The performance of the ML-estimated
linear classifiers on new test data.

In the following we pre-
sent the results of one of
the series of tests performed
in order to establish exper-
imentally based conclusions
concerning the qualities of
the ML-estimates β̂(1), β̂(2),
β̂(3), and β̂(4).
The test data containing 20
examples from each class
were generated from the two
dimensional Gaussian repar-
titions N (µi,Σi), i ∈ {1, 2},
where

µ1 =

(
0
3

)
, µ2 =

(
1
0

)
,

Σ1 = Σ2 =

(
0.5 0
0 0.5

)
.

The setting of the correction parameter ε ∈ (0, 1) in case of the solution
β̂(2) was 10−10 and the stopping condition in computing the solutions β̂(3)

and β̂(4) was set in terms of a threshold on the maximum number of iterations
combined with a condition imposed on the value of the likelihood function.

Sub-optimal Logistic Models for Classification and Prediction Tasks 503

The values of the likelihood function corresponding to the resulted ML-
estimates were

L
(
β̂(1),SN

)
= 0.0085, L

(
β̂(2),SN

)
= 0.8542,

L
(
β̂(3),SN

)
= 0.9557, L

(
β̂(4),SN

)
= 0.9557.

The variation of the values of the likelihood functions during the learning
processes yielding to the ML estimates β̂(1), β̂(2), β̂(3) and β̂(4) is represented
in Figure 3. Suitable estimates β̂(1), β̂(2) β̂(3), and β̂(4) were used notations
ML1, ML2, ML3 and ML4 respectively.

The linear classifiers of parameters β̂(1), β̂(2), β̂(3) and β̂(4) are repre-
sented in Figure 4. Note that the classifiers of parameters β̂(3), and β̂(4)

are equivalent. In order to test the generalization capacity of each of these
models as well as their corresponding performance as linear classifiers we
used new linearly separable samples of sizes 60 generated from the same
repartitions. The values of the likelihood function were

L
(
β̂(1),SN

)
= 0.0315 · 10−6, L

(
β̂(2),SN

)
= 0.0593,

L
(
β̂(3),SN

)
= 0.2276, L

(
β̂(4),SN

)
= 0.2277.

In Figure 5 are shown the linear classifiers of parameters β̂(1), β̂(2), β̂(3),
β̂(4), respectively, and the new linearly separable test data.

Similar results were obtained in case of different tests performed on other
class repartitions in case of linearly separable design and test data sets.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

test samples 0

test samples 1

ML1

ML2

ML3

ML4

Figure 6: The performance of ML-estimated lin-
ear classifiers on new non-linearly separable test
data.

The error rates corre-
sponding to the classifiers
of parameters β̂(3) and β̂(4)

were zero while two exam-
ples were misclassified in
case of β̂(1) and 5 errors
in case of β̂(2). In order
to test the performance of
the learned ML estimates
on possibly non-linearly sep-
arable data sets generated
from the same classes, a
set of 100 new examples
coming from each class was
generated providing a non-
linearly separable data sets
of size 200. In Figure 6 are
shown the data set and the
linear classifiers of parameters β̂(1), β̂(2), β̂(3), and β̂(4). In case of the lin-
ear classifiers of parameters β̂(3) and β̂(4) four examples were incorrectly

504 Iuliana Paraschiv-Munteanu and Luminiţa State

classified while the classifiers of parameters β̂(1), β̂(2) misclassified 5 and 6
examples respectively.

The conclusions concerning the performance of ML-estimated linear clas-
sifiers concerning both the quality of the learned model expressed in terms of
the values of the likelihood function and the empirical error of the resulted
linear classifier are summarized in Table 1. Similar results were obtained
incase of several simulated design/test data coming from different Gaussian
repartitions.

Table 1. The performance of the ML-estimated classifiers.

