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Abstract - This paper is a completion of our previous work [6, 7] on su-
perposition operators between higher-order Sobolev spaces, where sufficient
conditions which ensure the well-definedness, the continuity, the bounded-
ness, and the validity of the higher-order chain rule for such operators were
given. We prove the continuity of these superposition operators in the su-
percritical case (see Remark 1.1).
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1. Introduction

Let g : R→ R be a function, let n ∈ N∗ and let Ω ⊂ Rn be a bounded open
set. The superposition (or Nemytskij) operator generated by the function g
is, by definition, the operator denoted by Ng that associates to each function
u : Ω→ R the function Ngu : Ω→ R defined by

(Ngu) (x) = (g ◦ u) (x) = g (u (x)) , x ∈ Ω.

For each k ∈ N∗, we denote by Lk the k-dimensional Lebesgue mea-
sure. It is well-known that if g : R → R is continuous and u : Ω → R is
Ln-measurable, then Ngu = g ◦ u is Ln-measurable as well. The same con-
clusion remains valid even when the hypothesis ”g : R → R is continuous”
is replaced with the weaker hypothesis ”g : R→ R is Borel measurable”.

Within a series of papers, Marcus and Mizel [9, 10, 11] obtained necessary
and sufficient conditions for a function g to generate a superposition operator
Ng having the following properties: Ng is well defined from a Sobolev space
W 1,p (Ω) into another Sobolev space W 1,q (Ω), with 1 ≤ q ≤ p < ∞, Ng is
bounded, continuous and satisfies in addition the first-order chain rule

∂i (g ◦ u) =
(
g′ ◦ u

)
∂iu Ln-a.e. in Ω, for all i = 1, . . . , n, (1.1)
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for all u ∈ W 1,p (Ω). Here and throughout this paper, ∂i denotes the weak
derivative with respect to xi. Part of Marcus and Mizel’s results are also
reproduced in Appell [1].

Another essential result in the study of superposition operators between
Sobolev spaces is due to Bourdaud. In [2], he obtained necessary and suf-
ficient conditions on a function g such that Ng : Wm.p (Rn) → Wm.p (Rn)
is well defined, with m ∈ N, m ≥ 2, and 1 ≤ p < ∞. In their survey [3],
the authors noticed that when p = 1 and m = 2 < n, or mp = n, it is
not proved yet that those conditions on g also ensure the continuity and the
boundedness of Ng : Wm,p (Rn) → Wm,p (Rn). Moreover, those conditions
do not generally ensure the validity of the higher-order chain rule for Ng up
to order m inclusive, except for the degeneracy case g′′ ≡ 0.

In [5], motivated by the intention to obtain a generalization of the well-
known Pohožaev identity, the authors generalized the results of Marcus and
Mizel. They obtained sufficient conditions for a function g to generate a
superposition operator Ng having the following properties: Ng is well defined
from a Sobolev space Wm,p (Ω) into another Sobolev space W 1,q (Ω), with
1 ≤ q, p < ∞, m ∈ N∗, Ng is bounded, continuous and satisfies in addition
the chain rule (1.1). In the supercritical case (see Remark 1.1 below), this
result reads as follows.

Theorem 1.1. Let Ω ⊂ Rn be open and bounded, having the cone property,
let m ∈ N∗, and let g : R→ R be a locally Lipschitz function.

(i) If n
m < p < n

m−1 , with n ≥ m (1 ≤ p < n
n−1 when n = m), then

Ng : Wm,p (Ω) → W 1,q (Ω) for all 1 ≤ q ≤ np
n−(m−1)p . Moreover,

Ng is bounded and the chain rule (1.1) holds for all u ∈ Wm,p (Ω),
where the product (g′ ◦ u) ∂iu is to be interpreted in the sense of de la
Vallée Poussin, namely it is considered to be zero whenever ∂iu (x) =
0, irrespective of whether (g′ ◦ u) (x) is defined.

(ii) If p = n
m−1 , with m ≥ 2 and n ≥ m − 1, then Ng : Wm,p (Ω) →

W 1,q (Ω) for all 1 ≤ q < ∞. Moreover, Ng is bounded and (1.1)
holds for all u ∈ Wm,p (Ω) (with the usual convention on the product
(g′ ◦ u) ∂iu).

(iii) If n
m−1 < p <∞, with m ≥ 2 (1 ≤ p <∞ when n ≤ m− 1), then Ng :

Wm,p (Ω) → W 1,q (Ω) for all 1 ≤ q ≤ ∞. Moreover, Ng is bounded
and (1.1) holds for all u ∈Wm,p (Ω) (with the usual convention on the
product (g′ ◦ u) ∂iu).

(iv) If g∗ : R→ R is a Borel measurable function such that g∗ = g′ L1-a.e.
in R, then in all cases (i)-(iii) the chain rule (1.1) can be rewritten as

∂i (g ◦ u) = (g∗ ◦ u) ∂iu Ln-a.e in Ω, for all i = 1, . . . , n,



On the continuity of superposition operators 457

the convention on the product (g∗ ◦ u) ∂iu being no longer necessary.

(v) The hypotheses which ensure the well-definedness of the operator Ng

from Wm,p (Ω) into W 1,q (Ω), with 1 ≤ p, q < ∞, are sufficient to
ensure the continuity of Ng in each of the cases (i)-(iii).

Remark 1.1. According to Bourdaud [2], the Sobolev space Wm,p (Ω) is
said to be supercritical if the imbedding Wm,p (Ω) ↪→ L∞ (Ω) is valid.

In [7], the authors generalized Theorem 1.1. More specifically, they ob-
tained sufficient conditions for a function g to generate a superposition op-
erator Ng having the following properties: Ng is well defined from a Sobolev
space Wm,p (Ω) into another Sobolev space W l,q (Ω), with 1 ≤ q, p < ∞,
m, l ∈ N∗, mp > n, l ≤ m, Ng is bounded, continuous, and satisfies in
addition the higher-order chain rule

Dα (g ◦ u) =

|α|∑
k=1

∑
α1+...+αk=α

|αi|6=0

cα,k,α1,...,αk

(
g(k) ◦ u

)
Dα1

u . . .Dαku

Ln-a.e. in Ω, for all α ∈ Nn with 1 ≤ |α| ≤ l,

(1.2)

for all u ∈ Wm,p (Ω). Here and throughout this paper, cα,k,α1,...,αk ∈ N∗
denotes a combinatorial constant and Dα denotes the weak derivative with
respect to the multi-index α ∈ Nn.

The statement of this result is the following.

Theorem 1.2. Let Ω ⊂ Rn be open and bounded, having the cone property,
let m, l ∈ N∗, l ≤ m, and let g : R → R be a function of class C l−1 with
g(l−1) : R→ R locally Lipschitz.

