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1. Introduction

In a recent paper (see [21]), Lasserre has considered the following nonlinear
programming problem

(P) min
x
{f(x), x ∈ K} , where

K = {x ∈ Rn : gi(x) ≤ 0, i = 1, ...m} , (1.1)

f, gi : Rn −→ R, f and every gi are differentiable on some open convex set
S ⊂ Rn, f is convex on S and the feasible set K ⊂ Rn is convex. If x0 ∈ K
we denote by

I(x0) =
{
i : gi(x

0) = 0
}

the set of the active constraints at x0.
Lasserre proves the following result.

Theorem 1.1. (see [21]) Consider the nonlinear programming problem (P);
let x0 ∈ K,∇gi(x0) 6= 0,∀i ∈ I(x0) and let the following Slater’s condition
hold:

∃x̄ ∈ K : gi(x̄) < 0, ∀i ∈ I(x0). (1.2)

Then x0 is a global minimum point for (P) if and only if x0 satisfies the
following Karush-Kuhn-Tucker (KKT) conditions for (P):

∇f(x0) +
m∑
i=1

λi∇gi(x0) = 0, (1.3)
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λigi(x
0) = 0, i = 1, ...m, (1.4)

λi ≥ 0, i = 1, ...m. (1.5)

This theorem can be deduced from the pioneering papers of Arrow and
Enthoven [1] and Arrow, Hurwicz and Uzawa [3]. Moreover, it can be better
enlightened by making reference to appropriate generalized convex functions.
With regard to this last point, Lasserre remarks that the set

K =
{
x ∈ R2 : 1− x1x2 ≤ 0, x ≥ 0

}
is convex, but the function g(x1, x2) = 1−x1x2 is not convex on R2

+. Indeed,
this function is quasiconvex on R2

+.

The present note is organized as follows. In Section 2 we make some
comments and generalizations concerning the main result of Lasserre in [21].
In Section 3 we recall some possible applications of suitable generalized
convex functions in obtaining saddle points conditions for the Lagrangian
function for (P), also without any differentiability assumptions.

We recall some basic definitions and properties.

Definition 1.1. Let S ⊂ Rn be a convex set; a function f : S −→ R is
quasiconvex on S if the lower-level set

L≤α = {x ∈ S : f(x) ≤ α}

is convex for each α ∈ R.

If f is differentiable on the open and convex set S, then f is quasiconvex
on S (see [1]) if and only if

x, y ∈ S, f(y) ≤ f(x) =⇒ ∇f(x)(y − x) ≤ 0. (1.6)

Definition 1.2. A function f : S −→ R, differentiable on the open (and
convex) set S ⊂ Rn is pseudoconvex on S if

x, y ∈ S, ∇f(x)(y − x) ≥ 0 =⇒ f(y) ≥ f(x). (1.7)

The function f is then called quasiconvex at x0 (respectively, pseudocon-
vex at x0), with respect to S, if relation (1.6) (respectively, relation (1.7))
holds at a fixed point x0 ∈ S, for each y ∈ S. In this last case (”generalized
convexity at a point”) the set S is no longer required to be convex, but it
is required only to be star-shaped at x0. A set S ⊂ Rn is star-shaped at
x0 ∈ S if λx0 + (1− λ)x ∈ S,∀x ∈ S, ∀λ ∈ [0, 1] .
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2. Comments on the result of Lasserre

The following theorem of Mangasarian (see [22]) is well-known.

Theorem 2.1. (see [22]) Let S ⊂ Rn be an open convex set in Rn . Suppose
that f is differentiable and pseudoconvex on S and that every gi, i = 1, ...,m,
is differentiable and quasiconvex on S. If x0 ∈ K satisfies the KKT condi-
tions (1.2)−(1.5), then x0 solves (P).

Remark 2.1. a) The above result holds also if f is pseudoconvex at x0,
with respect to S or also with respect to K, and every gi, i ∈ I(x0), is
quasiconvex at x0, with respect to S (or also to K).

b) If every gi, i = 1, ...,m, is quasiconvex, obviously the feasible set K
is a convex set.

c) The theorem fails if the objective function f is quasiconvex (a coun-
terexample is due to Arrow and Enthoven, see [1]). However, additional
assumptions allow to recover also the case of f quasiconvex. The starting
point is a theorem of Crouzeix and Ferland in [10], see also the paper by
Giorgi [14].

