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1. Introduction

In this note we study the following problem

—D%x(t) € F(t,z(t),—DPz(t)) a.e. ([0,1]),

DPx(0) = DFH1a(0) = 0, DB(1) = [ DPu(s)dA(s), (11)

D“ is the standard Riemann-Liouville fractional derivative, 8 € (0,1), a €
(2,3, a—p >1, F:[0,1] x R xR — P(R) is a set-valued map, A(.) is
a function of bounded variation and fol DPx(s)dA(s) denotes the Riemann-
Stieltjes integral.

The present note is motivated by a recent paper of Ahmad and Ntouyas
([1]) where existence results for problem (1.1) are established for convex as
well as nonconvex set-valued maps. The existence results in [1] are based on
a nonlinear alternative of Leray-Schauder type and some suitable theorems
of fixed point theory. For the motivation, examples and a consistent bibliog-
raphy on fractional differential equations and inclusions we refer to [1] and
the references therein. We mention, only, that in [5] the authors discussed
the existence and uniqueness of solutions for problem (1.1) with F single
valued which represents a model for a problem arising from real estate asset
securitization. On the other hand, motivated by a model of HIV infection
Yang [6] considered the existence of nontrivial solutions for the fractional
differential system

—D%x(t) = Af(t,x(t), —DPx(t),y(t)) — DVy(t) =g(t,x(t)) te(0,1),
DPz(0) =0, DPx(1) = [ DPa(s)dA(s), y(0) = 0, y(1) = [} y(s)dB(s),
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with AeR I1<y<a<21<a-8<7v 0<p—-1and A(.),B(.) are
functions of bounded variation.

The aim of this note is to show that Filippov’s ideas ([3]) can be suitably
adapted in order to obtain the existence of solutions for problem (1.1). Recall
that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem ([3]) consists in proving the existence
of a solution starting from a given ”quasi” solution. Moreover, the result
provides an estimate between the ”quasi” solution and the solution obtained.
In this way we improve an existence result for problem (1.1) in [1].

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance
of the closed subsets A, B C X is defined by

di(A, B) = max{d*(A, B),d"(B, A)}, d*(A, B) = sup{d(a, B);a € A},

where d(x, B) = infycp d(x,y).

Let I = [0,1], we denote by C(I,R) the Banach space of all continuous
functions from I to R with the norm ||z(.)||c = sup,c;|z(t)| and L'(I,R)
is the Banach space of integrable functions u(.) : I — R endowed with the
norm [[u(.)||1 = fy |u(t)|dt.

The fractional integral of order o > 0 of a Lebesgue integrable function
f:(0,00) — R is defined by

t (t _ S)Oé*l
TCf(t :/ ————f(s)ds,
0= [ 1)
provided the right-hand side is pointwise defined on (0,00) and I' is the
(Euler’s) Gamma function defined by T'(a) = [;* t* e "dt.
The Riemann-Liouville fractional derivative of order a > 0 of a contin-
uous function f : (0,00) — R is defined by

1 dar

PO = v gy

/ (t— )" f(s)ds,
0

where n = [a] + 1, provided the right-hand side is pointwise defined on
(0, 00).

As it is pointed out in [1], taking (t) = I®y(t), t € I with y(.) € C(I,R),
the boundary value problem (1.1) is equivalent with the following problem

=D Py(t) € F(t, Iy(t), —y(t)) a-e. ((0,1)),

y(0) =/(0) =0, (1) = [Ly(s)dA(s), 1)
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Lemma 2.1. (see [1]) For a given f(.) € L*(I,R), the unique solution x(.)

of problem
D By(t) + f(t) =0 a.e. ([0,T]),

y(0) =y (0) =0, y(1)= [y y(s)dA(s),
s given by
1
o) = [ Gt 1)
0
where G(.,.) is the Green function defined by

1 t(1—s)]* Pl if 0<t<s<lI,
Glt,s) = {H L St<ss

T(a—B) | [t(1—s)]® —(t—s)* P71 if 0<s<t<l.

By Lemma 2.1 the unique solution of the problem

is 12 A1 Let ¢ = fol t*=P=LdA(t) and G4(s) = fol G(t,s)dA(t). It follows
(e.g., [7]) that the Green function of the boundary value problem (2.1) is

toz—ﬁ—l
1-c

H(t,s) = Ga(s) +G(t,s).