(i) If n
m < p < n

m−l , with n ≥ m − l + 1 (1 ≤ p < n
m−l when n ∈

{m− l + 1, . . . ,m}), then Ng : Wm,p (Ω) → W l,q (Ω) for all 1 ≤
q ≤ np

n−(m−l)p . Moreover, Ng is bounded and the higher-order chain

rule (1.2) holds for all u ∈ Wm,p (Ω), where the product
(
g(l) ◦ u

)
∂j1u . . . ∂jlu is to be interpreted in the sense of de la Vallée Poussin,
namely it is considered to be zero whenever one of the factors ∂j1u (x) ,
. . . , ∂jlu (x) is zero, irrespective of whether

(
g(l) ◦ u

)
(x) is defined.

(ii) If p = n
m−l , with m ≥ l + 1 and n ≥ m − l, then Ng : Wm,p (Ω) →

W l,q (Ω) for all 1 ≤ q < ∞. Moreover, Ng is bounded and (1.2)
holds for all u ∈ Wm,p (Ω) (with the usual convention on the product(
g(l) ◦ u

)
∂j1u . . . ∂jlu).

(iii) If n
m−l < p < ∞, with m ≥ l + 1 (1 ≤ p < ∞ when n ≤ m − l), then

Ng : Wm,p (Ω)→W l,q (Ω) for all 1 ≤ q ≤ ∞. Moreover, Ng is bounded
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and (1.2) holds for all u ∈Wm,p (Ω) (with the usual convention on the
product

(
g(l) ◦ u

)
∂j1u . . . ∂jlu).

(iv) If g∗ : R → R is a Borel measurable function such that g∗ = g(l)

L1-a.e. in R, then in all cases (i)-(iii), the chain rule (1.2) can
be rewritten with g∗ instead of g(l), the convention on the product(
g(l) ◦ u

)
∂j1u . . . ∂jlu being no longer necessary.

(v) The hypotheses which ensure that the operator Ng from Wm,p (Ω) into
W l,q (Ω) is well defined, with 1 ≤ p, q < ∞, are sufficient to ensure
the continuity of Ng in each of the cases (i)-(iii).

The proof of this result is given in [7] only for the first four points. The
aim of the present paper is to give the proof of the last point of Theorem 1.2,
i.e. to prove the continuity of the superposition operator Ng : Wm,p (Ω) →
W l,q (Ω), with 1 ≤ p, q <∞, in each of the cases (i)-(iii).

We end this section with the following remark.

Remark 1.2. Formula (1.2) is formally identical to the well-known higher-
order chain rule used to compute higher partial derivatives of the composite
function g◦u when g : R→ R and u : Ω→ R are sufficiently smooth (see e.g.
[4, Corollary 2.10, formula (2.9)]). In its turn, the result given by Corollary
2.10 in [4] generalizes the famous Faà di Bruno formula (see [8]). According
to our knowledge, there are several equivalent manners to express formula
(1.2) or formula (2.9) in [4] but, for our convenience, we prefer to use this
form taken from [12, Subsection 5.2.1, formula (6)]. It is worth noticing
the extra generality of formula (1.2) over formula (2.9) in [4]. While (2.9)
in [4] is obtained for functions g and u of class C l, for obtaining (1.2), the
regularity conditions imposed on g are slightly weakened and those imposed
on u are much more general, namely

g is of class C l−1 and g(l−1) is locally Lipschitz,

u ∈Wm,p with m ≥ l.

In [4], interesting applications of formula (2.9) to stochastic processes and
multivariate cumulants are given. Due to its greater generality, it is expected
that formula (1.2) should allow the enlargement of the field of applications
(e.g., boundary value problems for nonlinear partial differential equations).

2. Proof of Theorem 1.2(v)

The following auxiliary result will be needed. It is a simple consequence
Hölder’s inequality.
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Proposition 2.1. Let Ω ⊂ Rn be an open set and let 1 ≤ p1, . . . , pk, p ≤ ∞
satisfy

1

p1
+ . . .+

1

pk
=

1

p
.

For each i = 1, . . . , k, consider a function ui ∈ Lpi (Ω) and a sequence{
uiη
}
η
⊂ Lpi (Ω) such that

∥∥uiη − ui∥∥Lpi (Ω)

η→∞−→ 0. Then

∥∥∥u1
η · . . . · ukη − u1 · . . . · uk

∥∥∥
Lp(Ω)

η→∞−→ 0.

Further on, we use the notation p∗k = np
n−kp , provided that k, n ∈ N∗,

1 ≤ p <∞ and kp < n. Now, we are able to give the

Proof of Theorem 1.2(v). We will prove the continuity of Ng : Wm,p (Ω)
→W l,q (Ω), with 1 ≤ p, q <∞, in each of the cases (i)-(iii).

Let u ∈Wm,p (Ω) and (uη)η∈N∗ ⊂W
m,p (Ω) satisfy ‖uη − u‖Wm,p(Ω)

η→∞−→
0. We have to show that ‖Nguη −Ngu‖W l,q(Ω)

η→∞−→ 0. To this end, we will
show that

‖Dα (g ◦ uη)−Dα (g ◦ u)‖Lq(Ω) → 0 for all α ∈ Nn with 0 ≤ |α| ≤ l.
(2.1)

Let us prove (2.1) under the hypotheses of point (i), namely n
m < p <

n
m−l , with n ≥ m − l + 1 (1 ≤ p < n

m−l when n ∈ {m− l + 1, . . . ,m}), and
1 ≤ q ≤ np

n−(m−l)p . We split the proof into four cases (see the proof of point

(i) in [7]):

1. n
m < p < n

m−1 , with n ≥ m (1 ≤ p < n
n−1 when n = m),

2. p = n
m−1 , with n ≥ m− 1,

3. n
m−h < p < n

m−h−1 , with n ≥ m − h and h ∈ {1, . . . , l − 1} (1 ≤ p <
n

m−h−1 when n = m− h),

4. p = n
m−h , with n ≥ m− h and h ∈ {2, . . . , l − 1}.

Case 1. n
m < p < n

m−1 , with n ≥ m (1 ≤ p < n
n−1 when n = m).

We have 1 ≤ q ≤ p∗m−l ≤ p∗m−1. By Theorem 1.1(i,v), we deduce that
Ng : Wm,p (Ω)→W 1,q (Ω) is continuous. Thus, ‖g ◦ uη − g ◦ u‖W 1,q(Ω) → 0,
i.e.

‖g ◦ uη − g ◦ u‖Lq(Ω) → 0,

‖∂j (g ◦ uη)− ∂j (g ◦ u)‖Lq(Ω) → 0, j = 1, . . . , n.

Consequently, formula (2.1) is proved for 0 ≤ |α| ≤ 1.
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According to point (i), g ◦u and g ◦uη satisfy the higher-order chain rule
(1.2). Hence, in order to prove (2.1) for 2 ≤ |α| ≤ l, it suffices to prove that∥∥∥(g(k) ◦ uη

)
Dα1

uη . . . D
αkuη −

(
g(k) ◦ u

)
Dα1

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0 (2.2)

for all α ∈ Nn with 2 ≤ |α| ≤ l, all k ∈ {1, . . . , s = |α|}, all α1, . . . , αk ∈ Nn
with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α. To this end, we use Theorem 1.1(i,v)
and Proposition 2.1.

