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André Ronveaux

Dedicated, with friendship and gratefullness, to Professor Jean Mawhin

for his 70th birthday

Abstract - The aim of this short survey is to emphasize the link between
the order N of the differential equation satisfied by a family of orthogonal
polynomials and the scalar product generating orthogonality, using many
examples. Classical, Semi-classical and Laguerre-Hahn families for which
N = 2 or N = 4 are described. Some typical Sobolev families generating
several value of N are also investigated. The examples choosen are presented
without proof with elementary mathematical tools.
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1. Introduction (Basic tools)

A simple, old and seminal way to introduce Orthogonal Polynomials (OP)
pn(x) of degree n is to start with the well known least square approximation
problem (see [5]).

Let us consider a real function f(x) continuous in the interval [a, b].
One way to approximate this function by polynomials pi(x), i = 0, . . . n as

f(x) '
n∑
i=0

pi(x) is to consider the integral:

I(ci) =

∫ b

a
ρ(x)[f(x)−

n∑
i=0

cipi(x)]2dx, (1.1)

with ρ(x) integrable and positive in [a, b], and to minimize this integral

by the system of the n + 1 relations
∂I(ci)

∂x
= 0. Of course ci are easily

computed if we choose pi(x) satisfying

∫ b

a
ρ(x)pj(x) pi(x)dx = 0 with i 6= j
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giving immediately

ci =

∫ b

a
ρ(x)f(x)pi(x)dx

d2i
, d2i =

∫ b

a
ρ(x)p2i (x)dx. (1.2)

So the family {pn} of polynomials pn(x) belongs to a real infinite dimen-
sional vector space P, here Hilbert space, with a scalar product 〈pi, pj〉 =∫ b

a
ρ(x)pi(x)pj(x)dx. By definition this family gives an orthogonal basis

in P and therefore any real polynomial qr(x) can be expanded uniquely

as qr(x) =
r∑
i=0

cipi(x). When ρ(x), called the weight, is equal to 1, the

corresponding family is the well known Legendre family.

Two current normalizations are used for the representation of the poly-

nomial pn(x) =

n∑
i=0

cix
i: the choice cn = 1 (monic OP) and d2i = 1 (or-

thonormal OP).

The fundamental property of each OP (pn(x) ≡ pn) is the so-called 3-
terms recurrence relation (RR), direct consequence of the orthogonality :

xpn = αnpn+1 + βnpn + γnpn−1, n ≥ 1. (1.3)

This important relation characterizes the orthogonality from a theorem of
Favard (see [7]) proving that for any family of polynomial qn(x) satisfying
(1.3) with αnγn > 0, there exists a probability measure µ of support I
generalizing the weight ρ(x) = ρ (dµ ≡ ρdx).

The RR (1.3) is also satisfied by an other family of OP called associate
of pn (see [17]) and defined by :

p
(1)
n−1(x) =

1

µ0

∫ b

a

pn(x)− pn(s)

x− s
ρ(s)ds, µ0 =

∫ b

a
ρ(s)ds. (1.4)

The RR (1.3) for p
(1)
n is therefore the same as in (1.3) with a shift of 1 in

the coefficients, and, by recurrence, p
(k)
n for any integer k, are therefore also

OP families from the Favard theorem.

There exists two general representations of any orthogonal family. The
Matrix form, rewritting the RR in a matrix form

x~Pn = [J ]~Pn with ~Pn = [p0, p1, . . . , pn . . .]
t (1.5)

and [J], called Jacobi matrix (see [24]), tridiagonal infinite matrix with βn
in the diagonal and αn, γn in the 2 subdiagonals in different way depending
of the normalisation.
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The determinental form of size n + 1 is build from n lines of moment

µk =

∫
I
ρ(x)xkdµ, the line j being: µj , . . . , µj+n(j = 0, n) and last line

being: xr, r = 0 to n (determinant of type Hankel).
Both representations, useful for the theory, are not appropriated to ob-

tain properties of peculiar families. It is therefore interesting to represent pn,
if possible, as solutions of differential equations. Difference equations could
also appear when the orthogonality is defined by a discrete scalar product

〈pn, pm〉 =
K∑
k=0

ρ(k)pn(k)pm(k).

