On a fractional differential inclusion arising from real estate asset securitization and HIV models

Aurelian Cernea

Communicated by George Dinca

Abstract

We study a class of fractional differential inclusion arising from real estate asset securitization and HIV models and we establish a Filippov type existence result in the case of nonconvex set-valued maps.

Key words and phrases : differential inclusion, fractional derivative, boundary value problem.

Mathematics Subject Classification (2010) : 34A60, 34A08.

1. Introduction

In this note we study the following problem

$$
\begin{align*}
& -D^{\alpha} x(t) \in F\left(t, x(t),-D^{\beta} x(t)\right) \quad \text { a.e. }([0,1]), \\
& D^{\beta} x(0)=D^{\beta+1} x(0)=0, \quad D^{\beta} x(1)=\int_{0}^{1} D^{\beta} x(s) d A(s), \tag{1.1}
\end{align*}
$$

D^{α} is the standard Riemann-Liouville fractional derivative, $\beta \in(0,1), \alpha \in$ $(2,3], \alpha-\beta>1, F:[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a set-valued map, $A($.$) is$ a function of bounded variation and $\int_{0}^{1} D^{\beta} x(s) d A(s)$ denotes the RiemannStieltjes integral.

The present note is motivated by a recent paper of Ahmad and Ntouyas ([1]) where existence results for problem (1.1) are established for convex as well as nonconvex set-valued maps. The existence results in [1] are based on a nonlinear alternative of Leray-Schauder type and some suitable theorems of fixed point theory. For the motivation, examples and a consistent bibliography on fractional differential equations and inclusions we refer to [1] and the references therein. We mention, only, that in [5] the authors discussed the existence and uniqueness of solutions for problem (1.1) with F single valued which represents a model for a problem arising from real estate asset securitization. On the other hand, motivated by a model of HIV infection Yang [6] considered the existence of nontrivial solutions for the fractional differential system

$$
\begin{aligned}
& -D^{\alpha} x(t)=\lambda f\left(t, x(t),-D^{\beta} x(t), y(t)\right) \quad-D^{\gamma} y(t)=g(t, x(t)) \quad t \in(0,1), \\
& D^{\beta} x(0)=0, D^{\beta} x(1)=\int_{0}^{1} D^{\beta} x(s) d A(s), y(0)=0, y(1)=\int_{0}^{1} y(s) d B(s),
\end{aligned}
$$

with $\lambda \in \mathbb{R}, 1<\gamma<\alpha \leq 2,1<\alpha-\beta<\gamma, 0<\beta-1$ and $A(),. B($.$) are$ functions of bounded variation.

The aim of this note is to show that Filippov's ideas ([3]) can be suitably adapted in order to obtain the existence of solutions for problem (1.1). Recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem ([3]) consists in proving the existence of a solution starting from a given "quasi" solution. Moreover, the result provides an estimate between the "quasi" solution and the solution obtained. In this way we improve an existence result for problem (1.1) in [1].

The paper is organized as follows: in Section 2 we recall some preliminary results that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$
d_{H}(A, B)=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}, d^{*}(A, B)=\sup \{d(a, B) ; a \in A\}
$$

where $d(x, B)=\inf _{y \in B} d(x, y)$.
Let $I=[0,1]$, we denote by $C(I, \mathbb{R})$ the Banach space of all continuous functions from I to \mathbb{R} with the norm $\|x(.)\|_{C}=\sup _{t \in I}|x(t)|$ and $L^{1}(I, \mathbb{R})$ is the Banach space of integrable functions $u():. I \rightarrow \mathbb{R}$ endowed with the norm $\|u(.)\|_{1}=\int_{0}^{1}|u(t)| d t$.

The fractional integral of order $\alpha>0$ of a Lebesgue integrable function $f:(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
I^{\alpha} f(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) d s
$$

provided the right-hand side is pointwise defined on $(0, \infty)$ and Γ is the (Euler's) Gamma function defined by $\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$.