Firstly, we fix α ∈ Nn with 2 ≤ |α| = s ≤ l− 1, we fix k ∈ {1, . . . , s} and
we fix α1, . . . , αk ∈ Nn with

∣∣αi∣∣ 6= 0 and α1 + . . . + αk = α. By Theorem

1.1(i,v), we infer that Ng(k) : Wm,p (Ω)→W 1,p∗m−1 (Ω) is continuous. Thus,∥∥g(k) ◦ uη − g(k) ◦ u
∥∥
W

1,p∗m−1 (Ω)
→ 0, whence∥∥∥g(k) ◦ uη − g(k) ◦ u

∥∥∥
L
p∗m−1 (Ω)

→ 0, (2.3)

∥∥∥(g(k+1) ◦ uη
)
∂juη −

(
g(k+1) ◦ u

)
∂ju
∥∥∥
L
p∗m−1 (Ω)

→ 0, j = 1, . . . , n. (2.4)

It follows from ‖uη − u‖Wm,p(Ω) → 0 that
∥∥∥Dαiuη −Dαiu

∥∥∥
Wm−|αi|,p(Ω)

→

0. On the other hand, since
(
m−

∣∣αi∣∣) p ≤ (m− 1) p < n, the Sobolev
imbedding

Wm−|αi|,p (Ω) ↪→ L
p∗
m−|αi| (Ω) ,

is valid. Therefore∥∥∥Dαiuη −Dαiu
∥∥∥
L
p∗
m−|αi| (Ω)

→ 0, i = 1, . . . , k. (2.5)

It is not difficult to show that

1

p∗m−1

+

k∑
i=1

1

p∗
m−|αi|

<
1

q
(2.6)

(see the proof of point (i), case 1, in [7]). By using Proposition 2.1, formulas
(2.3), (2.5), (2.6), and the fact that Ω is bounded, we obtain the validity of
formula (2.2) for 2 ≤ |α| ≤ l − 1.

It remains to be shown that (2.2) is valid in the case |α| = l as well.
We fix α ∈ Rn with |α| = l. There is β ∈ Rn and j ∈ {1, . . . , n} such that
|β| = l − 1 and Dα = ∂jD

β. According to point (i), we have

Dβ (g ◦ v) =

l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

(
g(k) ◦ v

)
Dα1

v . . .Dαkv

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .
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It follows that

Dα (g ◦ v) = ∂jD
β (g ◦ v)

=
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

[(
g(k+1) ◦ v

)
∂jvD

α1
v . . .Dαkv

+
(
g(k) ◦ v

)(
∂jD

α1
vDα2

v . . .Dαkv + . . .+Dα1
v . . .Dαk−1

v∂jD
αkv
)]

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

Hence, in order to prove (2.2) in the case |α| = l, it suffices to show that∥∥∥(g(k+1) ◦ uη
)
∂juηD

α1
uη . . . D

αkuη

−
(
g(k+1) ◦ u

)
∂juD

α1
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.7)

∥∥∥(g(k) ◦ uη
)
∂jD

α1
uηD

α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
∂jD

α1
uDα2

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0,
(2.8.1)

∥∥∥(g(k) ◦ uη
)
Dα1

uη∂jD
α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
Dα1

u∂jD
α2
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.8.2)

...∥∥∥(g(k) ◦ uη
)
Dα1

uη . . . D
αk−1

uη∂jD
αkuη

−
(
g(k) ◦ u

)
Dα1

u . . .Dαk−1
u∂jD

αku
∥∥∥
Lq(Ω)

→ 0,
(2.8.k)

for all k ∈ {1, . . . , l − 1} and all α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0 and α1 +

. . . + αk = β. Fix k ∈ {1, . . . , l − 1} and fix α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0

and α1 + . . .+ αk = β.
Formula (2.7) is a direct consequence of Proposition 2.1, formulas (2.4),

(2.5), (2.6), and the fact that Ω is bounded.
It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥∂jDα1

uη − ∂jDα1
u
∥∥∥
Wm−|α1|−1,p(Ω)

→ 0.

On the other hand, since (m− 1) p < n, the Sobolev imbedding

Wm−|α1|−1,p (Ω) ↪→ L
p∗
m−|α1|−1 (Ω) ,

is valid. Therefore,∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L
p∗
m−|α1|−1 (Ω)

→ 0. (2.9)
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According to the above, since 1 ≤ k ≤ l − 1, we have∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
W

1,p∗m−1 (Ω)
→ 0.

On the other hand, by mp > n, we get p∗m−1 > n. Thus, the Sobolev
imbedding

W 1,p∗m−1 (Ω) ↪→ L∞ (Ω) ,

is valid. Consequently,∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
L∞(Ω)

→ 0. (2.10)

Simple computations show that

1

p∗
m−|α1|−1

+

k∑
i=2

1

p∗
m−|αi|

≤ 1

q
(2.11)

(see the proof of point (i), case 1, in [7]). Now, (2.8.1) is a direct consequence
of Proposition 2.1, formulas (2.5), (2.9), (2.10), (2.11), and of the fact that
Ω is bounded. Formulas (2.8.2), . . . , (2.8.k) can be proved in the same way
as (2.8.1). Consequently, formula (2.2) is proved in the case |α| = l as well.

Formula (2.1) is now proved under the hypotheses of point(i), case 1.
Case 2. p = n

m−1 , with n ≥ m− 1.
We have 1 ≤ q ≤ p∗m−l < ∞. By Theorem 1.1(ii,v), we deduce that

Ng : Wm,p (Ω)→W 1,q (Ω) is continuous. Thus, ‖g ◦ uη − g ◦ u‖W 1,q(Ω) → 0,
i.e.

‖g ◦ uη − g ◦ u‖Lq(Ω) → 0,

‖∂j (g ◦ uη)− ∂j (g ◦ u)‖Lq(Ω) → 0, j = 1, . . . , n.

Consequently, formula (2.1) is proved for 0 ≤ |α| ≤ 1.
According to point (i), g ◦u and g ◦uη satisfy the higher-order chain rule

(1.2). Hence, in order to prove (2.1) for 2 ≤ |α| ≤ l, it suffices to prove (2.2)
for all α ∈ Nn with 2 ≤ |α| ≤ l, all k ∈ {1, . . . , s = |α|}, all α1, . . . , αk ∈ Nn
with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α. To this end, we use Theorem 1.1(ii,v)
and Proposition 2.1.

Firstly, we fix α ∈ Nn with 2 ≤ |α| = s ≤ l− 1, we fix k ∈ {1, . . . , s} and
we fix α1, . . . , αk ∈ Nn with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α.
As in the proof of point (i), case 2 (see [7]) denote

I1 =
{
i ∈ {1, . . . , k} :

∣∣αi∣∣ = 1
}
,

I2 =
{
i ∈ {1, . . . , k} : 2 ≤

∣∣αi∣∣ ≤ s} .
We have (

m−
∣∣αi∣∣) p = n if i ∈ I1,(

m−
∣∣αi∣∣) p < n if i ∈ I2,
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whence we deduce the following Sobolev imbeddings

Wm−|αi|,p (Ω) ↪→ Lr (Ω) for all 1 ≤ r <∞, if i ∈ I1,

Wm−|αi|,p (Ω) ↪→ L
p∗
m−|αi| (Ω) if i ∈ I2.