Theorem 2.2. Let f be a differentiable and quasiconvex function on the
open convex set S ⊂ Rn. Then f is pseudoconvex on S if and only if f has
a minimum at x ∈ S whenever ∇f(x) = 0.

An immediate consequence is the following result.

Corollary 2.1. Assume that S ⊂ Rn is an open convex set, f : S −→ R is
differentiable and ∇f(x) 6= 0, for all x ∈ S. Then f is pseudoconvex on S
if and only if f is quasiconvex on S.

See the paper [8] by Cambini and Martein for a version of the above
corollary, involving quasiconvexity and pseudoconvexity at a point x0 ∈ S,
where S is star-shaped at x0.

Now we turn to the first half of the result of Lasserre. First we note
that his assumptions on the convexity of f can be relaxed on the grounds
of what previously expounded.

Theorem 2.3. Let in (P) f be differentiable and pseudoconvex at x0 ∈ K,
with respect to S, let every gi, i ∈ I(x0), be differentiable at x0 and let K be
a convex set. If x0 satisfies the KKT conditions (1.3)−(1.5), then x0 solves
(P).

Proof. Being K convex, the point (1− α)x0 + αx belongs to K, for every
α ∈ [0, 1] and for every x, x0 ∈ K, whence

g̃i(α) =: gi((1− α)x0 + αx) ≤ 0, ∀α ∈ [0, 1] .
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As g̃i(0) = gi(x
0) = 0, ∀i ∈ I(x0), it results (g̃′i(α) denoting dg̃i(α)/dα)

g̃′i(0) = ∇gi(x0)(x− x0) ≤ 0, ∀i ∈ I(x0), ∀x ∈ K. (2.1)

This relation, taking into account that x0 satisfies the KKT conditions
(1.3)−(1.5) and that f is pseudoconvex at x0, allows to state that x0 solves
(P). 2

Remark 2.2. a) Note that the above sufficient optimality conditions hold
without imposing on the constraint functions gi, i ∈ I(x0), any nondegener-
acy condition at x0 (i.e. ∇gi(x0) 6= 0, i ∈ I(x0)).

b) We have already remarked that a sufficient condition for K to be convex
is that every gi, i = 1, ...,m, is quasiconvex. Note, moreover, that relation
(2.1) is equivalent to state that every gi, i ∈ I(x0), is quasiconvex at x0,
with respect to K.

c) Being x0 fixed, the previous theorem holds also if the set K is star-
shaped at x0.

Now we turn to the second half of the result of Lasserre. This part
holds without any convexity or generalized convexity requirement on the
objective function f. This result appears as Corollary 5 in [3]. For the
reader’s convenience we give a proof.

Theorem 2.4. Let x0 be a local solution of (P), let the feasible set K be
convex, let ∇gi(x0) 6= 0, ∀i ∈ I(x0), and let the Slater’s condition (1.2) hold.
Then x0 verifies the KKT conditions (1.3)−(1.5).

Proof. Let us denote by L the linearizing cone at x◦:

L =
{
y ∈ Rn : ∇gi(x0)y ≤ 0, i ∈ I(x◦)

}
.

Being K convex, on the same lines of the proof of the previous theorem,
we can obtain relation (2.1), i.e. the vector y = (x − x◦) belongs to L for
all x ∈ K. Since K possesses a nonempty interior, L must possess one also
and therefore has the full dimensionality of the entire space. If, for some
i ∈ I(x◦), it holds ∇gi(x0)y = 0 for all y in L, then, being ∇gi(x0) 6= 0,
∀i ∈ I(x0), the set

H i =
{
y ∈ L : ∇gi(x0)y = 0

}
would belong to a hyperplane and therefore int(L) = ∅. Therefore, it must
exist yi ∈ Rn such that ∇gi(x0)yi < 0, i ∈ I(x◦). Hence, also the vector
ȳ =

