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1. Introduction

In this note we study the following problem

−Dαx(t) ∈ F (t, x(t),−Dβx(t)) a.e. ([0, 1]),

Dβx(0) = Dβ+1x(0) = 0, Dβx(1) =
∫ 1

0 D
βx(s)dA(s),

(1.1)

Dα is the standard Riemann-Liouville fractional derivative, β ∈ (0, 1), α ∈
(2, 3], α − β > 1, F : [0, 1] × R × R → P(R) is a set-valued map, A(.) is
a function of bounded variation and

∫ 1
0 D

βx(s)dA(s) denotes the Riemann-
Stieltjes integral.

The present note is motivated by a recent paper of Ahmad and Ntouyas
([1]) where existence results for problem (1.1) are established for convex as
well as nonconvex set-valued maps. The existence results in [1] are based on
a nonlinear alternative of Leray-Schauder type and some suitable theorems
of fixed point theory. For the motivation, examples and a consistent bibliog-
raphy on fractional differential equations and inclusions we refer to [1] and
the references therein. We mention, only, that in [5] the authors discussed
the existence and uniqueness of solutions for problem (1.1) with F single
valued which represents a model for a problem arising from real estate asset
securitization. On the other hand, motivated by a model of HIV infection
Yang [6] considered the existence of nontrivial solutions for the fractional
differential system

−Dαx(t) = λf(t, x(t),−Dβx(t), y(t)) −Dγy(t) = g(t, x(t)) t ∈ (0, 1),

Dβx(0) = 0, Dβx(1) =
∫ 1

0 D
βx(s)dA(s), y(0) = 0, y(1) =

∫ 1
0 y(s)dB(s),
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with λ ∈ R, 1 < γ < α ≤ 2, 1 < α − β < γ, 0 < β − 1 and A(.), B(.) are
functions of bounded variation.

The aim of this note is to show that Filippov’s ideas ([3]) can be suitably
adapted in order to obtain the existence of solutions for problem (1.1). Recall
that for a differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem ([3]) consists in proving the existence
of a solution starting from a given ”quasi” solution. Moreover, the result
provides an estimate between the ”quasi” solution and the solution obtained.
In this way we improve an existence result for problem (1.1) in [1].

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance
of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).

Let I = [0, 1], we denote by C(I,R) the Banach space of all continuous
functions from I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R)
is the Banach space of integrable functions u(.) : I → R endowed with the
norm ||u(.)||1 =

∫ 1
0 |u(t)|dt.

The fractional integral of order α > 0 of a Lebesgue integrable function
f : (0,∞)→ R is defined by

Iαf(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ is the
(Euler’s) Gamma function defined by Γ(α) =

∫∞
0 tα−1e−tdt.

The Riemann-Liouville fractional derivative of order α > 0 of a contin-
uous function f : (0,∞)→ R is defined by

Dαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)−α+n−1f(s)ds,

where n = [α] + 1, provided the right-hand side is pointwise defined on
(0,∞).

As it is pointed out in [1], taking x(t) = Iβy(t), t ∈ I with y(.) ∈ C(I,R),
the boundary value problem (1.1) is equivalent with the following problem

−Dα−βy(t) ∈ F (t, Iβy(t),−y(t)) a.e. ([0, 1]),

y(0) = y′(0) = 0, y(1) =
∫ 1

0 y(s)dA(s),
(2.1)
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Lemma 2.1. (see [1]) For a given f(.) ∈ L1(I,R), the unique solution x(.)
of problem

Dα−βx(t) + f(t) = 0 a.e. ([0, T ]),

y(0) = y′(0) = 0, y(1) =
∫ 1

0 y(s)dA(s),

is given by

x(t) =

∫ 1

0
G(t, s)f(s)ds,

where G(., .) is the Green function defined by

G(t, s) :=
1

Γ(α− β)

{
[t(1− s)]α−β−1, if 0 ≤ t < s ≤ 1,
[t(1− s)]α−β−1 − (t− s)α−β−1, if 0 ≤ s < t ≤ 1.

By Lemma 2.1 the unique solution of the problem

Dαx(t) = 0, x(0) = x′(0) = 0 x(1) = 1

is tα−β−1. Let c =
∫ 1

0 t
α−β−1dA(t) and GA(s) =

∫ 1
0 G(t, s)dA(t). It follows

(e.g., [7]) that the Green function of the boundary value problem (2.1) is

H(t, s) =
tα−β−1

1− c
GA(s) +G(t, s).

Hypothesis 2.2. A(.) is an increasing function of bounded variation such
that GA(s) ≥ 0 ∀s ∈ [0, 1] and 0 ≤ c < 1.

Lemma 2.3. (see [8]) Let 1 < α−β ≤ 2 and let Hypothesis 2.2 be satisfied.
Then

0 ≤ H(t, s) ≤ 1

(1− c)Γ(α− β − 1)
=: M1.

3. The main result

First we recall a selection result ([2]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem.

Lemma 3.1. Consider X a separable Banach space, B is the closed unit
ball in X, H : I → P(X) is a set-valued map with nonempty closed values
and g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t)∩(g(t)+L(t)B) has a measurable selection.
In order to prove our results we need the following hypotheses.

Hypothesis 3.2. i) F (., .) : I ×R×R→ P(R) has nonempty closed values
and is L(I)⊗ B(R× R) measurable.
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ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I,
F (t, ., .) is L(t)-Lipschitz in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.