On the other hand, it follows from ‖uη − u‖Wm,p(Ω) → 0 that

∥∥∥Dαiuη −Dαiu
∥∥∥
Wm−|αi|,p(Ω)

→ 0.

Therefore∥∥∥Dαiuη −Dαiu
∥∥∥
Lr(Ω)

→ 0 for all 1 ≤ r <∞, if i ∈ I1,∥∥∥Dαiuη −Dαiu
∥∥∥
L
p∗
m−|αi| (Ω)

→ 0 if i ∈ I2.
(2.12)

By Theorem 1.1(ii,v), we infer that Ng(k) : Wm,p (Ω) → W 1,r (Ω) is

continuous for all 1 ≤ r < ∞. Thus,
∥∥g(k) ◦ uη − g(k) ◦ u

∥∥
W 1,r(Ω)

→ 0,

whence ∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, (2.13)

∥∥∥(g(k+1) ◦ uη
)
∂juη −

(
g(k+1) ◦ u

)
∂ju
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, j = 1, . . . , n.

(2.14)

It is not difficult to show that∑
i∈I2

1

p∗
m−|αi|

<
1

q
(2.15)

(see the proof of point (i), case 2, in [7]). By using Proposition 2.1 and
formulas (2.12), (2.13), and (2.15), we obtain the validity of formula (2.2)
for 2 ≤ |α| ≤ l − 1.

It remains to be shown that (2.2) is valid in the case |α| = l as well.
We fix α ∈ Rn with |α| = l. There is β ∈ Rn and j ∈ {1, . . . , n} such that
|β| = l − 1 and Dα = ∂jD

β. According to point (i), we have

Dβ (g ◦ v) =
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

(
g(k) ◦ v

)
Dα1

v . . .Dαkv

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .
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It follows that

Dα (g ◦ v) = ∂jD
β (g ◦ v)

=
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

[(
g(k+1) ◦ v

)
∂jvD

α1
v . . .Dαkv

+
(
g(k) ◦ v

)(
∂jD

α1
vDα2

v . . .Dαkv + . . .+Dα1
v . . .Dαk−1

v∂jD
αkv
)]

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

Hence, in order to prove (2.2) in the case |α| = l, it suffices to show that∥∥∥(g(k+1) ◦ uη
)
∂juηD

α1
uη . . . D

αkuη

−
(
g(k+1) ◦ u

)
∂juD

α1
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.16)

∥∥∥(g(k) ◦ uη
)
∂jD

α1
uηD

α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
∂jD

α1
uDα2

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0,
(2.17.1)

∥∥∥(g(k) ◦ uη
)
Dα1

uη∂jD
α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
Dα1

u∂jD
α2
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.17.2)

...∥∥∥(g(k) ◦ uη
)
Dα1

uη . . . D
αk−1

uη∂jD
αkuη

−
(
g(k) ◦ u

)
Dα1

u . . .Dαk−1
u∂jD

αku
∥∥∥
Lq(Ω)

→ 0,
(2.17.k)

for all k ∈ {1, . . . , l − 1} and all α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0 and α1 +

. . . + αk = β. Fix k ∈ {1, . . . , l − 1} and fix α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0

and α1 + . . .+ αk = β.
Formula (2.16) is a direct consequence of Proposition 2.1 and formulas

(2.12), (2.14), (2.15), and the fact that Ω is bounded.
It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥∂jDα1

uη − ∂jDα1
u
∥∥∥
Wm−|α1|−1,p(Ω)

→ 0.

On the other hand, since (m− 1) p = n, the Sobolev imbedding

Wm−|α1|−1,p (Ω) ↪→ L
p∗
m−|α1|−1 (Ω) ,

is valid. Therefore,∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L
p∗
m−|α1|−1 (Ω)

→ 0. (2.18)
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According to the above, since 1 ≤ k ≤ l − 1, we have∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
W 1,r(Ω)

→ 0 for all 1 ≤ r <∞.

On the other hand, the Sobolev imbedding

W 1,r (Ω) ↪→ L∞ (Ω) ,

is valid for all n < r <∞. Consequently,∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
L∞(Ω)

→ 0. (2.19)

It is not difficult to show that

1

p∗
m−|α1|−1

+
∑

i∈I2\{1}

1

p∗
m−|αi|

≤ 1

q
if 1 ∈ I2 and I1 = φ,

1

p∗
m−|α1|−1

+
∑

i∈I2\{1}

1

p∗
m−|αi|

<
1

q
if 1 ∈ I2 and I1 6= φ,

1

p∗
m−|α1|−1

+
∑

i∈I2\{1}

1

p∗
m−|αi|

≤ 1

q
if I1 = {1} ,

1

p∗
m−|α1|−1

+
∑

i∈I2\{1}

1

p∗
m−|αi|

<
1

q
if I1 ! {1} .

(2.20)

(see the proof of point (i), case 2, in [7]). Now, (2.17.1) is a direct conse-
quence of Proposition 2.1, formulas (2.12), (2.18), (2.19), (2.20), and of the
fact that Ω is bounded. Formulas (2.17.2), . . . , (2.17.k) can be proved in
the same way as (2.17.1). Consequently, formula (2.2) is proved in the case
|α| = l as well.

Formula (2.1) is now proved under the hypotheses of point (i), case 2.
Case 3. n

m−h < p < n
m−h−1 , with n ≥ m − h and h ∈ {1, . . . , l − 1}

(1 ≤ p < n
m−h−1 when n = m− h).

We have 1 ≤ q ≤ p∗m−l < ∞. By Theorem 1.1(iii,v), we deduce that
Ng : Wm,p (Ω)→W 1,q (Ω) is continuous. Thus, ‖g ◦ uη − g ◦ u‖W 1,q(Ω) → 0,
i.e.

‖g ◦ uη − g ◦ u‖Lq(Ω) → 0,

‖∂j (g ◦ uη)− ∂j (g ◦ u)‖Lq(Ω) → 0, j = 1, . . . , n.

Consequently, formula (2.1) is proved for 0 ≤ |α| ≤ 1.
According to point (i), g ◦u and g ◦uη satisfy the higher-order chain rule

(1.2). Hence, in order to prove (2.1) for 2 ≤ |α| ≤ l, it suffices to prove (2.2)
for all α ∈ Nn with 2 ≤ |α| ≤ l, all k ∈ {1, . . . , s = |α|}, all α1, . . . , αk ∈ Nn
with

∣∣αi∣∣ 6= 0 and α1 + . . .+αk = α. To this end, we use Theorem 1.1(iii,v)
and Proposition 2.1.
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Firstly, we fix α ∈ Nn with 2 ≤ |α| = s ≤ l− 1, we fix k ∈ {1, . . . , s} and
we fix α1, . . . , αk ∈ Nn with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α.