∑
i∈I(x◦) y

i is an element of L and it holds ∇gi(x0)ȳ < 0, i ∈ I(x◦).
This last system of inequalities is just the Mangasarian-Fromovitz con-

straint qualification (see [22]), previously considered by Cottle in [9] and by
Arrow, Hurwicz and Uzawa in [3]. This assures the validity of the KKT
conditions (1.3)−(1.5) for the point x◦. 2



Optimality conditions under generalized convexity revisited 483

Note that if in Theorem 2.4 the assumption on the convexity of K is
replaced by: every gi, i ∈ I(x0), is quasiconvex at x0, with respect to the
open and star-shaped set S, then the assumption ∇gi(x0) 6= 0,∀i ∈ I(x0),
entails that every gi, i ∈ I(x0), is pseudoconvex at x0, with respect to S.
Therefore, if the Slater’s condition (1.2) holds, the point x◦ verifies the KKT
conditions (1.3)−(1.5), see [22].

Now we want to stress that a powerful generalization of convexity (for
the differentiable case) is the notion of invexity, which can be used to obtain
necessary and sufficient optimality conditions for (P), see, e.g., the paper
[25] by Mishra and Giorgi.

Definition 2.1. A differentiable function f defined on an open set X of Rn
is said to be invex if there exists a vector function η : X ×X −→ Rn such
that f(y) ≥ f(x) +∇f(x)η(y, x), ∀x, y ∈ X.

Theorem 2.5. (see [6]) A differentiable function f defined on an open set
X ⊂ Rn is invex if and only if every statiom point is a global minimum
point.

Since a stationary point is a global minimum point for pseudoconvex
functions, the class of pseudoconvex functions is contained in the class of
invex functions. On the other hand, there is only a partial overlapping
between the class of invex functions and the class of quasiconvex functions.
For example, f(x) = x3 is quasiconvex on R (and quasiconcave), but not
invex, since its stationary point x = 0 is not a minimum point; f(x, y) = x2y2

is invex on R2, but not quasiconvex (and so, not pseudoconvex), see also the
paper [6] by Ben-Israel and Mond and Giorgi’s paper [14].

Following Martin (see [23]), let us introduce the following notion of
Kuhn-Tucker invexity (KT-invexity) for (P): there exists η : X×X −→ Rn
such that, for any x, x◦ ∈ K we have{

f(x)− f(x◦)−∇f(x◦)η(x, x◦) ≥ 0
−∇gi(x◦)η(x, x◦) ≥ 0, i ∈ I(x0).

Martin then proved the following result.

Theorem 2.6. Every Karush-Kuhn-Tucker point of problem (P), i.e. every
point satisfying relations (1.3)−(1.5), is a global minimizer if and only if (P)
is KT-invex.

However, there is an open question. KT-invexity is trivially satisfied
at every solution x◦ of problem (P), by letting η(x, x◦) = 0. This one is a
tautological condition: it is coincident with the definition of a solution of
(P). The question is overcome by Hanson and Mond (see [15]) who studied
the problem of finding necessary optimality conditions of invex type that are
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not trivial, i.e. with η(x, x◦) not identically zero for each feasible vector x.
These authors introduced the type I invexity, a pointwise notion of invexity
for (P), we here denote by HM-invexity :

(P) is HM-invex at x◦ ∈ K if there exists η : X −→ Rn such that, for
every x ∈ K we have{

f(x)− f(x◦)−∇f(x◦)η(x) ≥ 0
−∇gi(x◦)η(x) ≥ 0, i ∈ I(x0).

The results of Hanson and Mond in [15] are summarized in the following
proposition.

Theorem 2.7. If x◦ ∈ K is a Karush-Kuhn-Tucker point for (P) and
card(I(x◦)) < n, then x◦ solves (P) if and only if (P) is HM-invex at x◦,
with respect to a vector function η(x), which is not identically zero, for each
x ∈ K.