β̂(1) β̂(2) β̂(3) β̂(4)

The value of likelihood function
for linearly separable 0.008 0.854 0.956 0.956
design samples
The value of likelihood function
for new linearly separable 3 · 10−6 0.003 0.164 0.164
test samples
The value of likelihood function
for new non-linearly separable 1 · 10−14 2 · 10−10 4 · 10−6 4 · 10−6

test samples
The value of empirical classification
error for linearly separable 0 0 0 0
design samples
The value of empirical classification
error for new linearly separable 1/120 2/120 1/120 1/120
test samples
The value of empirical classification
error for new non-linearly separable 4/400 8/400 6/400 6/400
test samples

According to the results of a long series of tests, the logistic model is
best learned in case of the methods of computing the estimates β̂(3) and β̂(4)

followed by the method yielding to β̂(2) while the estimate β̂(1) supplies poor
results. The quality of the corresponding learned models is confirmed by the
values of the likelihood functions on new linearly separable test data. The
values of the likelihood function taken on non-linearly separable test data
generated from the same repartitions are, as it is expected pretty small, but
again, the estimates β̂(3) and β̂(4) prove significantly better than β̂(1) and
β̂(2). Consequently, the learning algorithms of gradient ascent type compute
the best estimates of the parameter β in case of the logistic model. From
the point of view of classification purpose the linear classifiers of parameters
β̂(1), β̂(2), β̂(3), and β̂(4) prove the same quality in case of linearly separable
design and new test data. However, in case of non-linearly separable test
data, it seems that the classifier of parameter β̂(1) is slightly better than the
linear classifiers of parameters β̂(2), β̂(3), β̂(4).

Sub-optimal Logistic Models for Classification and Prediction Tasks 505

3. Comparative analysis of different learning
algorithms

3.1. Brief presentation of some learning algorithms
in designing linear classifiers

So far, there have been proposed a large class of supervised learning algo-
rithms for the parameters of linear classifiers, some of them reducing to the
optimization of a conventionally selected criterion function. In this section,
for numerical reasons, a learning sequence is represented by a finite labeled
set of examples, where each example is labeled by 1 or −1,

SN =

{
(xi, yi) | xi =

(
x

(1)
i , . . . , x

(n)
i

)T
∈ Rn , yi ∈ {−1, 1} , i = 1, N

}
.(3.1)

By encoding the label at the level of representation, the learning sequence
is also represented

ZN =

{
zi | zi = yi

(
1
xi

)
, (xi, yi) ∈ SN , i = 1, N

}
. (3.2)

The learning sequence is linearly separable if there exists w ∈ Rn+1,

w =

w0
...
wn

 ∈ Rn+1, such that for each i, 1 ≤ i ≤ N , hw (xi) > 0 , if yi = 1 ,

and hw (xi) < 0 , if yi = −1 , where hw(x) = wT
(

1
xi

)
.

Obviously, being given w ∈ Rn+1, the example (xi, yi) is correctly clas-
sified by hw if wT zi > 0. For each example (xi, yi), we denote by

Hi =
{
w ∈ Rn+1 | wT zi = 0

}
,

the hyperplane whose parameters are the entries of zi and

S+Hi =
{
w ∈ Rn+1 | wT zi > 0

}
,

the positive hyperspace with respect to Hi. Therefore the learning sequence

ZN is linearly separable if
N⋂
i=1

S+Hi 6= ∅. We denote by
N⋂
i=1

S+Hi the set

of solutions and by
N⋂
i=1

(
S+Hi

⋃
Hi

)
the set of admissible solutions of the

classification problem.
For each w ∈ Rn+1, we denote by

Z(w)=
{
zi ∈ ZN | wT zi ≤ 0

}
,

506 Iuliana Paraschiv-Munteanu and Luminiţa State

the set of misclassified examples.
The function f : Rn+1 → [0,+∞) is a criterion function if f is minimized

on the set of admissible solutions. An example of criterion function is ([5])

f(w) =

 −
∑

zi∈Z(w)

wT zi , if Z(w) 6= ∅

0 , if Z(w) = ∅

Denoting by ρ > 0 the value of a conventionally selected learning rate, the
updating rule obtained by applying gradient descent method to minimize f
is

w ← w + ρ
∑

zi∈Z(w)

zi , if Z(w) 6= ∅,

the stopping condition being expressed in terms of the cardinal of Zw.
It is interesting to note that in case ρ = 1, the updating rule used by the