As in the proof of point (i), case 3 (see [7]) denote

I1 =
{
i ∈ {1, . . . , k} : 1 ≤

∣∣αi∣∣ ≤ h} ,
I2 =

{
i ∈ {1, . . . , k} : h+ 1 ≤

∣∣αi∣∣ ≤ s} .
We have (

m−
∣∣αi∣∣) p > n if i ∈ I1,(

m−
∣∣αi∣∣) p < n if i ∈ I2,

whence we deduce the following Sobolev imbeddings

Wm−|αi|,p (Ω) ↪→ L∞ (Ω) if i ∈ I1,

Wm−|αi|,p (Ω) ↪→ L
p∗
m−|αi| (Ω) if i ∈ I2.

On the other hand, it follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥Dαiuη −Dαiu
∥∥∥
Wm−|αi|,p(Ω)

→ 0.

Therefore ∥∥∥Dαiuη −Dαiu
∥∥∥
L∞(Ω)

→ 0 if i ∈ I1,∥∥∥Dαiuη −Dαiu
∥∥∥
L
p∗
m−|αi| (Ω)

→ 0 if i ∈ I2.
(2.21)

By Theorem 1.1(iii,v), we infer that Ng(k) : Wm,p (Ω) → W 1,r (Ω) is

continuous for all 1 ≤ r < ∞. Thus,
∥∥g(k) ◦ uη − g(k) ◦ u

∥∥
W 1,r(Ω)

→ 0,

whence ∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, (2.22)∥∥∥(g(k+1) ◦ uη
)
∂juη −

(
g(k+1) ◦ u

)
∂ju
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, j = 1, . . . , n.

(2.23)

Simple computations show that∑
i∈I2

1

p∗
m−|αi|

<
1

q
(2.24)

(see the proof of point (i), case 3, in [7]). By using Proposition 2.1 and
formulas (2.21), (2.22), (2.24), we obtain the validity of formula (2.2) for
2 ≤ |α| ≤ l − 1.
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It remains to be shown that (2.2) is valid in the case |α| = l as well.
We fix α ∈ Rn with |α| = l. There is β ∈ Rn and j ∈ {1, . . . , n} such that
|β| = l − 1 and Dα = ∂jD

β. According to point (i), we have

Dβ (g ◦ v) =
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

(
g(k) ◦ v

)
Dα1

v . . .Dαkv

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

It follows that

Dα (g ◦ v) = ∂jD
β (g ◦ v)

=

l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

[(
g(k+1) ◦ v

)
∂jvD

α1
v . . .Dαkv

+
(
g(k) ◦ v

)(
∂jD

α1
vDα2

v . . .Dαkv + . . .+Dα1
v . . .Dαk−1

v∂jD
αkv
)]

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

Hence, in order to prove (2.2) in the case |α| = l, it suffices to show that∥∥∥(g(k+1) ◦ uη
)
∂juηD

α1
uη . . . D

αkuη

−
(
g(k+1) ◦ u

)
∂juD

α1
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.25)

∥∥∥(g(k) ◦ uη
)
∂jD

α1
uηD

α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
∂jD

α1
uDα2

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0,
(2.26.1)

∥∥∥(g(k) ◦ uη
)
Dα1

uη∂jD
α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
Dα1

u∂jD
α2
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.26.2)

...∥∥∥(g(k) ◦ uη
)
Dα1

uη . . . D
αk−1

uη∂jD
αkuη

−
(
g(k) ◦ u

)
Dα1

u . . .Dαk−1
u∂jD

αku
∥∥∥
Lq(Ω)

→ 0,
(2.26.k)

for all k ∈ {1, . . . , l − 1} and all α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0 and α1 +

. . . + αk = β. Fix k ∈ {1, . . . , l − 1} and fix α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0

and α1 + . . .+ αk = β.

Formula (2.25) is a direct consequence of Proposition 2.1 and formulas
(2.21), (2.23), (2.24), and the fact that Ω is bounded.
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It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
Wm−|α1|−1,p(Ω)

→ 0.

On the other hand, since n
m−h < p < n

m−h−1 , we have the Sobolev imbed-
dings

Wm−|α1|−1,p (Ω) ↪→ L
p∗
m−|α1|−1 (Ω) if 1 ∈ I2,

Wm−|α1|−1,p (Ω) ↪→ L
p∗
m−|α1|−1 (Ω) if 1 ∈ I1 and

∣∣α1
∣∣ = h,

Wm−|α1|−1,p (Ω) ↪→ L∞ (Ω) if 1 ∈ I1 and
∣∣α1
∣∣ ≤ h− 1.

Therefore,∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L
p∗
m−|α1|−1 (Ω)

→ 0 if 1 ∈ I2,∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L
p∗
m−|α1|−1 (Ω)

→ 0 if 1 ∈ I1 and
∣∣α1
∣∣ = h,∥∥∥∂jDα1

uη − ∂jDα1
u
∥∥∥
L∞(Ω)

→ 0 if 1 ∈ I1 and
∣∣α1
∣∣ ≤ h− 1.

(2.27)

According to the above, since 1 ≤ k ≤ l − 1, we have∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
W 1,r(Ω)

→ 0 for all 1 ≤ r <∞.

On the other hand, the Sobolev imbedding

W 1,r (Ω) ↪→ L∞ (Ω) ,

is valid for all n < r <∞. Consequently,∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
L∞(Ω)

→ 0. (2.28)

It is not difficult to show that

1

p∗
m−|α1|−1

+
∑

i∈I2\{1}

1

p∗
m−|αi|

≤ 1

q
, if 1 ∈ I2,

1

p∗
m−|α1|−1

+
∑
i∈I2

1

p∗
m−|αi|

≤ 1

q
, if 1 ∈ I1 and

∣∣α1
∣∣ = h,∑

i∈I2

1

p∗
m−|αi|

<
1

q
, if 1 ∈ I1 and

∣∣α1
∣∣ ≤ h− 1

(2.29)

(see the proof of point (i), case 3, in [7]). Now, (2.26.1) is a direct conse-
quence of Proposition 2.1, formulas (2.21), (2.27), (2.28), (2.29) and of the
fact that Ω is bounded. Formulas (2.26.2), . . . , (2.26.k) can be proved in



On the continuity of superposition operators 469

the same way as (2.26.1). Consequently, formula (2.2) is proved in the case
|α| = l as well.

Formula (2.1) is now proved under the hypotheses of point (i), case 3.

Case 4. p = n
m−h , with n ≥ m− h and h ∈ {2, . . . , l − 1}.

We have 1 ≤ q ≤ p∗m−l < ∞. By Theorem 1.1(iii,v), we deduce that
Ng : Wm,p (Ω)→W 1,q (Ω) is continuous. Thus, ‖g ◦ uη − g ◦ u‖W 1,q(Ω) → 0,
i.e.