A further weakening of the results of Hanson and Mond is given by
Mishra and Giorgi in [25]. For the case η(x, x◦) = x−x◦, the result of Martin
in [23] has been restated by Ivanov (see [18]), under suitable assumptions.
This author calls the problem (P) KT-pseudoconvex if:

x, x◦ ∈ S
f(x) < f(x0)

}
=⇒

{
∇f(x0)(x− x0) < 0

∇gi(x0)(x− x0) ≤ 0, i ∈ I(x0).

Theorem 2.8. (see [18]) Let f and gi, i = 1, ...,m, be quasiconvex on the
open convex set S ⊂ Rn. Then every Karush-Kuhn-Tucker point of problem
(P) is a global minimizer if and only if (P) is KT-pseudoconvex.

Finally, we note that if the feasible set K (not necessarily given by a finite
number of inequalities as in (1.1)) is convex and the objective function is
pseudoconvex, then we can establish an equivalence between the problem
(P) and its ”linearized” version

(P1) min
x

{
∇f(x0)x, x ∈ K

}
.

Theorem 2.9. Let f : S −→ R be pseudoconvex on the open convex set
S ⊂ Rn and let be given the following problem

(P0) min
x
{f(x), x ∈ K} ,

where K ⊂ S is a convex set. Then x0 ∈ K is a solution of (P0) if and only
if x0 is solution of (P1).

Proof. If x0 is solution of (P0), being f pseudoconvex on the convex set
K ⊂ S, f is also quasiconvex on K and, being f(x0) ≤ f(x), ∀x ∈ K, we
have ∇f(x0)(x − x0) ≤ 0, ∀x ∈ K, i.e. x0 is optimal for (P1). Conversely,
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if x0 is solution for (P1), i.e. ∇f(x0)x0 ≤ ∇f(x0)x, ∀x ∈ K, then by the
pseudoconvexity of f we have f(x) ≥ f(x0), ∀x ∈ K, i.e. x0 is solution of
(P0). 2

Obviously, Theorem 2.9 holds also if K is given by (1.1), i.e. (P0)≡ (P)
and the functions gi, i = 1, ...,m, are quasiconvex on the open convex set S
⊂ Rn. Moreover, in this case, we have the following result.

Theorem 2.10. Let f be differentiable and pseudoconvex on the open con-
vex set S ⊂ Rn and every gi, i = 1, ...,m , differentiable and quasiconvex on
the same set S. We assume a suitable constraint qualification which assures
the validity of the KKT conditions at x0 ∈ K (for example, ∇gi(x0) 6= 0, i ∈
I(x0), and Slater’s condition (1.2)). Then, x0 is solution of (P) if and only
if x0 is solution of

(P2) min
x

{
∇f(x0)x | ∇gi(x0)(x− x0) ≤ 0, i ∈ I(x0)

}
or of

(P3) min
x

{
f(x) | ∇gi(x0)(x− x0) ≤ 0, i ∈ I(x0)

}
.

Proof. Denote by K2 the feasible set of (P2). If x0 is solution of (P), then,
thanks to the constraint qualification, the KKT conditions hold at x0:

∇f(x0) = −
∑

i∈I(x0)

λi∇gi(x0), λi ≥ 0, i ∈ I(x0).

Evidently x0 ∈ K2 and for any x ∈ K2 we have

∇f(x0)x0 = −
∑

i∈I(x0)

λi∇gi(x0)x0 ≤ −
∑

i∈I(x0)

λi∇gi(x0)x = ∇f(x0)x.

Therefore x0 is optimal for (P2). Now, let x0 optimal for (P2). We have
K ⊂ K2, by the quasiconvexity of gi, i ∈ I(x0). Then we have ∇f(x0)x0 ≤
∇f(x0)x,∀x ∈ K2 and as this inequality holds also for every x ∈ K, we get
f(x0) ≤ f(x), ∀x ∈ K, i.e. x0 is optimal for (P). According to Theorem
2.9, problems (P2) and (P3), under our assumptions, are equivalent. So, the
proof is finished. 2

