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Abstract - In this paper, by means of certain geometric assumptions of Ba-
nach spaces, we first give some equivalent conditions for the Moore–Penrose
metric generalized inverse of perturbed operator to have the simplest expres-
sion TM (I + δTTM )−1. Then, as applications of our results, we investigate
the stability of some operator equations in Banach spaces under certain
perturbations.
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1. Introduction

Throughout the paper, we always let X and Y be Banach spaces over real
field R, and B(X,Y ) be the Banach space consisting of all bounded linear
operators from X to Y . For T ∈ B(X,Y ), let N (T ) (resp. R(T )) denote
the kernel (resp. range) of T . It is well–known that for T ∈ B(X,Y ), if
N (T ) and R(T ) are topologically complemented in the spaces X and Y ,
respectively, then there exists a linear projector generalized inverse T+ ∈
B(Y,X) defined by

T+Tx = x, x ∈ N (T )c and T+y = 0, y ∈ R(T )c,

where N (T )c and R(T )c are topologically complemented subspaces of N (T )
and R(T ), respectively. We know that linear projector generalized inverses
of bounded linear operators have many important applications in numeri-
cal approximation, statistics and optimization et al. (see [3, 20, 24, 28]).
But, generally speaking, the linear projector generalized inverse can not
deal with the extremal solution, or the best approximation solution of an
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ill–posed operator equation in Banach spaces. In order to solve the best
approximation problems for an ill–posed linear operator equation in Banach
spaces, Nashed and Votruba [19] introduced the concept of the (set–valued)
metric generalized inverse of a linear operator in Banach spaces. Later, in
2003, H. Wang and Y. Wang [27] defined the Moore–Penrose metric gener-
alized inverse for a linear operator with closed range in Banach spaces, and
gave some useful characterizations. Then in [21], the author defined and
characterized the Moore–Penrose metric generalized inverse for an arbitrary
linear operator in a Banach space. From then on, many research papers
about the Moore–Penrose metric generalized inverses have appeared in the
literature, see [1, 15, 18, 25, 16, 30] for instance.

In his recent thesis [17], H. Ma presented some perturbation results of the
Moore–Penrose metric generalized inverses under certain additional assump-
tions, and also obtained some descriptions of the Moore–Penrose metric gen-
eralized inverses in Banach spaces. It is well–known that the perturbation
analysis of generalized inverses of linear operators has wide applications and
plays an important role in many fields such as computation, control theory,
frame theory and nonlinear analysis. While the metric projector on closed
subspace in Banach space are no longer linear, and then the linear projec-
tor generalized inverse and the Moore–Penrose metric projector generalized
inverse of a bounded linear operator in Banach space are quite different.
Motivated by many related perturbation results of the linear operator gen-
eralized inverses in Hilbert spaces or Banach spaces in [6, 11, 28] and some
recent results in [17], in this paper, we further study the following perturba-
tion and representation problems for the Moore–Penrose metric generalized
inverses: Let T ∈ B(X,Y ) such that the Moore–Penrose metric generalized
inverse TM of T exists, what conditions on the small perturbation δT can
guarantee that the Moore–Penrose metric generalized inverse T̄M of the per-
turbed operator T̄ = T + δT exists? Furthermore, if it exists, when does
T̄M have the simplest expression (IX + TMδT )−1TM? Under the geometric
assumption that the Banach spaces X and Y are smooth, and by using the
generalized orthogonal decomposition theorem [24], we will give a complete
answer to these problems.

Perturbation analysis for the extremal solution of the linear operator
equation Tx = y by using the linear generalized inverses has been made
by many authors (cf. [6, 12, 23]). It is well–known that the theory of the
Moore–Penrose metric generalized inverses has its genetic in the context of
the so–called “ill–posed” linear problems. So, as applications of our result, in
the last section of this paper, we will investigate the stability of the solutions
of the operator equation Tx = y and the best approximate solutions of the
operator equation ‖Tx− b‖ = infy∈X ‖Ty− b‖ in Banach spaces under some
different conditions.
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2. Preliminaries

In this section, we will recall some concepts and results frequently used in
this paper. We first recall some related concepts about homogeneous oper-
ators and the geometry of Banach spaces. For more information about the
geometric properties of Banach spaces, such as strict convexity, reflexivity
and complemented subspaces, we refer to [2, 10].