The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $f:(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-s)^{-\alpha+n-1} f(s) d s
$$

where $n=[\alpha]+1$, provided the right-hand side is pointwise defined on $(0, \infty)$.

As it is pointed out in [1], taking $x(t)=I^{\beta} y(t), t \in I$ with $y(.) \in C(I, \mathbb{R})$, the boundary value problem (1.1) is equivalent with the following problem

$$
\begin{align*}
& -D^{\alpha-\beta} y(t) \in F\left(t, I^{\beta} y(t),-y(t)\right) \quad \text { a.e. }([0,1]), \\
& y(0)=y^{\prime}(0)=0, \quad y(1)=\int_{0}^{1} y(s) d A(s), \tag{2.1}
\end{align*}
$$

Lemma 2.1. (see [1]) For a given $f(.) \in L^{1}(I, \mathbb{R})$, the unique solution $x($. of problem

$$
\begin{aligned}
& D^{\alpha-\beta} x(t)+f(t)=0 \quad \text { a.e. }([0, T]) \\
& y(0)=y^{\prime}(0)=0, \quad y(1)=\int_{0}^{1} y(s) d A(s)
\end{aligned}
$$

is given by

$$
x(t)=\int_{0}^{1} G(t, s) f(s) d s
$$

where $G(.,$.$) is the Green function defined by$
$G(t, s):=\frac{1}{\Gamma(\alpha-\beta)}\left\{\begin{array}{l}{[t(1-s)]^{\alpha-\beta-1}, \quad \text { if } \quad 0 \leq t<s \leq 1,} \\ {[t(1-s)]^{\alpha-\beta-1}-(t-s)^{\alpha-\beta-1}, \quad \text { if } \quad 0 \leq s<t \leq 1 .}\end{array}\right.$
By Lemma 2.1 the unique solution of the problem

$$
D^{\alpha} x(t)=0, \quad x(0)=x^{\prime}(0)=0 \quad x(1)=1
$$

is $t^{\alpha-\beta-1}$. Let $c=\int_{0}^{1} t^{\alpha-\beta-1} d A(t)$ and $G_{A}(s)=\int_{0}^{1} G(t, s) d A(t)$. It follows (e.g., [7]) that the Green function of the boundary value problem (2.1) is

$$
H(t, s)=\frac{t^{\alpha-\beta-1}}{1-c} G_{A}(s)+G(t, s)
$$

Hypothesis 2.2. $A($.$) is an increasing function of bounded variation such$ that $G_{A}(s) \geq 0 \forall s \in[0,1]$ and $0 \leq c<1$.

Lemma 2.3. (see [8]) Let $1<\alpha-\beta \leq 2$ and let Hypothesis 2.2 be satisfied. Then

$$
0 \leq H(t, s) \leq \frac{1}{(1-c) \Gamma(\alpha-\beta-1)}=: M_{1}
$$

3. The main result

First we recall a selection result ([2]) which is a version of the celebrated Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in $X, H: I \rightarrow \mathcal{P}(X)$ is a set-valued map with nonempty closed values and $g: I \rightarrow X, L: I \rightarrow \mathbb{R}_{+}$are measurable functions. If

$$
H(t) \cap(g(t)+L(t) B) \neq \emptyset \quad \text { a.e. }(I)
$$

then the set-valued map $t \rightarrow H(t) \cap(g(t)+L(t) B)$ has a measurable selection.
In order to prove our results we need the following hypotheses.
Hypothesis 3.2. i) $F(.,):. I \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ has nonempty closed values and is $\mathcal{L}(I) \otimes \mathcal{B}(\mathbb{R} \times \mathbb{R})$ measurable.
ii) There exists $L(.) \in L^{1}(I,(0, \infty))$ such that, for almost all $t \in I$, $F(t, .,$.$) is L(t)$-Lipschitz in the sense that
$d_{H}\left(F\left(t, x_{1}, y_{1}\right), F\left(t, x_{2}, y_{2}\right)\right) \leq L(t)\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right) \forall x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$.