stochastic gradient method becomes ” if
(
wT zi ≤ 0

)
then w ←− w + zi ”,

which is the perceptron learning algorithm.
In case ZN is linearly separable, in order to assure good generalization

capacities, we would like to compute a solution as equidistant as possible
to the each of the hyper-planes Hi, 1≤ i≤ N . Unfortunately, most of the
learning algorithms fail to compute such a solution. In order to prevent de
computation of a solution placed ”too close” to one or more hyper-planes a
conventionally selected parameter b > 0 could be used to define the set of
misclassified examples. In such a case for each w ∈ Rn+1 we define

Z(w, b)=
{
zi ∈ ZN | wT zi ≤ b

}
,

and, consequently, the updating rules of the learning algorithms developed
by applying the gradient descent and stochastic gradient methods become

” if Z(w, b) 6= ∅ then w ←− w + ρ
∑

zi∈Z(w,b)

zi ”

and
” if

(
wT zi ≤ b

)
then w ←− w + ρzi ”, respectively.

The class of ”relaxation methods” ([5], [14]) uses the criterion function

g(w) =


1

2

∑
zi∈Z(w,b)

(
wT zi − b

)2
‖zi‖2

, if Z(w, b) 6= ∅

0 , if Z(w, b) = ∅

If we denote by Hi,b the hyper-plane of equation wT zi − b = 0, the

distance from any w̃ ∈ Rn+1 to Hi,b is d (w̃,Hi,b) =

∣∣w̃T zi − b∣∣
‖zi‖

. In a way,

w induces a ”tension”expressed by d2 (w,Hi,b) on each Hi,b such that zi ∈
Z(w, b), therefore the value of g(w) gives the overall ”tension” induced by

Sub-optimal Logistic Models for Classification and Prediction Tasks 507

w. According to this point of view, for fixed b > 0 the value g(w) can
be taken as measure of the degree of fitness of the hyper-plane of equation
wT z − b = 0 to separate SN in the space of examples.

Obviously, the updating rules of the gradient descent algorithm and its
sequential variant (stochastic gradient) for minimizing the criterion function
g are

” if Z(w, b) 6= ∅ then w ←− w − ρ
∑

zi∈Z(w,b)

wT zi − b
‖zi‖2

zi”

and

” if wT zi ≤ b then w ←− w − ρ w
T zi − b
‖zi‖2

zi”, respectively.

The stochastic gradient descent algorithm where ρ ∈ (0, 2) is known as
the Mays learning scheme ([12], [5]).

Nowadays, a class of the most popular methods for designing linear and
non-linear classifiers, referred as Support Vector Machines (SVM), are based
on the concept of support vector ([15]). The classifiers obtained by SVM
approaches have remarkable properties in assuring generalization capacities
([2], [3], [4]). In our approaches we considered only the simplest type of
SVM developed for designing a linear classifier when the learning sequence is
linearly separable. Let SN be a labeled sequence of n-dimensional examples
of size N and ZN the sequence of (n + 1)-dimensional representations as
in (3.1) and (3.2). The aim is to determine the parameters w and b of a
hyper-plane Hw,b in the n-dimensional space of examples such that the point

w̃ =

(
b
w

)
is as equidistant as possible of the hyper-planes Hi : w̃T zi = 0

in the (n + 1)-dimensional space of parameters. From mathematical point
of view the linear SVM problem is expressed as the constrained quadratic
optimization problem (QP)([1])

min
w∈Rn,b∈R

‖w‖2

yi
(
wTxi + b

)
≥ 1 , i = 1, N ,

(3.3)

its dual problem being the constrained QP-problem

max
α=(α1,...,αN)

(
−1

2

N∑
i=1

N∑
k=1

(
αiαkyiyk

(
xTi xk

))
+

N∑
i=1

αi

)

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,

N∑
i=1

αiyi = 0 .