Let X,Y be Banach spaces, let T : X → Y be a mapping and D ⊂ X
be a subset of X. Recall from [1, 26] that a subset D in X is called to be
homogeneous if λx ∈ D whenever x ∈ D and λ ∈ R; a mapping T : X → Y
is called to be a bounded homogeneous operator if T maps every bounded set
in X into a bounded set in Y and T (λx) = λT (x) for every x ∈ X and every
λ ∈ R. Let H(X,Y ) denote the set of all bounded homogeneous operators
from X to Y . Equipped with the usual linear operations on H(X,Y ) and
norm on T ∈ H(X,Y ) defined by ‖T‖ = sup{‖Tx‖ | ‖x‖ = 1, x ∈ X}, we
can easily prove that (H(X,Y ), ‖ · ‖) is a Banach space (cf. [24, 26]). For a
bounded homogeneous operator T ∈ H(X,Y ), we always denote by D(T ),
N (T ) and R(T ) the domain, the null space and respectively, the range of
an operator T . Obviously, we have B(X,Y ) ⊂ H(X,Y ).

Definition 2.1. Let M ⊂ X be a subset and let T : X → Y be a mapping.
Then we called T is quasi–additive on M if T satisfies

T (x+ z) = T (x) + T (z), ∀ x ∈ X, ∀ z ∈M.

For a homogeneous operator T ∈ H(X,X), if T is quasi–additive on R(T ),
then we will simply call T is a quasi–linear operator.

Definition 2.2. (See [16, 24]) Let P ∈ H(X,X). If P 2 = P , then we call
P is a homogeneous projector. In addition, if P is also quasi–additive on
R(P ), i.e., for any x ∈ X and any z ∈ R(P ),

P (x+ z) = P (x) + P (z) = P (x) + z,

then we call P is a quasi–linear projector.

Now we recall the definition of dual mapping for Banach spaces.

Definition 2.3. (See [2]) The set–valued mapping FX : X → X∗ defined by

FX(x) = {f ∈ X∗ | f(x) = ‖x‖2 = ‖f‖2}, ∀x ∈ X

is called the dual mapping of X, where X∗ is the dual space of X.
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It is well known that the dual mapping FX is a homogeneous set–valued
mapping; FX is surjective if and only if X is reflexive; FX is injective or
strictly monotone if and only if X is strictly convex; FX is single–valued if
and only if X is smooth, that is, for any x ∈ X with ‖x‖ = 1, there is a
unique f ∈ X∗ such that f(x) = 1 = ‖f‖. Clearly, if X∗ is strictly convex,
then X is smooth. We will need these properties of FX to prove our main
results for the Moore–Penrose metric generalized inverse. Please see [2] for
more information about the mapping FX .

Definition 2.4. (See [22]) Let G ⊂ X be a subset of X. The set–valued
mapping PG : X → G defined by

PG(x) = {s ∈ G | ‖x− s‖ = dist(x,G)}, ∀x ∈ X

is called the set–valued metric projection, where dist(x,G) = infz∈X ‖x−z‖.

For a subset G ⊂ X, if PG(x) 6= ∅ for each x ∈ X, then G is said to
be proximinal; if PG(x) is at most a singleton for each x ∈ X, then G is
said to be semi–Chebyshev; if G is simultaneously proximinal and semi–
Chebyshev set, then G is called a Chebyshev set. We denote by πG any
selection for the set-valued mapping PG, i.e., any single–valued mapping
πG : D(πG)→ G with the property that πG(x) ∈ PG(x) for any x ∈ D(πG),
where D(πG) = {x ∈ X : PG(x) 6= ∅}. For the particular case, when G is
a Chebyshev set, then D(πG) = X and PG(x) = {πG(x)}. In this case, the
mapping πG is called the metric projector from X onto G.

Remark 2.1. Let G ⊂ X be a closed convex subset. It is well–known that
if X is reflexive, then G is a proximal set; if X is a strictly convex, then
G is a semi–Chebyshev set. Thus, every closed convex subset in a reflexive
strictly convex Banach space is a Chebyshev set.

The following lemma gives some important properties of the metric pro-
jectors.