‖g ◦ uη − g ◦ u‖Lq(Ω) → 0,

‖∂j (g ◦ uη)− ∂j (g ◦ u)‖Lq(Ω) → 0, j = 1, . . . , n.

Consequently, formula (2.1) is proved for 0 ≤ |α| ≤ 1.

According to point (i), g ◦u and g ◦uη satisfy the higher-order chain rule
(1.2). Hence, in order to prove (2.1) for 2 ≤ |α| ≤ l, it suffices to prove (2.2)
for all α ∈ Nn with 2 ≤ |α| ≤ l, all k ∈ {1, . . . , s = |α|}, all α1, . . . , αk ∈ Nn
with

∣∣αi∣∣ 6= 0 and α1 + . . .+αk = α. To this end, we use Theorem 1.1(iii,v)
and Proposition 2.1.

Firstly, we fix α ∈ Nn with 2 ≤ |α| = s ≤ l− 1, we fix k ∈ {1, . . . , s} and
we fix α1, . . . , αk ∈ Nn with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α.

As in the proof of point (i), case 4 (see [7]) denote

I1 =
{
i ∈ {1, . . . , k} : 1 ≤

∣∣αi∣∣ < h
}
,

I2 =
{
i ∈ {1, . . . , k} :

∣∣αi∣∣ = h
}
,

I3 =
{
i ∈ {1, . . . , k} : h <

∣∣αi∣∣ ≤ s} .
We have (

m−
∣∣αi∣∣) p > n if i ∈ I1,(

m−
∣∣αi∣∣) p = n if i ∈ I2,(

m−
∣∣αi∣∣) p < n if i ∈ I3,

whence we deduce the following Sobolev imbeddings

Wm−|αi|,p (Ω) ↪→ L∞ (Ω) if i ∈ I1,

Wm−|αi|,p (Ω) ↪→ Lr (Ω) for all 1 ≤ r <∞, if i ∈ I2,

Wm−|αi|,p (Ω) ↪→ L
p∗
m−|αi| (Ω) if i ∈ I3.

On the other hand, it follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥Dαiuη −Dαiu
∥∥∥
Wm−|αi|,p(Ω)

→ 0.
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Therefore ∥∥∥Dαiuη −Dαiu
∥∥∥
L∞(Ω)

→ 0 if i ∈ I1,∥∥∥Dαiuη −Dαiu
∥∥∥
Lr(Ω)

→ 0 for all 1 ≤ r <∞, if i ∈ I2,∥∥∥Dαiuη −Dαiu
∥∥∥
L
p∗
m−|αi| (Ω)

→ 0 if i ∈ I3.

(2.30)

By Theorem 1.1(iii,v), we infer that Ng(k) : Wm,p (Ω) → W 1,r (Ω) is

continuous for all 1 ≤ r < ∞. Thus,
∥∥g(k) ◦ uη − g(k) ◦ u

∥∥
W 1,r(Ω)

→ 0,

whence ∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, (2.31)

∥∥∥(g(k+1) ◦ uη
)
∂juη −

(
g(k+1) ◦ u

)
∂ju
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, j = 1, . . . , n.

(2.32)

It is not difficult to show that∑
i∈I3

1

p∗
m−|αi|

<
1

q
(2.33)

(see the proof of point (i), case 4, in [7]). By using Proposition 2.1 and
formulas (2.30), (2.31), (2.33), we obtain the validity of formula (2.2) for
2 ≤ |α| ≤ l − 1.

It remains to be shown that (2.2) is valid in the case |α| = l as well.
We fix α ∈ Rn with |α| = l. There is β ∈ Rn and j ∈ {1, . . . , n} such that
|β| = l − 1 and Dα = ∂jD

β. According to point (i), we have

Dβ (g ◦ v) =

l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

(
g(k) ◦ v

)
Dα1

v . . .Dαkv

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

It follows that

Dα (g ◦ v) = ∂jD
β (g ◦ v)

=
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

[(
g(k+1) ◦ v

)
∂jvD

α1
v . . .Dαkv

+
(
g(k) ◦ v

)(
∂jD

α1
vDα2

v . . .Dαkv + . . .+Dα1
v . . .Dαk−1

v∂jD
αkv
)]

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .
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Hence, in order to prove (2.2) in the case |α| = l, it suffices to show that∥∥∥(g(k+1) ◦ uη
)
∂juηD

α1
uη . . . D

αkuη

−
(
g(k+1) ◦ u

)
∂juD

α1
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.34)

∥∥∥(g(k) ◦ uη
)
∂jD

α1
uηD

α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
∂jD

α1
uDα2

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0,
(2.35.1)

∥∥∥(g(k) ◦ uη
)
Dα1

uη∂jD
α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
Dα1

u∂jD
α2
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.35.2)

...∥∥∥(g(k) ◦ uη
)
Dα1

uη . . . D
αk−1

uη∂jD
αkuη

−
(
g(k) ◦ u

)
Dα1

u . . .Dαk−1
u∂jD

αku
∥∥∥
Lq(Ω)

→ 0,
(2.35.k)

for all k ∈ {1, . . . , l − 1} and all α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0 and α1 +

. . . + αk = β. Fix k ∈ {1, . . . , l − 1} and fix α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0

and α1 + . . .+ αk = β.
Formula (2.34) is a direct consequence of Proposition 2.1 and formulas

(2.30), (2.32), (2.33).
It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥∂jDα1

uη − ∂jDα1
u
∥∥∥
Wm−|α1|−1,p(Ω)

→ 0.

On the other hand, since p = n
m−h , we have the Sobolev imbeddings

Wm−|α1|−1,p (Ω) ↪→ L
p∗
m−|α1|−1 (Ω) if 1 ∈ I3,

Wm−|α1|−1,p (Ω) ↪→ L
p∗
m−|α1|−1 (Ω) if 1 ∈ I2,

Wm−|α1|−1,p (Ω) ↪→ Lr (Ω) for all 1 ≤ r <∞, if 1 ∈ I1 and
∣∣α1
∣∣ = h− 1,

Wm−|α1|−1,p (Ω) ↪→ L∞ (Ω) if 1 ∈ I1 and
∣∣α1
∣∣ ≤ h− 2.

Therefore, ∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L
p∗
m−|α1|−1 (Ω)

→ 0 if 1 ∈ I3,∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L
p∗
m−|α1|−1 (Ω)

→ 0 if 1 ∈ I2,∥∥∥∂jDα1
uη−∂jDα1

u
∥∥∥
Lr(Ω)

→ 0 for all 1 ≤ r <∞, if 1 ∈ I1 and
∣∣α1
∣∣=h−1,∥∥∥∂jDα1

uη − ∂jDα1
u
∥∥∥
L∞(Ω)

→ 0 if 1 ∈ I1 and
∣∣α1
∣∣ ≤ h− 2.

(2.36)
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According to the above, since 1 ≤ k ≤ l − 1, we have∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
W 1,r(Ω)

→ 0 for all 1 ≤ r <∞.