We use next the following notations

$$
\begin{gather*}
M(t):=L(t)\left(1+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} d s\right)=L(t)\left(1+\frac{t^{\beta}}{\Gamma(\beta+1)}\right), \quad t \in I \tag{3.1}\\
M_{0}=\int_{0}^{1} M(t) d t . \tag{3.2}
\end{gather*}
$$

Theorem 3.3. Assume that Hypothesis 2.2 and Hypothesis 3.2 are satisfied and $M_{1} M_{0}<1$. Let $y(.) \in C(I, \mathbb{R})$ be such that $y(0)=y^{\prime}(0)=0, y(1)=$ $\int_{0}^{1} y(s) d A(s)$ and there exists $p(.) \in L^{1}\left(I, \mathbb{R}_{+}\right)$verifying $d\left(-D^{\alpha-\beta} y(t), F(t\right.$, $\left.\left.I^{\beta} y(t),-y(t)\right)\right) \leq p(t)$ a.e. (I).

Then there exists $x($.$) a solution of problem (2.1) satisfying for all t \in I$

$$
\begin{equation*}
|x(t)-y(t)| \leq \frac{M_{1}}{1-M_{1} M_{0}} \int_{0}^{1} p(t) d t \tag{3.3}
\end{equation*}
$$

Proof. The set-valued map $t \rightarrow F\left(t, I^{\beta} y(t),-y(t)\right)$ is measurable with closed values and

$$
F\left(t, I^{\beta} y(t),-y(t)\right) \cap\left\{-D^{\alpha-\beta} y(t)+p(t)[-1,1]\right\} \neq \emptyset \quad \text { a.e. }(I) .
$$

It follows from Lemma 3.1 that there exists a measurable selection $f_{1}(t) \in$ $F\left(t, I^{\beta} y(t),-y(t)\right)$ a.e. (I) such that

$$
\begin{equation*}
\left|f_{1}(t)+D^{\alpha-\beta} y(t)\right| \leq p(t) \quad \text { a.e. }(I) \tag{3.4}
\end{equation*}
$$

Define $x_{1}(t)=\int_{0}^{1} H(t, s) f_{1}(s) d s$ and one has

$$
\left|x_{1}(t)-y(t)\right| \leq M_{1} \int_{0}^{1} p(t) d t
$$

We claim that it is enough to construct the sequences $x_{n}(.) \in C(I, \mathbb{R})$, $f_{n}(.) \in L^{1}(I, \mathbb{R}), n \geq 1$ with the following properties

$$
\begin{gather*}
x_{n}(t)=\int_{0}^{1} H(t, s) f_{n}(s) d s, \quad t \in I \tag{3.5}\\
f_{n}(t) \in F\left(t, I^{\beta} x_{n-1}(t),-x_{n-1}(t)\right) \quad \text { a.e. }(I) \tag{3.6}\\
\left|f_{n+1}(t)-f_{n}(t)\right| \leq L(t)\left(\left|x_{n}(t)-x_{n-1}(t)\right|+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)}\left|x_{n}(s)-x_{n-1}(s)\right| d s\right) \tag{3.7}
\end{gather*}
$$

for almost all $t \in I$.
If this construction is realized then from (3.4)-(3.7) we have for almost all $t \in I$

$$
\left|x_{n+1}(t)-x_{n}(t)\right| \leq M_{1}\left(M_{1} M_{0}\right)^{n} \int_{0}^{1} p(t) d t \quad \forall n \in \mathbb{N}
$$