We use next the following notations

M(t) := L(t)(1 +

∫ t

0

(t− s)β−1

Γ(β)
ds) = L(t)(1 +

tβ

Γ(β + 1)
), t ∈ I, (3.1)

M0 =

∫ 1

0
M(t)dt. (3.2)

Theorem 3.3. Assume that Hypothesis 2.2 and Hypothesis 3.2 are satisfied
and M1M0 < 1. Let y(.) ∈ C(I,R) be such that y(0) = y′(0) = 0, y(1) =∫ 1

0 y(s)dA(s) and there exists p(.) ∈ L1(I,R+) verifying d(−Dα−βy(t), F (t,
Iβy(t),−y(t))) ≤ p(t) a.e. (I).

Then there exists x(.) a solution of problem (2.1) satisfying for all t ∈ I

|x(t)− y(t)| ≤ M1

1−M1M0

∫ 1

0
p(t)dt. (3.3)

Proof. The set-valued map t → F (t, Iβy(t),−y(t)) is measurable with
closed values and

F (t, Iβy(t),−y(t)) ∩ {−Dα−βy(t) + p(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, Iβy(t),−y(t)) a.e. (I) such that

|f1(t) +Dα−βy(t)| ≤ p(t) a.e. (I) (3.4)

Define x1(t) =
∫ 1

0 H(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤M1

∫ 1

0
p(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R),
fn(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn(t) =

∫ 1

0
H(t, s)fn(s)ds, t ∈ I, (3.5)

fn(t) ∈ F (t, Iβxn−1(t),−xn−1(t)) a.e. (I), (3.6)

|fn+1(t)−fn(t)| ≤ L(t)(|xn(t)−xn−1(t)|+
∫ t

0

(t− s)β−1

Γ(β)
|xn(s)−xn−1(s)|ds)

(3.7)
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for almost all t ∈ I.
If this construction is realized then from (3.4)-(3.7) we have for almost

all t ∈ I

|xn+1(t)− xn(t)| ≤M1(M1M0)n
∫ 1

0
p(t)dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n− 1 and we prove it
for n. One has

|xn+1(t)− xn(t)| ≤
∫ 1

0
|H(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M1

∫ 1

0
L(t1)[|xn(t1)− xn−1(t1)|+

∫ t1

0

(t1 − s)β−1

Γ(β)
|xn(s)− xn−1(s)|ds]dt1 ≤

M1

∫ 1

0
L(t1)(1 +

∫ t1

0

(t1 − s)β−1

Γ(β)
ds)dt1.M

n
1 M

n−1
0

∫ 1

0
p(t)dt =

= M1(M1M0)n
∫ 1

0
p(t)dt

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R),
hence converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.7),
for almost all t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the
pointwise limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤
M1

∫ 1
0 p(t)dt+

∑n−1
i=1 (M1

∫ 1
0 p(t)dt)(M1M0)i =

M1

∫ 1
0 p(t)dt

1−M1M0
.

(3.8)

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all
t ∈ I

|fn(t) +Dα−βy(t)| ≤
∑n−1

i=1 |fi+1(t)− fi(t)|+
+|f1(t) +Dα−βy(t)| ≤ L(t)

M1

∫ 1
0 p(t)dt

1−M1M0
+ p(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈
L1(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit
in (3.5), (3.6) we deduce that x(.) is a solution of (2.1). Finally, passing to
the limit in (3.8) we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in
(3.5)-(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1
we already constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N
satisfying (3.5), (3.7) for n = 1, 2, ...N and (3.6) for n = 1, 2, ...N − 1.
The set-valued map t → F (t, IβxN (t),−xN (t)) is measurable. Moreover,
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the map t → L(t)(|xN (t) − xN−1(t)| +
∫ t

0
(t−s)β−1

Γ(β) |xN (s) − xN−1(s)|ds) is

measurable. By the lipschitzianity of F (t, .) we have that for almost all
t ∈ I

F (t, IβxN (t),−xN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|+∫ t
0

(t−s)β−1

Γ(β) |xN (s)− xN−1(s)|ds)[−1, 1]} 6= ∅.

Lemma 3.1 yields that there exists a measurable selection fN+1(.) of F (.,
IβxN (.),−xN (.)) such that

|fN+1(t)− fN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+∫ t
0

(t−s)β−1

Γ(β) |xN (s)− xN−1(s)|ds) a.e. (I).

We define xN+1(.) as in (3.5) with n = N + 1. Thus fN+1(.) satisfies
(3.6) and (3.7) and the proof is complete. 2

The assumption in Theorem 3.3 is satisfied, in particular, for y(.) = 0
and therefore with p(.) = L(.). We obtain the following consequence of
Theorem 3.3.

Corollary 3.4. Assume that Hypothesis 2.2 and Hypothesis 3.2 are satisfied,
d(0, F (t, 0, 0) ≤ L(t) a.e. (I) and M1M0 < 1. Then there exists x(.) a
solution of problem (2.1) satisfying for all t ∈ I

|x(t)| ≤ M1

1−M1M0

∫ 1

0
p(t)dt. (3.9)

Remark 3.5. In [1], Theorem 3.5 it is proved that if Hypothesis 2.2 and
Hypothesis 3.2 are satisfied, d(0, F (t, 0, 0) ≤ L(t) a.e. (I), F (., .) has com-
pact values and M1(1+ 1

Γ(β+1))
∫ 1

0 L(t)dt < 1 then problem (2.1) has at least
one solution.

Obviously, our Corollary 3.4 improves Theorem 3.5 in [1]. On one hand,
we do not require that the values of F (., .) are compact; on the other hand

M0 =

∫ 1

0
M(t)dt =

∫ 1

0
L(t)(1 +

tβ

Γ(β + 1)
)dt < (1 +

1

Γ(β + 1)
)

∫ 1

0
L(t)dt.

At the same time, the approach in [1] does not provides a priori bounds as
in (3.9).
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