Note that, in proving the equivalence between (P) and (P2), in the ne-
cessity part of the proof it is possible to assume no generalized convexity
of f and gi, i = 1, ...m, but only a suitable constraint qualification which
does not involve any generalized convexity assumption. In the sufficiency
part, the theorem holds also with the weaker assumption that f is pseudo-
convex at x0 with respect to K and that every gi, i ∈ I(x0), is quasiconvex
at x0 with respect to K. Note that (P2) is a linear programming problem,
therefore the equivalence between (P) and (P2) is a ”linear test” for the
optimality of x0 in the nonlinear programming problem (P).
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3. Generalized Convexity and Lagrangian Saddle Point Conditions

A fundamental result of nonlinear programming relates the solution of a
convex problem to the saddle point conditions of its Lagrangian function.
Given the problem (P) and the associated Lagrangian function L(x, λ) =
f(x) + λg(x), the point (x0, λ0) is called a saddle point of L if

L(x0, λ) ≤ L(x0, λ0) ≤ L(x, λ0), ∀x ∈ S, ∀λ ∈ Rm, λ ≥ 0. (3.1)

It is well-known that if f and every gi, i = 1, ...,m, are convex on the con-
vex set S ⊂ Rn, then there are interesting relationships between (P), the
saddle point conditions (3.1) and the KKT conditions. These relationships
generally do not longer hold if f is pseudoconvex and every gi, i = 1, ...,m,
is quasiconvex or even pseudoconvex. However, some results can be ob-
tained, with regard to the saddle point problem, under suitable generalized
convexity of the functions involved in (P).

1) A basic result, due to Kuhn and Tucker (see [20]) states that if (x0, λ0)
satisfies the KKT conditions (1.3)−(1.5) and f and every gi, i = 1, ...,m,
are convex on the convex set S ⊂ Rn, then (x0, λ0) is a saddle point of L. As
already said, this is no longer true under generalized convexity assumptions,
as the positive linear combination of pseudoconvex (or of quasiconvex) func-
tions need not be a pseudoconvex (resp. a quasiconvex) function. However,
the result of Kuhn and Tucker holds if L(x, λ) is pseudoconvex in x: in
this case the KKT conditions mean that (x0, λ0) is a stationary point of
the Lagrangian function and the result is recovered. The said result can be
obtained also under the concept of invex function (see Definition 2.1).

Due to the fact that the positive linear combination of n functions
f1, f2,..., fn, all invex with respect to the same vector function η, is an invex
function, we can state the following result.

Theorem 3.1. Assume that x0∈K satisfies the KKT conditions (1.3)−(1.5).
If f and every gi, i = 1, ...,m are invex with respect to the same η, then there
exists λ0 ≥ 0 such that (3.1) holds. (Moreover, we have the classical com-
plementary conditions λ0g(x0) = 0).

Recently Martinez-Legaz (see [24]) and Mishra and Giorgi (see [25]) have
proved the following result.

Theorem 3.2. Let f1, f2,..., fn be differentiable functions defined on an open
set X ⊂ Rn. The following statements are equivalent.

(i) The functions f1, f2,..., fn are invex with respect to the same η.

(ii) The functions
∑n

i=1 λifi, λ1 ≥ 0, ..., λn ≥ 0, are invex with respect
to the same η.

(iii) The functions
∑n

i=1 λifi, λ1 ≥ 0, ..., λn ≥ 0, are invex.
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(iv) For every λ1 ≥ 0, ..., λn ≥ 0, every stationary point of
∑n

i=1 λifi is
a global minimum point.

2) Another approach to the saddle point problem (3.1), by means of
some generalized convex function, is given by the assumption of preinvexity
of the functions involved in problem (P). This assumption does not require
differentiability; see the paper [27] by Weir and Jeyakumar and the paper
[28] by Weir and Mond.

Definition 3.1. A subset X of Rn is said to be η-invex with respect to
η : Rn × Rn −→ Rn if

x, y ∈ X, λ ∈ [0, 1] =⇒ y + λη(x, y) ∈ X.

Therefore, η−invexity of a set is a sort of ”connectedness” property. It is
obvious that the above definition is a generalization of the notion of a convex
set.

Definition 3.2. Let f : X −→ R be defined on the η-invex set X ⊂ Rn; f
is said to be preinvex on X with respect to η if

f [y + λη(x, y)] ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ X,∀λ ∈ [0, 1] .