On the other hand, the Sobolev imbedding

W 1,r (Ω) ↪→ L∞ (Ω) ,

is valid for all n < r <∞. Consequently,∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
L∞(Ω)

→ 0. (2.37)

It is not difficult to show that

1

p∗
m−|α1|−1

+
∑

i∈I3\{1}

1

p∗
m−|αi|

≤ 1

q
if 1 ∈ I3 and I2 = φ,

1

p∗
m−|α1|−1

+
∑

i∈I3\{1}

1

p∗
m−|αi|

<
1

q
if 1 ∈ I3 and I2 6= φ,

1

p∗
m−|α1|−1

+
∑
i∈I3

1

p∗
m−|αi|

≤ 1

q
if 1 ∈ I2 = {1} ,

1

p∗
m−|α1|−1

+
∑
i∈I3

1

p∗
m−|αi|

<
1

q
if 1 ∈ I2 ! {1} ,∑

i∈I3

1

p∗
m−|αi|

<
1

q
if 1 ∈ I1

(2.38)

(see the proof of point (i), case 4, in [7]). Now, (2.35.1) is a direct conse-
quence of Proposition 2.1, formulas (2.30), (2.36), (2.37), (2.38) and of the
fact that Ω is bounded. Formulas (2.35.2), . . . , (2.35.k) can be proved in
the same way as (2.35.1). Consequently, formula (2.2) is proved in the case
|α| = l as well.

Formula (2.1) is now proved under the hypotheses of point (i), case 4.
Next, we prove (2.1) under the hypotheses of point (ii), namely p =

n
m−l , with m ≥ l + 1 and n ≥ m − l, and 1 ≤ q < ∞. By Theorem

1.1(ii,iii,v), we deduce that Ng : Wm,p (Ω)→ W 1,q (Ω) is continuous. Thus,
‖g ◦ uη − g ◦ u‖W 1,q(Ω) → 0, i.e.

‖g ◦ uη − g ◦ u‖Lq(Ω) → 0,

‖∂j (g ◦ uη)− ∂j (g ◦ u)‖Lq(Ω) → 0, j = 1, . . . , n.

Consequently, formula (2.1) is proved for 0 ≤ |α| ≤ 1.
According to point (ii), g◦u and g◦uη satisfy the higher-order chain rule

(1.2). Hence, in order to prove (2.1) for 2 ≤ |α| ≤ l, it suffices to prove (2.2)
for all α ∈ Nn with 2 ≤ |α| ≤ l, all k ∈ {1, . . . , s = |α|}, all α1, . . . , αk ∈ Nn
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with
∣∣αi∣∣ 6= 0 and α1 + . . .+αk = α. To this end, we use Theorem 1.1(ii,iii,v)

and Proposition 2.1.

Firstly, we fix α ∈ Nn with 2 ≤ |α| = s ≤ l− 1, we fix k ∈ {1, . . . , s} and
we fix α1, . . . , αk ∈ Nn with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α.

As in the proof of point (ii) (see [7]) denote

I1 =
{
i ∈ {1, . . . , k} : 1 ≤

∣∣αi∣∣ ≤ l − 2
}
,

I2 =
{
i ∈ {1, . . . , k} :

∣∣αi∣∣ = l − 1
}
.

Since (
m−

∣∣αi∣∣) p ≥ (m− s) p > (m− l) p = n,

the following Sobolev imbedding holds

Wm−|αi|,p (Ω) ↪→ L∞ (Ω) .

On the other hand, it follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥Dαiuη −Dαiu
∥∥∥
Wm−|αi|,p(Ω)

→ 0.

Therefore ∥∥∥Dαiuη −Dαiu
∥∥∥
L∞(Ω)

→ 0. (2.39)

By Theorem 1.1(ii,iii,v), we infer that Ng(k) : Wm,p (Ω) → W 1,r (Ω) is

continuous for all 1 ≤ r < ∞. Thus,
∥∥g(k) ◦ uη − g(k) ◦ u

∥∥
W 1,r(Ω)

→ 0,

whence ∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, (2.40)

∥∥∥(g(k+1) ◦ uη
)
∂juη −

(
g(k+1) ◦ u

)
∂ju
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, j = 1, . . . , n.

(2.41)

By using Proposition 2.1 and formulas (2.39), (2.40), we obtain the va-
lidity of formula (2.2) for 2 ≤ |α| ≤ l − 1.

It remains to be shown that (2.2) is valid in the case |α| = l as well.
We fix α ∈ Rn with |α| = l. There is β ∈ Rn and j ∈ {1, . . . , n} such that
|β| = l − 1 and Dα = ∂jD

β. According to point (ii), we have

Dβ (g ◦ v) =
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

(
g(k) ◦ v

)
Dα1

v . . .Dαkv

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .
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It follows that

Dα (g ◦ v) = ∂jD
β (g ◦ v)

=

l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

[(
g(k+1) ◦ v

)
∂jvD

α1
v . . .Dαkv

+
(
g(k) ◦ v

)(
∂jD

α1
vDα2

v . . .Dαkv + . . .+Dα1
v . . .Dαk−1

v∂jD
αkv
)]

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

Hence, in order to prove (2.2) in the case |α| = l, it suffices to show that∥∥∥(g(k+1) ◦ uη
)
∂juηD

α1
uη . . . D

αkuη

−
(
g(k+1) ◦ u

)
∂juD

α1
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.42)

∥∥∥(g(k) ◦ uη
)
∂jD

α1
uηD

α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
∂jD

α1
uDα2

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0,
(2.43.1)

∥∥∥(g(k) ◦ uη
)
Dα1

uη∂jD
α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
Dα1

u∂jD
α2
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.43.2)

...∥∥∥(g(k) ◦ uη
)
Dα1

uη . . . D
αk−1

uη∂jD
αkuη

−
(
g(k) ◦ u

)
Dα1

u . . .Dαk−1
u∂jD

αku
∥∥∥
Lq(Ω)

→ 0,
(2.43.k)

for all k ∈ {1, . . . , l − 1} and all α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0 and α1 +

. . . + αk = β. Fix k ∈ {1, . . . , l − 1} and fix α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0

and α1 + . . .+ αk = β.

Formula (2.42) is a direct consequence of Proposition 2.1 and formulas
(2.39), (2.41).

It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
Wm−|α1|−1,p(Ω)

→ 0.

On the other hand, since p = n
m−l , we have the Sobolev imbeddings

Wm−|α1|−1,p (Ω) ↪→ L∞ (Ω) if 1 ∈ I1,

Wm−|α1|−1,p (Ω) ↪→ Lr (Ω) for all 1 ≤ r <∞, if 1 ∈ I2
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Therefore, ∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L∞(Ω)

→ 0 if 1 ∈ I1,∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
Lr(Ω)

→ 0 for all 1 ≤ r <∞, if 1 ∈ I2.
(2.44)

According to the above, since 1 ≤ k ≤ l − 1, we have∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
W 1,r(Ω)

→ 0 for all 1 ≤ r <∞.