Lemma 2.1. (See [22]) Let X be a Banach space and L be a subspace of
X. Then

(1) π2
L(x) = πL(x) for any x ∈ D(πL), i.e., πL is idempotent;

(2) ‖x− πL(x)‖ ≤ ‖x‖ for any x ∈ D(πL), i.e., ‖πL‖ ≤ 2.

In addition, If L is a semi–Chebyshev subspace, then

(3) πL(λx) = λπL(x) for any x ∈ X and λ ∈ R, i.e., πL is homogeneous;

(4) πL(x+ z) = πL(x) + πL(z) = πL(x) + z for any x ∈ D(πL) and z ∈ L,
i.e., πL is quasi–additive on L.
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The following so called generalized orthogonal decomposition theorem in
Banach space is a main tool in this paper.

Lemma 2.2. (Generalized Orthogonal Decomposition Theorem, see [15,
24]) Let G ⊂ X be a proximinal subspace. Then for any x ∈ X, we have

(1) x = x1 + x2 with x1 ∈ G and x2 ∈ F−1
X (G⊥);

(2) Furthermore, if G ⊂ X is a Chebyshev subspace, then the decomposi-
tion in (1) is unique such that x = πG(x) + x2. In this case, we can
write X = Gu F−1

X (G⊥),

where G⊥ = {f ∈ X∗|f(x) = 0,∀x ∈ G} and F−1
X (G⊥) = {x ∈ X|FX(x) ∩

G⊥ 6= ∅}.

Now we give the definition of the Moore–Penrose metric generalized for
T ∈ B(X,Y ).

Definition 2.5. (See [24, 27]) Let T ∈ B(X,Y ). Suppose that N (T ) and
R(T ) are Chebyshev subspaces of X and Y , respectively. If there exists a
bounded homogeneous operator TM : Y → X such that:

(1) TTMT = T ; (2) TMTTM = TM ;

(3) TMT = IX − πN (T ); (4) TTM = πR(T ),

then TM is called the Moore–Penrose metric generalized inverse of T , where
πN (T ) and πR(T ) are the metric projectors onto N (T ) and R(T ), respectively.

If TM exists, then it is also unique (cf. [24, 27]). Moreover, if TM

exists, then by Lemma 2.2, the spaces X and Y have the following unique
decompositions

X = N (T ) u F−1
X (N (T )⊥), Y = R(T ) u F−1

Y (R(T )⊥),

respectively, where FX : X → X∗ (resp. FY : Y → Y ∗) is the set–valued
dual mapping of X (resp. Y ). Please see [24] for more information about
the Moore–Penrose metric generalized inverses and related knowledge. Here
we only need the following result which characterizes the existence of the
Moore–Penrose metric generalized inverse.

Lemma 2.3. (See [21, 24]) Let T ∈ B(X,Y ) with R(T ) closed. If N (T )
and R(T ) are Chebyshev subspaces of X and Y , respectively. Then there
exists a unique Moore–Penrose metric generalized inverse TMof T .
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3. The simplest expression of the Moore–Penrose metric general-
ized inverse of the perturbed operator

In order to prove the main result in the paper, we need the following three
lemmas.

Lemma 3.1. (See [4]) Let T ∈ B(X,Y ) such that TM exists and let δT ∈
B(X,Y ) such that TM is quasi–additive on R(δT ) and ‖TMδT‖ < 1. Put
T̄ = T + δT . Then

(1) IX + TMδT and IY + δTTM are invertible in B(X,X) and H(Y, Y ),
respectively;

(2) Φ = (IX + TMδT )−1TM = TM (IY + δTTM )−1 ∈ H(Y,X);

(3) T̄ΦT̄ = T̄ and ΦT̄Φ = Φ when R(T̄ ) ∩N (TM ) = {0}.

Lemma 3.2. Let T ∈ B(X,Y ) with R(T ) closed and N (T ) (resp. R(T ))
Chebyshev in X (resp. Y ). Let δT ∈ B(X,Y ) with TM quasi–additive on
R(δT ) and ‖TMδT‖ < 1. Put T̄ = T + δT and Φ = TM (IY + δTTM )−1 =
(IX +TMδT )−1TM . Then R(Φ) = F−1

X (N (T )⊥) and N (Φ) = F−1
Y (R(T )⊥).