Hypothesis 2.2. A(.) is an increasing function of bounded variation such
that Ga(s) >0Vs e [0,1] and 0 <c < 1.

Lemma 2.3. (see [8]) Let 1 < a— 3 < 2 and let Hypothesis 2.2 be satisfied.

Then ]
OSH(t,S) S (1—C)F(a—ﬂ—1) = Ml.

3. The main result

First we recall a selection result ([2]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit
ball in X, H : I — P(X) is a set-valued map with nonempty closed values
and g: I — X,L: I — R, are measurable functions. If

Ht)N(gt)+ L{t)B) #0 a.e(I),

then the set-valued map t — H(t)N(g(t)+L(t)B) has a measurable selection.
In order to prove our results we need the following hypotheses.

Hypothesis 3.2. i) F(.,.): I x R xR — P(R) has nonempty closed values
and is L(I) ® B(R x R) measurable.
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ii) There exists L(.) € LY(I,(0,00)) such that, for almost all t € I,
F(t,.,.) is L(t)-Lipschitz in the sense that

dH(F(tvxlvyl)aF(t>$27y2)) < L(t)(|l‘1 - IL‘2| + |y1 - y2|) v T1,22,Y1,Y2 € R.

We use next the following notations

T Lo - v

m), tel, (3.1)

M(t) = L(t)(1+/0 W

My = /0 1 M(¢)dt. (3.2)

Theorem 3.3. Assume that Hypothesis 2.2 and Hypothesis 3.2 are satisfied
and MMy < 1. Let y(.) € C(I,R) be such that y(0) = 3/'(0) = 0, y(1) =
fol y(s)dA(s) and there exists p(.) € L'(I,Ry) verifying d(—D*Py(t), F(t,
1Py(t), (1)) < plt) ace. (D).

Then there exists x(.) a solution of problem (2.1) satisfying for all t € I

1
o) =] < =3 | PO (5.3

Proof. The set-valued map t — F(t,I%y(t), —y(t)) is measurable with
closed values and

F(t, 1%(t), —y (1) N {=D*Fy(t) + p() [ -1, 1]} # 0 a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection fi(t) €
F(t, I%y(t), —y(t)) a.e. (I) such that

|f1(t) + D Py() < p(t) ae. (1) (3-4)

Define z1(t) = fol H(t,s)fi(s)ds and one has

1
1 (8) — y(8)] < M,y /0 p(t)dt.

We claim that it is enough to construct the sequences z,(.) € C(I,R),
fn(.) € LY(I,R), n > 1 with the following properties

1
T (t) :/0 H(t,s)fn(s)ds, tel, (3.5)

fn(t) € F(t, Iﬁzvn,l(t), —zp—1(t)) a.e.(I), (3.6)

t — s B—1
[fr1 () = fu(t)] < L(t)(lxn(t)xnl(t)H/O (t=s)""

T03) |n(s) = 2n-1(s)|ds)

(3.7)
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for almost all ¢ € I.
If this construction is realized then from (3.4)-(3.7) we have for almost
allt e’

1
mwgw—%ungMﬂMm%wAgmmtvneN

Indeed, assume that the last inequality is true for n — 1 and we prove it
for n. One has

1
i1 (1) — 2n(t)] < /0 (6 00) ] faga (B1) — fultr)ldty <

1 t1 _ g)8—
My [ Litllan(n) = o)l + “lr(ﬁ))lm(s) — 1 (5)|dsldty <
! h (tl — S)B_l nan—1 ! _
MA““”%FWM%MMOAMW“
1
:Ml(MlMg) /0 p(t)dt

Therefore {x,(.)} is a Cauchy sequence in the Banach space C(I,R),
hence converging uniformly to some z(.) € C(I,R). Therefore, by (3.7),
for almost all ¢ € I, the sequence {f,(¢)} is Cauchy in R. Let f(.) be the
pointwise limit of f,(.).

Moreover, one has

|20 (8) = y(8)] < | ) YO+ 7 i t) —zi(t)] < (3.8)
My [ plt)dt + S0 (M [ p(t)de) (M Mp)! = Mide POt '

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all

tel
[Fal) + Dy ()] < 05 | funn () — Fi0)]+
FUu () + DO By(t)] < L) MLl 2 O o ).

Hence the sequence f,(.) is integrably bounded and therefore f(.) €
LY(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit
n (3.5), (3.6) we deduce that z(.) is a solution of (2.1). Finally, passing to
the limit in (3.8) we obtained the desired estimate on x(.).