Indeed, assume that the last inequality is true for $n-1$ and we prove it for n. One has

$$
\begin{gathered}
\left|x_{n+1}(t)-x_{n}(t)\right| \leq \int_{0}^{1}\left|H\left(t, t_{1}\right)\right| \cdot\left|f_{n+1}\left(t_{1}\right)-f_{n}\left(t_{1}\right)\right| d t_{1} \leq \\
M_{1} \int_{0}^{1} L\left(t_{1}\right)\left[\left|x_{n}\left(t_{1}\right)-x_{n-1}\left(t_{1}\right)\right|+\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\beta-1}}{\Gamma(\beta)}\left|x_{n}(s)-x_{n-1}(s)\right| d s\right] d t_{1} \leq \\
M_{1} \int_{0}^{1} L\left(t_{1}\right)\left(1+\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\beta-1}}{\Gamma(\beta)} d s\right) d t_{1} \cdot M_{1}^{n} M_{0}^{n-1} \int_{0}^{1} p(t) d t= \\
=M_{1}\left(M_{1} M_{0}\right)^{n} \int_{0}^{1} p(t) d t
\end{gathered}
$$

Therefore $\left\{x_{n}().\right\}$ is a Cauchy sequence in the Banach space $C(I, \mathbb{R})$, hence converging uniformly to some $x(.) \in C(I, \mathbb{R})$. Therefore, by (3.7), for almost all $t \in I$, the sequence $\left\{f_{n}(t)\right\}$ is Cauchy in \mathbb{R}. Let $f($.$) be the$ pointwise limit of $f_{n}($.$) .$

Moreover, one has

$$
\begin{align*}
& \left|x_{n}(t)-y(t)\right| \leq\left|x_{1}(t)-y(t)\right|+\sum_{i=1}^{n-1}\left|x_{i+1}(t)-x_{i}(t)\right| \leq \\
& M_{1} \int_{0}^{1} p(t) d t+\sum_{i=1}^{n-1}\left(M_{1} \int_{0}^{1} p(t) d t\right)\left(M_{1} M_{0}\right)^{i}=\frac{M_{1} \int_{0}^{1} p(t) d t}{1-M_{1} M_{0}} . \tag{3.8}
\end{align*}
$$

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all $t \in I$

$$
\begin{aligned}
& \left|f_{n}(t)+D^{\alpha-\beta} y(t)\right| \leq \sum_{i=1}^{n-1}\left|f_{i+1}(t)-f_{i}(t)\right|+ \\
& +\left|f_{1}(t)+D^{\alpha-\beta} y(t)\right| \leq L(t) \frac{M_{1} \int_{0}^{1} p(t) d t}{1-M_{1} M_{0}}+p(t) .
\end{aligned}
$$

Hence the sequence $f_{n}($.$) is integrably bounded and therefore f(.) \in$ $L^{1}(I, \mathbb{R})$.

Using Lebesgue's dominated convergence theorem and taking the limit in (3.5), (3.6) we deduce that $x($.$) is a solution of (2.1). Finally, passing to$ the limit in (3.8) we obtained the desired estimate on $x($.$) .$

It remains to construct the sequences $x_{n}(),. f_{n}($.$) with the properties in$ (3.5)-(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some $N \geq 1$ we already constructed $x_{n}(.) \in C(I, \mathbb{R})$ and $f_{n}(.) \in L^{1}(I, \mathbb{R}), n=1,2, \ldots N$ satisfying (3.5), (3.7) for $n=1,2, \ldots N$ and (3.6) for $n=1,2, \ldots N-1$. The set-valued map $t \rightarrow F\left(t, I^{\beta} x_{N}(t),-x_{N}(t)\right)$ is measurable. Moreover,
the map $t \rightarrow L(t)\left(\left|x_{N}(t)-x_{N-1}(t)\right|+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)}\left|x_{N}(s)-x_{N-1}(s)\right| d s\right)$ is measurable. By the lipschitzianity of $F(t,$.$) we have that for almost all$ $t \in I$

$$
\begin{aligned}
& F\left(t, I^{\beta} x_{N}(t),-x_{N}(t)\right) \cap\left\{f_{N}(t)+L(t)\left(\left|x_{N}(t)-x_{N-1}(t)\right|+\right.\right. \\
& \left.\left.\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)}\left|x_{N}(s)-x_{N-1}(s)\right| d s\right)[-1,1]\right\} \neq \emptyset
\end{aligned}
$$