Proof. From Lemma 3.1, we see Φ is well defined. Then, according to the
expressions of Φ, we have R(Φ) = R(TM ) and N (Φ) = N (TM ). Then from
Lemma 2.2 and Definition 2.5, we can get that R(TM ) = F−1

X (N (T )⊥) and
N (TM ) = F−1

Y (R(T )⊥). 2

For convenience, we recall the concept of smoothness of Banach space.
Let X∗ be the dual space of X. Let S(X) and S(X∗) be the unit spheres
of X and X∗, respectively. We say X is smooth if for each point x ∈ S(X)
there exists a unique f ∈ S(X∗) such that f(x) = 1. Please see [10] for
more information about this important concept and related topics. We have
indicated that if X is smooth, then the dual mapping FX (see Definition
2.3) is single-valued.

Lemma 3.3. Let M,N ⊂ X be Chebyshev subspaces of X. If X is smooth,
then F−1

X (M⊥) = F−1
X (N⊥) if and only if M = N .

Proof. If M = N , obviously, we have F−1
X (M⊥) = F−1

X (N⊥).
Suppose that F−1

X (M⊥) = F−1
X (N⊥) , G. We prove that M = N

if X is smooth. In fact, since M,N are Chebyshev subspace of X, by the
Generalized Orthogonal Decomposition Theorem (cf. Lemma 2.2) in Banach
space, we have

X = M u F−1
X (M⊥) = N u F−1

X (N⊥).

Then for any m ∈M\N , we have the unique decomposition m = m+0 with
respect to M and G. Noting that we also have the unique decomposition
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m = n1 + n2 with respect to N and G, where n1 ∈ N and n2 ∈ G. If
M 6= N , by the uniqueness of the decomposition, we must have n2 6= 0.

Since X is smooth, then FX is single–valued. So from F−1
X (M⊥) =

F−1
X (N⊥) , G, we get that f = FX(n2) ∈ N⊥ ∩ M⊥, that is, f(n2) =
‖f‖2 = ‖n2‖2 and f(m) = f(n1) = 0. Therefore, ‖n2‖2 = f(m − n1) = 0
and n2 = 0, which is a contradiction. Thus, we have M = N . 2

Under the geometric assumptions that both X and Y are smooth Banach
spaces, now we can prove the following useful result for the perturbation of
the Moore–Penrose metric generalized inverse of the perturbed operator.

Theorem 3.1. Let X,Y be smooth Banach spaces and let T ∈ B(X,Y ) with
R(T ) closed. Let δT ∈ B(X,Y ) and put T̄ = T + δT . Assume that N (T )
and N (T̄ ) are Chebyshev subspaces of X, R(T ) and R(T̄ ) are Chebyshev
subspaces of Y . Then the Moore–Penrose metric generalized inverse TM of
T exists. In addition, if TM is quasi–additive on R(δT ) and IX + TMδT is
invertible in B(X,X), then Φ = TM (IY + δTTM )−1 = (IX + TMδT )−1TM

is well–defined and the following statements are equivalent:

(1) Φ is the Moore–Penrose metric generalized inverse of T̄ , i.e., Φ = T̄M ;

(2) R(T̄ ) = R(T ) and N (T̄ ) = N (T );

(3) R(δT ) ⊂ R(T ) and N (T ) ⊂ N (δT ).

Proof. Since N (T ) and R(T ) are Chebyshev subspaces of X and Y ,
respectively, then from Lemma 2.3, we know TM exists and is unique. If
TM is quasi–additive on R(δT ) and IX + TMδT is invertible in B(X,X),
then from Lemma 3.1, we see

Φ = TM (IY + δTTM )−1 = (IX + TMδT )−1TM

is well defined. Now we show that the equivalences hold.

(1)⇒ (2) Since Φ = T̄M , then from Lemma 3.2, we get that

N (T̄M ) = N (Φ) = F−1
X (R(T )⊥), R(T̄M ) = R(Φ) = F−1

X (N (T )⊥).