(3.4)

508 Iuliana Paraschiv-Munteanu and Luminiţa State

If α∗ = (α1, . . . , αN) is a solution of (3.4) then w∗ =
N∑
i=1

α∗i yixi. The sup-

port vectors are the examples xi for which α∗i 6= 0. The bias parameter
b can not be determined by solving the SVM-QP problem is computed in
terms support vectors. There are several ways to determined the bias b, for
instance

b∗ =
1

|S∗|
∑
xi∈S∗

(
yi − (w∗)T xi

)
.

where

S∗ =
{
xi | (xi, yi) ∈ SN , yi

(
(w∗)T xi + b

)
= 1
}

=

{xi | (xi, yi) ∈ SN , α∗i > 0} ,

is the set of support vectors ([1]).

3.2. Comparative analysis of the estimates computed by ML,
MSE, perceptron, Mays and SVM learning algorithms

The aim of this section is to present conclusions concerning the performance
of the estimates of the parameter β computed by the MSE and ML-based
methods presented in section 2 and the learning schemes presented in section
3.1. The comparative analysis aims to derive conclusions concerning the
qualities of the estimates computed by the previous mentioned methods
from the following point of views:

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

2

3

4

samples 0

samples 1

MSE

ML1

ML2

ML3

perceptron

Mays

SVM

Figure 7: Linear classifiers on linearly separable
design data.

1. The quality of the
learned logistic model ex-
pressed in terms of the val-
ues of the likelihood func-
tion evaluated on the design
and new test data respec-
tively.

2. The quality of the
resulted linear classifier ex-
pressed in terms of the em-
pirical error evaluated on
the basis of linear/non-
linear test data generated
from the same multivariate
repartitions

3. The generalization
capacity corresponding to the resulted models evaluated in terms of the
values of the likelihood function and the empirical error on new test data
generated from the same multivariate repartitions.

Sub-optimal Logistic Models for Classification and Prediction Tasks 509

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

3

4

test samples 0

testsamples 1

MSE

ML1

ML2

ML3

perceptron

Mays

SVM

Figure 8: The behavior of the designed linear
classifiers on new test data.

The analysis is per-
formed exclusively from ex-
perimental point of view,
the tests being developed on
a long series of simulated
data generated from mul-
tivariate Gaussian reparti-
tions.

The results resumed in
the tables and figures in-
cluded in this section cor-
respond the following test.
The design data set is lin-
early separable and contains
40 examples generated from
the two-dimensional Gaus-
sian repartitions N (µi,Σi),

i = 1, 2, µ1 =

(
0
3

)
, µ2 =

(
1
0

)
, Σ1 = Σ2 =

(
0.5 0
0 0.5

)
, each class

containing 20 examples.

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE

ML1

ML2

ML3

perceptron

Mays

SVM

Figure 9: The variations of the likelihood
functions L.

The tests were performed
on two test data sets gener-
ated from the same reparti-
tions, the former being lin-
early separable and the lat-
ter being a non-linearly sep-
arable one of sizes 60 and
200 respectively. The val-
ues of the likelihood func-
tion and the empirical clas-
sification error are summa-
rized in Table 1 and Table
2. The linear classifiers com-
puted on the test data are
showed in Figure 7 and their
performance on test data is
presented in Figure 8. The
variation of the values of the
likelihood function during the learning process is depicted in Figure 9.

On the basis of information supplied by Table 1 and Table 2 (resulted by
a test performed on the same design and test data) also these eight estimates
have a similar behaviors for classification purposes, the estimates β?, βperc,
βMays and βSVM fail to learn the logistic model, the values of the likelihood

510 Iuliana Paraschiv-Munteanu and Luminiţa State

Table 2: The quality of the learned model and the resulted performance for
classification purposes.

β? βperc βMays βSVM

The value of likelihood function
for linearly separable 0.121 0.231 1 · 10−5 0.124
design samples
The value of likelihood function
for new linearly separable 3 · 10−4 0.005 5 · 19−15 1 · 10−7

test samples
The value of likelihood function
for new non-linearly separable 1 · 10−14 1 · 10−10 1 · 10−18 1 · 10−18

test samples
The value of empirical classification
error for linearly separable 0 0 0 0
design samples
The value of empirical classification
error for new linearly separable 0 0 0 0
test samples
The value of empirical classification
error for new non-linearly separable 4/400 4/400 3/400 3/400
test samples

function being very small for both, design and test data, even when the data
are linearly separable.