The class of convex functions is strictly contained in the class of preinvex
functions. Moreover, if f1, f2,..., fn are preinvex functions with respect to
the same η, then

∑n
i=1 λifi is preivex, with respect to η, where λi ≥ 0, i =

1, ..., n. Ben-Israel and Mond have proved (see [6]) that if f is differentiable
and preinvex, then f is invex.

Theorem 3.3. (see [28, 27]) Let be given the problem (P), where all the
functions involved are preinvex, with respect to the same η, on the η-invex
set S ⊂ Rn. If x0 ∈ K is a solution of (P) and if the Slater’s condition (1.2)
holds, then there exists λ0 ≥ 0 such that (x0, λ0) is a saddle point for (P).

3) Another possibility to obtain saddle points result for a not necessar-
ily convex problem (P) is to try to convert (P) into an equivalent convex
problem. This can be done (when it is possible!) by means of the so-called
convex range transformations. Let f : S −→ R be defined on the convex set
S ⊂ Rn and denote by If (S) the range of f.

Definition 3.3. f : S −→ R is said to be convex range transformable
or briefly F-convex if there exists a continuous strictly increasing function
F : If (S) −→ R such that F [f(x)] is convex over S, i.e. for any x, y ∈ S
and any λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ F−1 [λF (f(x)) + (1− λ)F (f(y))] .
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It is easy to prove that every F-convex function on a convex set S is also
quasiconvex on S. Then, if in (P) all the functions involved are defined on
the convex set S ⊂ Rn and are all F-convex, it is clear that the transformed
problem

min
x
{F [f(x)] | Fi [gi(x)] ≤ 0, i = 1, ...,m}

is equivalent to (P). Convex transformable functions were introduced by de
Finetti (see [11]). In [4], Avriel discusses the properties of an important
class of F-convex functions, see also the paper [5] by Avriel and others.

4) We mention the possibility to weaken the convexity of the vector-
valued function (f, g) : Rn −→ Rm+1 by means of the definition of convexlike
function and its generalizations.

Definition 3.4. A function f : Rn −→ Rp is convexlike on the nonempty
set X ⊂ Rn if for any x1, x2 ∈ X and for any λ ∈ [0, 1] there exists x3 ∈ X
such that

λf(x1) + (1− λ)f(x2)− f(x3) ∈ Rp+.

Note that in the above definition the point x3, which usually depends from
x1, x2 and λ, is not necessarily given by a convex combination of x1 and x2,
but it can be just any point of X. Therefore, there is no need to require the
convexity of X; note, moreover, thar any real-valued function is convexlike.
It is quite immediate to show that the function f : Rn −→ Rp is convexlike
on X ⊂ Rn if and only if the set f(X)+Rp+ is convex. Obviously, all convex
functions f : Rn −→ Rp are convexlike; the convexity of the function f is
only a sufficient condition. For other sufficient conditions for a vector-valued
function to be convexlike, see the paper [12] by Elster and Nehse.

For applications of convexlike functions and their generalizations to sad-
dle point problems, alternative theorems, duality theorems, etc., see the
papers [7] by Cambini, [16] by Hayashi and Komiya, [19] by Jeyakumar,
[13] by Frenk and Kassay, [17] by Illes and Kassay. For the reader’s conve-
nience we report only the main result of Jeyakumar (see [19]) concerning a
generalized saddle point theorem.

Theorem 3.4. (see [19]) For the problem (P) assume that the pair (f, g) is
convexlike with respect to Rm+1 and that the Slater’s condition (1.2) holds.
If x◦ ∈ K is a solution of (P), then there exists a vector λ◦ ∈ Rm+ such that
the pair (x◦, λ◦) satisfies relation (3.1).

5) Yet another approach to obtain saddle point results for a nonconvex
programming problem, is given by considering an ”augmented Lagrangian
function”, i.e. a suitable modification of the usual Lagrangian function
L(x, λ). We quote only (also for the bibliographical references) the papers
of Arrow, Gould and Howe (see [2]) and Rockafellar (see [26]).
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