Since N (T̄ ) and R(T̄ ) are Chebyshev subspaces of X and Y , respectively,
it follows from Lemma 2.2 and Definition 2.5 that R(T̄M ) = F−1

X (N (T̄ )⊥)
and N (T̄M ) = F−1

Y (R(T̄ )⊥). Consequently,

F−1
X (N (T̄ )⊥) = R(T̄M ) = F−1

X (N (T )⊥);

F−1
Y (R(T̄ )⊥) = N (T̄M ) = F−1

X (R(T )⊥). (3.1)

Noting that X and Y are smooth Banach spaces, so we have R(T̄ ) = R(T )
and N (T̄ ) = N (T ) from Lemma 3.3 and (3.1).
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(2)⇒ (3) Let x ∈ N (T ) = N (T̄ ). Then Tx = 0 and Tx+ δTx = 0. So
δTx = 0, that is, N (T ) ⊂ N (δT ). Let y ∈ R(δT ), then there exists some
x ∈ X such that y = δTx = T̄ x− Tx. Noting that R(T̄ ) = R(T ), we have
y ∈ R(T ), that is, R(δT ) ⊂ R(T ).

(3) ⇒ (1) From R(δT ) ⊂ R(T ) and N (T ) ⊂ N (δT ), we get that
πR(T )δT = δT and δTπN (T ) = 0, that is, TTMδT = δT = δTTMT . Conse-
quently,

T̄ = T + δT = T (IX + TMδT ) = (IY + δTTM )T. (3.2)

Since IX + TMδT is invertible in B(X,X) and IY + δTTM is invertible in
H(Y, Y ) by Lemma 3.1, we have R(T̄ ) = R(T ) and N (T̄ ) = N (T ) by (3.2).
Thus T̄ΦT̄ = T̄ and ΦT̄Φ = Φ by Lemma 3.1 and moreover,

T̄Φ = (T + δT )TM (IY + δTTM )−1 = TTM (IY + δTTM )(IY + δTTM )−1

= TTM = πR(T ) = πR(T̄ );

ΦT̄ = (IX + TMδT )−1TM (T + δT ) = (IX + TMδT )−1(IX + TMδT )TMT

= TMT = IX − πN (T ) = IX − πN (T̄ ).

Therefore, Φ is the Moore–Penrose metric generalized inverse of T̄ , i.e.,
Φ = T̄M . 2

Remark 3.1. We should remark that, some related results of Theorem 3.1
have been proved in [17]. In [17, Theorem 4.3.3], under the assumptions
that

(1) N (T ) and N (T̄ ) are Chebyshev subspaces of X;

(2) R(T ) and R(T̄ ) are Chebyshev subspaces of Y ;

(3) ‖TMδT‖ < 1, N (T ) ⊂ N (δT ) and R(δT ) ⊂ R(T );

(4) F−1
X (N (T )⊥) is a linear subspace of X and R(T ) is approximatively

compact,

the author proved that T̄M exists and has the representations

T̄M = TM (IY + δTTM )−1 = (IX + TMδT )−1TM .

Thus, Theorem 3.1 gives some generalization of the above results. We also
note that our proof is more concise. Please see [17] for more related results.

From Theorem 3.1, it is easy to get the following perturbation result
which is Theorem 3.1 of [11] for the Moore–Penrose orthogonal projection
generalized inverses of bounded linear operators on Hilbert spaces.
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Corollary 3.1. Let H,K be Hilbert spaces. Let T ∈ B(H,K) have the
Moore–Penrose generalized inverse T † ∈ B(K,H). Let δT ∈ B(H,K) with
‖T †δT‖ < 1. Then G = (IX +T †δT )−1T † is the Moore–Penrose generalized
inverse of T̄ = T + δT if and only if R(T̄ ) = R(T ) and N (T̄ ) = N (T ).

Proof. Since H and K are Hilbert spaces, then from Definition 2.4, we see
that the metric projector is just the linear orthogonal projector. Now from
Definition 2.5, we see obviously that the Moore–Penrose metric generalized
inverse TM of T is indeed the Moore–Penrose orthogonal projection general-
ized inverse T † of T under usual sense. It is well–known that Hilbert spaces
are smooth and the condition ‖T †δT‖ < 1 implies IX + T †δT invertible,
hence we can get the assertion by using Theorem 3.1. 2