On the other hand, the Sobolev imbedding

W 1,r (Ω) ↪→ L∞ (Ω) ,

is valid for all n < r <∞. Consequently,∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
L∞(Ω)

→ 0. (2.45)

Now, (2.43.1) is a direct consequence of Proposition 2.1, formulas (2.39),
(2.44), (2.45), and the fact that Ω is bounded. Formulas (2.43.2), . . . ,
(2.43.k) can be proved in the same way as (2.43.1). Consequently, formula
(2.2) is proved in the case |α| = l as well.

Formula (2.1) is now proved under the hypotheses of point (ii).

Finally, we prove (2.1) under the hypotheses of point (iii), namely n
m−l <

p < ∞, with m ≥ l + 1 (1 ≤ p < ∞ when n ≤ m − l), and 1 ≤ q < ∞. By
Theorem 1.1(iii,v), we deduce that Ng : Wm,p (Ω)→W 1,q (Ω) is continuous.
Thus, ‖g ◦ uη − g ◦ u‖W 1,q(Ω) → 0, i.e.

‖g ◦ uη − g ◦ u‖Lq(Ω) → 0,

‖∂j (g ◦ uη)− ∂j (g ◦ u)‖Lq(Ω) → 0, j = 1, . . . , n.

Consequently, formula (2.1) is proved for 0 ≤ |α| ≤ 1.

According to point (iii), g◦u and g◦uη satisfy the higher-order chain rule
(2.1). Hence, in order to prove (2.1) for 2 ≤ |α| ≤ l, it suffices to prove (2.2)
for all α ∈ Nn with 2 ≤ |α| ≤ l, all k ∈ {1, . . . , s = |α|}, all α1, . . . , αk ∈ Nn
with

∣∣αi∣∣ 6= 0 and α1 + . . .+αk = α. To this end, we use Theorem 1.1(iii,v)
and Proposition 2.1.

Firstly, we fix α ∈ Nn with 2 ≤ |α| = s ≤ l− 1, we fix k ∈ {1, . . . , s} and
we fix α1, . . . , αk ∈ Nn with

∣∣αi∣∣ 6= 0 and α1 + . . .+ αk = α.

It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥Dαiuη −Dαiu
∥∥∥
Wm−|αi|,p(Ω)

→ 0.
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On the other hand, since(
m−

∣∣αi∣∣) p ≥ (m− s) p > (m− l) p > n,

the following Sobolev imbedding holds

Wm−|αi|,p (Ω) ↪→ L∞ (Ω) .

Therefore ∥∥∥Dαiuη −Dαiu
∥∥∥
L∞(Ω)

→ 0. (2.46)

By Theorem 1.1(iii,v), we infer that Ng(k) : Wm,p (Ω) → W 1,r (Ω) is

continuous for all 1 ≤ r < ∞. Thus,
∥∥g(k) ◦ uη − g(k) ◦ u

∥∥
W 1,r(Ω)

→ 0,

whence ∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, (2.47)∥∥∥(g(k+1) ◦ uη
)
∂juη −

(
g(k+1) ◦ u

)
∂ju
∥∥∥
Lr(Ω)

→ 0, 1 ≤ r <∞, j = 1, . . . , n.

(2.48)
By using Proposition 2.1 and formulas (2.46), (2.47), we obtain the va-

lidity of formula (2.2) for 2 ≤ |α| ≤ l − 1.
It remains to be shown that (2.2) is valid in the case |α| = l as well.

We fix α ∈ Rn with |α| = l. There is β ∈ Rn and j ∈ {1, . . . , n} such that
|β| = l − 1 and Dα = ∂jD

β. According to point (iii), we have

Dβ (g ◦ v) =

l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

(
g(k) ◦ v

)
Dα1

v . . .Dαkv

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

It follows that

Dα (g ◦ v) = ∂jD
β (g ◦ v)

=
l−1∑
k=1

∑
α1+...+αk=β

|αi|6=0

cβ,k,α1,...,αk

[(
g(k+1) ◦ v

)
∂jvD

α1
v . . .Dαkv

+
(
g(k) ◦ v

)(
∂jD

α1
vDα2

v . . .Dαkv + . . .+Dα1
v . . .Dαk−1

v∂jD
αkv
)]

Ln-a.e. in Ω, for all v ∈Wm,p (Ω) .

Hence, in order to prove (2.2) in the case |α| = l, it suffices to show that∥∥∥(g(k+1) ◦ uη
)
∂juηD

α1
uη . . . D

αkuη

−
(
g(k+1) ◦ u

)
∂juD

α1
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.49)
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)
∂jD

α1
uηD

α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
∂jD

α1
uDα2

u . . .Dαku
∥∥∥
Lq(Ω)

→ 0,
(2.50.1)

∥∥∥(g(k) ◦ uη
)
Dα1

uη∂jD
α2
uη . . . D

αkuη

−
(
g(k) ◦ u

)
Dα1

u∂jD
α2
u . . .Dαku

∥∥∥
Lq(Ω)

→ 0,
(2.50.2)

...∥∥∥(g(k) ◦ uη
)
Dα1

uη . . . D
αk−1

uη∂jD
αkuη

−
(
g(k) ◦ u

)
Dα1

u . . .Dαk−1
u∂jD

αku
∥∥∥
Lq(Ω)

→ 0,
(2.50.k)

for all k ∈ {1, . . . , l − 1} and all α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0 and α1 +

. . . + αk = β. Fix k ∈ {1, . . . , l − 1} and fix α1, . . . , αk ∈ Nn with
∣∣αi∣∣ 6= 0

and α1 + . . .+ αk = β.
Formula (2.49) is a direct consequence of Proposition 2.1 and formulas

(2.46), (2.48).
It follows from ‖uη − u‖Wm,p(Ω) → 0 that∥∥∥∂jDα1

uη − ∂jDα1
u
∥∥∥
Wm−|α1|−1,p(Ω)

→ 0.

On the other hand, since p > n
m−l , we have the Sobolev imbedding

Wm−|α1|−1,p (Ω) ↪→ L∞ (Ω) if 1 ∈ I1.

Therefore, ∥∥∥∂jDα1
uη − ∂jDα1

u
∥∥∥
L∞(Ω)

→ 0. (2.51)

According to the above, since 1 ≤ k ≤ l − 1, we have∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
W 1,r(Ω)

→ 0 for all 1 ≤ r <∞.

On the other hand, the Sobolev imbedding

W 1,r (Ω) ↪→ L∞ (Ω) ,

is valid for all n < r <∞. Consequently,∥∥∥g(k) ◦ uη − g(k) ◦ u
∥∥∥
L∞(Ω)

→ 0. (2.52)

Now, (2.50.1) is a direct consequence of Proposition 2.1, formulas (2.46),
(2.51), (2.52) and of the fact that Ω is bounded. Formulas (2.50.2), . . . ,
(2.50.k) can be proved in the same way as (2.50.1). Consequently, formula
(2.2) is proved in the case |α| = l as well.

Formula (2.1) is now proved under the hypotheses of point (iii).
Theorem 1.2 is completely proved. 2
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