4. Conclusions

The research reported in the paper is focused on a series of parametric
approximation methods in a logistic approach of classification and predic-
tion tasks. The parameters of the probabilistic logistic model presented in
Section 2 are estimated using the MSE and ML methods. In order to over-
pass the difficulties pointed out in Section 2.2, four suboptimal estimations
β̂(1), β̂(2), β̂(3), and β̂(4) are introduced and a comparative analysis of their
qualities is performed. The experimental analysis pointed out good behav-
ior in case of linearly separable design data sets from both points of view,
the capacity of learning the logistic model and classification of new linearly
separable and non-linearly separable data sets, respectively. In the next sec-
tion, estimations of the parameters of the logistic model are computed on
the basis of some of the most frequently used learning algorithms as MSE,
perceptron, Mays and SVM.

In the final part of the third section a series of conclusions established
on experimental basis concerning their performance in learning the logistic
model and classifying new data sets are reported. The results confirmed
significantly better performance of the suboptimal estimates introduced in

Sub-optimal Logistic Models for Classification and Prediction Tasks 511

the second section as compared to the estimates computed by the algorithms
MSE, perceptron, Mays and SVM.

References

[1] S. Abe, Support Vector Machines for Pattern Classification, Springer-Verlag, 2005,
2010.

[2] E. Alpaydin, Introduction to Machine Learning, The MIT Press, Massachusetts,
2010.

[3] V. Cherkassky and F. Mulier, Learning from Data Concepts, Theory, and Meth-
ods (Second Edition), John Wiley & Sons, Inc., 2007.

[4] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn., 20, 3 (1995),
273-297.

[5] R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd Edition,New
York: John Wiley & Sons, 2001.

[6] A.J. Izenman, Modern Multivariate Statistical Techniques: Regression, Classifica-
tion and Manifold Learning, Springer, 2008.

[7] S. Marsland, Machine Learning: An Algorithmic Perspective, CRC Press, Taylor
& Francis Group, Boca Raton - London - New York, 2009.

[8] K.E. Muller and P.W. Stewart, Linear Model Theory - Univariate, Multivariate
and Mixed Models, Wiley-Interscience, 2006.

[9] I. Paraschiv-Munteanu, Model-free approaches in learning the multivariate linear
regressive models, An. Univ. Craiova Ser. Mat. Inform., 38, 2 (2008), 87-94.

[10] I. Paraschiv-Munteanu, Multivariate linear systems for learning from data, Ann.
Univ. Buchar. Math. Ser., 2 (LX), 2 (2011), 179-206.

[11] I. Paraschiv-Munteanu and L. State, Learning from Data using Multivariate
Linear Models, Coping with Complexity, COPCOM 2011, Editura Casa Cărţii de
Ştiinţă, D. Dumitrescu and others (eds.), pp. 20-31, 2011.

[12] L. State and I. Paraschiv-Munteanu, Introducere in teoria statistica a recunoa-
sterii formelor, Editura Universitatii din Pitesti, Romania, 2009.

[13] L. State and I. Paraschiv-Munteanu, A Probabilistic Model-free Approach in
Learning Multivariate Noisy Linear Systems, Proceedings 13th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing SYNASC-2011,
D. Wang and others (eds.), IEEE Computer Society Conference Publishing Services,
pp. 239-246.

[14] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Edition, Elsevier
Inc., 2008.

[15] V.N. Vapnik, Statistical Learning Theory, New York, Wiley, 1998.

Iuliana Paraschiv-Munteanu
University of Bucharest, Faculty of Mathematics and Computer Science
14 Academiei St., Bucharest 010014, Romania
E-mail: pmiulia@fmi.unibuc.ro

Luminiţa State

University of Piteşti, Faculty of Mathematics and Computer Science

1 Târgu din Vale St., Piteşti 110040, Romania

E-mail: lstate@clicknet.ro