Lemma 3.1 yields that there exists a measurable selection $f_{N+1}($.$) of F(.$, $\left.I^{\beta} x_{N}(),.-x_{N}().\right)$ such that

$$
\begin{aligned}
& \left|f_{N+1}(t)-f_{N}(t)\right| \leq L(t)\left(\left|x_{N}(t)-x_{N-1}(t)\right|+\right. \\
& \left.\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)}\left|x_{N}(s)-x_{N-1}(s)\right| d s\right) \quad \text { a.e. }(I)
\end{aligned}
$$

We define $x_{N+1}($.$) as in (3.5) with n=N+1$. Thus $f_{N+1}($.$) satisfies$ (3.6) and (3.7) and the proof is complete.

The assumption in Theorem 3.3 is satisfied, in particular, for $y()=$. and therefore with $p()=.L($.$) . We obtain the following consequence of$ Theorem 3.3.

Corollary 3.4. Assume that Hypothesis 2.2 and Hypothesis 3.2 are satisfied, $d\left(0, F(t, 0,0) \leq L(t)\right.$ a.e. (I) and $M_{1} M_{0}<1$. Then there exists $x() a$. solution of problem (2.1) satisfying for all $t \in I$

$$
\begin{equation*}
|x(t)| \leq \frac{M_{1}}{1-M_{1} M_{0}} \int_{0}^{1} p(t) d t \tag{3.9}
\end{equation*}
$$

Remark 3.5. In [1], Theorem 3.5 it is proved that if Hypothesis 2.2 and Hypothesis 3.2 are satisfied, $d(0, F(t, 0,0) \leq L(t)$ a.e. $(I), F(.,$.$) has com-$ pact values and $M_{1}\left(1+\frac{1}{\Gamma(\beta+1)}\right) \int_{0}^{1} L(t) d t<1$ then problem (2.1) has at least one solution.

Obviously, our Corollary 3.4 improves Theorem 3.5 in [1]. On one hand, we do not require that the values of $F(.,$.$) are compact; on the other hand$

$$
M_{0}=\int_{0}^{1} M(t) d t=\int_{0}^{1} L(t)\left(1+\frac{t^{\beta}}{\Gamma(\beta+1)}\right) d t<\left(1+\frac{1}{\Gamma(\beta+1)}\right) \int_{0}^{1} L(t) d t
$$

At the same time, the approach in [1] does not provides a priori bounds as in (3.9).

References

[1] B. Ahmad and S.K. Ntouyas, Existence results for fractional differential inclusions arising from real estate asset securitization and HIV models, Adv. Difference Equations, 2013, No. 216, 2013.
[2] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser, Basel, 1990.
[3] A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control, 5 (1967), 609-621.
[4] A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[5] H. Tao, M. Fu and R. Qian, Positive solutions for fractional differential equations from real estate asset securitization via new fixed point theorem, Abstract Appl. Anal., ID 842358, 2012.
[6] G. Yang, Nontrivial solution of fractional differential systems involving RiemannStieltjes integral conditions, Abstract Appl. Anal., ID 719192, 2012.
[7] X. Zhang and L. Liu, Positive solutions of superlinear semipositone singular Dirichlet boundary value problems, J. Math. Anal. Appl., 316 (2006), 525-537.
[8] Y. Wang, L. Liu and Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal., 74 (2011), 3599-3605.

Aurelian Cernea
Faculty of Mathematics and Computer Science, University of Bucharest
Academiei 14, 010014 Bucharest, Romania
E-mail: acernea@fmi.unibuc.ro