It remains to construct the sequences x,/(.), fn(.) with the properties in
(3.5)-(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1
we already constructed x,(.) € C(I,R) and f,(.) € LY(I,R), n = 1,2,..N
satisfying (3.5), (3.7) for n = 1,2,...N and (3.6) for n = 1,2,.N — 1.
The set-valued map t — F(t,I%xzx(t), —2zxn(t)) is measurable. Moreover,
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S .

_g)B-1
the map ¢t — L(t)(lxn(t) — zn_1(t)] + fg%m]\/(s) — xn_1(8)|ds) is
measurable. By the lipschitzianity of F'(¢,.) we have that for almost all
tel

F(t, Iﬁrgyl(t>, —xn () N {fn () + L) (Jaon () — zn-1(8)]+
Jo S e (s) — o (s)ds)[~1, 1]} # 0.

Lemma 3.1 yields that there exists a measurable selection fyy1(.) of F(.,
IP2zn(.), —zn(.)) such that

[fn41(t) = Fn(®)] < L) (Jon (t) — a1 (8)[+

_g)B-1
fot ! r(?@) len(s) —xn—1(s)|ds) a.e. (I).

We define xy11(.) as in (3.5) with n = N + 1. Thus fyy1(.) satisfies
(3.6) and (3.7) and the proof is complete. O
The assumption in Theorem 3.3 is satisfied, in particular, for y(.) = 0

and therefore with p(.) = L(.). We obtain the following consequence of
Theorem 3.3.

Corollary 3.4. Assume that Hypothesis 2.2 and Hypothesis 3.2 are satisfied,
d(0, F(t,0,0) < L(t) a.e. (I) and MMy < 1. Then there ezists z(.) a
solution of problem (2.1) satisfying for all t € T

1
2 (t)] < 1_MMMO /0 p(t)dt. (3.9)

Remark 3.5. In [1], Theorem 3.5 it is proved that if Hypothesis 2.2 and
Hypothesis 3.2 are satisfied, d(0, F'(¢,0,0) < L(t) a.e. (I), F(.,.) has com-
pact values and M (1+ m) fol L(t)dt < 1 then problem (2.1) has at least
one solution.

Obviously, our Corollary 3.4 improves Theorem 3.5 in [1]. On one hand,
we do not require that the values of F(.,.) are compact; on the other hand

1 1 B8 1 !
Mo :/0 M (t)dt :/0 LA+ Fzpy)dt <A+ F(ﬁ+1))/o L(t)dt.

At the same time, the approach in [1] does not provides a priori bounds as
in (3.9).

References

[1] B. AHMAD and S.K. NToUYAS, Existence results for fractional differential inclu-
sions arising from real estate asset securitization and HIV models, Adv. Difference
FEquations, 2013, No. 216, 2013.

[2] J.P. AuBIN and H. FRANKOWSKA, Set-valued Analysis, Birkhauser, Basel, 1990.



ON A FRACTIONAL DIFFERENTIAL INCLUSION 453

[3] A.F. FiLippov, Classical solutions of differential equations with multivalued right
hand side, SIAM J. Control, 5 (1967), 609-621.

[4] A. KiLBas, H.M. SrivasTavA and J.J. TRUJILLO, Theory and Applications of Frac-
tional Differential Equations, Elsevier, Amsterdam, 2006.

[5] H. Tao, M. Fu and R. QIAN, Positive solutions for fractional differential equations
from real estate asset securitization via new fixed point theorem, Abstract Appl. Anal.,
ID 842358, 2012.

[6] G. YANG, Nontrivial solution of fractional differential systems involving Riemann-
Stieltjes integral conditions, Abstract Appl. Anal., ID 719192, 2012.

[7] X.ZHANG and L. L1u, Positive solutions of superlinear semipositone singular Dirich-
let boundary value problems, J. Math. Anal. Appl., 316 (2006), 525-537.

[8] Y. WANG, L. Liu and Y. Wu, Positive solutions for a nonlocal fractional differential
equation, Nonlinear Anal., 74 (2011), 3599-3605.

Aurelian Cernea

Faculty of Mathematics and Computer Science, University of Bucharest
Academiei 14, 010014 Bucharest, Romania

E-mail: acernea@fmi.unibuc.ro