Remark 3.2. Let X,Y be Banach spaces and let T ∈ B(X,Y ) with R(T )
closed. Let δT ∈ B(X,Y ) and put T̄ = T + δT . Assume that N (T ) and
R(T ) are Chebyshev subspaces of X and Y , respectively. If R(T̄ ) = R(T )
and N (T̄ ) = N (T ), then from Lemma 2.2 and Definition 2.5, we see clearly
that R(T̄ ) ∩ N (TM ) = {0}. Recall from [6] that for T ∈ B(X,Y ) with a
bounded linear generalized inverse T+ ∈ B(Y,X), we say that the operator
T̄ = T +δT ∈ B(X,Y ) is a stable perturbation of T if R(T̄ )∩N (T+) = {0}.
Now for T ∈ B(X,Y ) with TM ∈ H(Y,X), we also say that T̄ = T + δT ∈
B(X,Y ) is a stable perturbation of T if R(T̄ )∩N (TM ) = {0}. From related
results in [28], we know that the concept of stable perturbation is important
and useful for us to study the perturbation problems for generalized inverses.
So from Theorem 3.1 and Lemma 3.1, it is nature to ask the following
questions:

If R(T̄ ) ∩N (TM ) = {0}, then what additional conditions can guarantee
that T̄M exists? If T̄M exists, what is its expression and can we give some
error estimations of the upper bound of ‖T̄M − TM‖?

In our forthcoming paper [5], we will make a further study on these
problems in reflexive strictly convex Banach spaces, specially, in the Banach
space Lp(Ω, µ) with 1 < p < +∞.

4. On the stability of some operator equations in Banach spaces

Throughout this section, we assume that the operator T ∈ B(X,Y ) has
closed range and both N (T ) and R(T ) are Chebyshev subspaces of X and
Y , respectively, so that the corresponding Moore–Penrose metric general-
ized inverse TM of T is well–defined as a bounded homogeneous operator.
We also let δT ∈ B(X,Y ) such that TM is quasi–additive on R(δT ) and
‖TM‖‖δT‖ < 1 in this section, so that IX + TMδT and IY + δTTM are
invertible in B(X,X) and H(Y, Y ), respectively.

Suppose that the operator equation

Tx = b (4.1)
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is perturbed to the following consistent linear operator equation

T̄ z = b̄, (4.2)

where T̄ = T + δT and b̄ = b + δb ∈ R(T̄ ). Denoted by S(T, b) and (resp.
S(T̄ , b̄)) the solution set of the equation Tx = b (resp. T̄ z = b̄). For

convenience, in this section, we always let εb =
‖δb‖
‖b‖

, εT =
‖δT‖
‖T‖

, and let

κ = ‖TM‖‖T‖ denote the condition number of T .

Theorem 4.1. Let T, δT ∈ B(X,Y ) such that ‖TM‖‖δT‖ < 1 and TM is
quasi–additive on R(δT ). If TM is also quasi–additive on R(T ), then for
any solution z ∈ S(T̄ , b̄), there exists a solution x ∈ S(T, b) such that

1

1 + κεT

(
‖TMδb‖

‖TMb‖+ 2‖z‖
− κεT

)
≤ ‖z − x‖

‖x‖
≤ κ(εb + εT )

1− κεT
.

Proof. Let z ∈ Ŝ(T̄ , b̄) and put x = TMb + (IX − TMT )z. Then, we can
check that x ∈ S(T, b). Noting that TM is quasi–additive on R(T ), then

z − x = TMTz − TMb = TM (Tz − b) ∈ R(TM ) = F−1
X (N (T )⊥). (4.3)

It follows that πN (T )(z − x) = 0 and then

TMT (z − x) = (IX − πN (T ))(z − x) = z − x.

Now from T̄ z = b̄ and Tx = b, we can check that

(IX + TMδT )(z − x) = TM (T + δT )(z − x)

= TM T̄ (z − x) = TM (T̄ z − Tx− δTx)

= TM (δb− δTx).

(4.4)

From Lemma 3.1, we know that (IX + TMδT ) is invertible. Thus, from
(4.4), we get

z − x = (IX + TMδT )−1TM (δb− δTx).

So by using above equation, we can obtain

‖z − x‖
‖x‖

=
‖(IX + TMδT )−1TM (δb− δTx)‖

‖x‖

≤ ‖(IX + TMδT )−1‖‖T
M (δb− δTx)‖
‖x‖

≤ κ(εb + εT )

1− κεT
. (4.5)



Metric generalized inverses and operator equations 443

Noting that ‖x‖ ≤ ‖TMb‖+ ‖πN (T )z‖ ≤ ‖TMb‖+ 2‖z‖, thus, we also have

‖z − x‖
‖x‖

≥ ‖T
M (δb− δTx)‖

‖IX + TMδT‖‖x‖
≥ 1

1 + κεT

(
‖TMδb‖

‖TMb‖+ 2‖z‖
− κεT

)
. (4.6)

Now, our result follows from (4.5) and (4.6). 2

Corollary 4.1. Let T, δT ∈ B(X,Y ) such that ‖TM‖‖δT‖ < 1 and TM is
quasi–additive on R(δT ). Assume that R(T̄ ) is a Chebychev subspace in Y
and TM is quasi–additive on R(T ). If N (T̄ ) = N (T ), then T̄M exists, and
moreover, for the equations (4.1) and (4.2), we have

1

1 + κεT

(
‖TMδb‖
‖TMb‖

− κεT
)
≤ ‖T̄

M b̄− TMb‖
‖TMb‖

≤ κ(εb + εT )

1− κεT
.

Proof. From Lemma 2.3, we know T̄M uniquely exists, and then z = T̄M b̄
is a solution of the equation T̄ z = b̄. Now from our proof of Theorem 4.1,
we see x = TMb+ (IX − TMT )T̄M b̄. Noting that N (T̄ ) = N (T ), we have

x = TMb+ (IX − TMT )T̄M b̄

= TMb+ πN (T )T̄
M b̄ = TMb+ πN (T̄ )T̄

M b̄

= TMb.

So by using Theorem 4.1, we can obtain the result. 2

We now consider the problem:

min ‖x‖ subject to ‖Tx− b‖ = inf
y∈X
‖Ty − b‖. (4.7)

Suppose that the problem (4.7) is perturbed to the following problem:

min ‖z‖ subsect to ‖T̄ z − b̄‖ = inf
y∈X
‖T̄ y − b̄‖, (4.8)

where b, b̄ = b + δb ∈ Y and T̄ = T + δT . It follows from [28, Proposition
2.3.7] that the equation (4.7) (resp. (4.8)) has solutions when X and Y are
reflexive and R(T ) (resp. R(T̄ )) is closed. Moreover, if the Moore–Penrose
metric generalized inverse TM (resp. T̄M ) exists, then from Definition 2.5
(or cf. [27, Theorem 3.2]), we see that the vector x = TMb (resp. z = T̄M b̄)
is the solution of (4.7) (resp. (4.8)). In order to use Theorem 3.1, from now
on, we always assume that X,Y are smooth, strictly convex and reflexive
Banach spaces.

Theorem 4.2. Let T, δT ∈ B(X,Y ) such that ‖TM‖‖δT‖ < 1 and TM is
quasi–additive on R(δT ). Assume that N (T̄ ) = N (T ) and R(T̄ ) = R(T ).
Then for the problems (4.7) and (4.8), we have

‖T̄M b̄− TMb‖
‖TMb‖

≤ 1

1− κεT

(
κεT +

‖T‖‖TM (b+ δb)− TMb‖
‖πR(T )b‖

)
.
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Proof. From our assumption and by using Theorem 3.1, we see T̄M exists
and

T̄M = TM (IY + δTTM )−1 = (IX + TMδT )−1TM .

Since (IX + TMδT )−1 ∈ B(X,X), we have

T̄M b̄−TMb = (IX+TMδT )−1[TM (b+δb)−TMb]+
[
(IX+TMδT )−1−IX

]
TMb

and consequently,

‖T̄M b̄− TMb‖ ≤ ‖T
M (b+ δb)− TMb‖
1− ‖TM‖‖δT‖

+
‖TM‖‖δT‖

1− ‖TM‖‖δT‖
‖TMb‖,

‖T̄M b̄− TMb‖
‖TMb‖

≤ κεT
1− κεT

+
‖TM (b+ δb)− TMb‖

1− κεT
1

‖TMb‖
. (4.9)

Note that πR(T )b = TTMb and ‖πR(T )b‖ ≤ ‖T‖‖TMb‖. So the assertion
follows from (4.9). 2

Remark 4.1. Under the assumption of Theorem 4.2, if we also have δb ∈
R(δT ), then it follows from Theorem 4.2 that

‖T̄M b̄− TMb‖
‖TMb‖

≤ κ

1− κεT

(
εT +

‖δb‖
‖πR(T )b‖

)
.
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