Generating function as G(x, t) =
∞∑
n=0

pn(x)tn is an alternative way to

introduce the family pn(x) as done already by Lagrange for the Legendre
polynomials Pn(x) (see [3]):

1√
1− 2tx+ t2

=

∞∑
n=0

Pn(x)tn. (1.6)

2. Linear differential equations for orthogonal polynomials

i) Classical OP (N = 2)

Laplace proved already (see [4]) that the polynomials Pn(x) in (1.6) satisfy
the second order differential equation (ODE):

(1− x2)P ′′n (x)− 2xP ′n(x) + n(n+ 1)Pn(x) = 0, (2.1)

or in the Sturm-Liouville form:[
(1− x)2P ′n

]′
= λPn , λ = −n(n+ 1). (2.2)

This peculiar hypergeometric equation for orthogonal OP of weight 1 sug-
gests to build the following equation introducing a weight ρ(x)[

σ(x)ρ(x)y′
]′

= λρ(x)y(x),

or
σρy′′ + τρy′ = λρ(x)y(x) (2.3)

with
(σρ)′ = τρ. (2.4)

Equation (2.4), called Pearson equation with σ(x) of degree 2, 1 or 0, and
τ(x) of degree 1, generates therefore hypergeometric equation (and also con-
fluent equations) giving families of OP as Jacobi (J), Laguerre (L), Hermite
(H) called classical OP with weight:

ρJ = (1− x)α(1 + x)β, ρL = e−xxα, ρH = e−x
2

(2.5)
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for α, β > −1 and σJ degree 2, σL degree 1, σH constant and τ of degree 1.

The associate family P
(1)
n−1(x) of these classical OP are solutions [19] of ODE

of order 4 (N = 4) which can be factorized as (D = d
dx):

Nn L
∗
n

[
P

(1)
n−1(x)

]
= 0 (2.6)

with

L∗n = σD2 + (2σ′ − τ)D + λn + σ′′ − τ ′

Nn = σD2 + (σ′ + τ)D + λn + τ ′.

ii) Semi-classical OP (N = 2)

From a weight ρ(x) solution of a first order ODE with polynomial coefficients
(2.4), it is natural to consider situations in which σ(x) and τ(x) are poly-
nomials of arbitrary degree. These polynomials, more or less rediscovered
at the first symposium on OP at Bar-le-Duc in 1984 (see [2]) were already
created by Laguerre (see [10]) and explored by Shohat (see [23]). We shortly
present the ODE for y = Pn(x), called also Laguerre-Perron using the
Laguerre’s notations.

Writing the Pearson’s equation (2.4) for the weight ρ(x) as:

ρ′

ρ
=

2V (x)

W (x)
(2.7)

or generating an equation for the Stieltjes function S(x):

S(x) =

∫
I

ρ(t)dt

x− t
=
∑
n

µnx
n, (2.8)

W (x)S′(x) = 2V (x)S(x) + U(x) (U(x) Polynomial), (2.9)

y(x) satisfies:

W (x)θny
′′ +

[
(2V +W ′)θn −Wθ′n

]
y′ + knyn = 0, (2.10)

with θn = θn(x) and kn = kn(x) polynomials of degree independent of n.
The semi-classical class of weights is very large and as extension of the

classical class contains for example weights ρ̄ = πρ, π = π(x) rational func-

tions (see [18]), ρ∗ = ρ+

K∑
k=1

λkδ(x− xk) with δ(x− xk) Dirac distribution

(λk ≥ 0), called ‘classical type OP’ (see [21]), ρ̌ = ρ(x)H(x − c) (see [22]),
H(x − c), Heaviside ‘cutting’ functions H(x − c) = 0 x < c, H(x − c) = 1,
x ≥ c etc.

Of course the recurrence coefficients in the RR (1.3) and the polynomials
θn and kn in (2.10) are relatively difficult to compute explicitely even if ρ(x)
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is classical.

iii) Laguerre-Hahn families (N = 4)

The semi-classical OP also generates first and rth associate polynomials as

in (1.4) and also satisfy one ODE of order 4 for P
(r)
n with

P
(r)
n−r(x) = associate of P

(r−1)
n−r+1(x) r = 1, 2, . . .

The genial hint, proposed by Magnus (see [13]), uses the continued fraction
of the Stieltjes function as:

S(x) = γ0

/
x−β0
−γ1

/
x−β1
− . . . (2.11)

linking S1(x), Stieltjes function of P
(1)
n−1(x) by:

S(x) =
γ0

x− β0 − S1(x)
, (2.12)

from the expansion of (2.11).
Now, S(x) being solution of a first order linear ODE, S1(x), and any

Sr(x), are solutions of a Riccati equation of type

AS′ = BS2 + CS +D, S = S1, . . . , Sr, (2.13)

with A(x), B(x), C(x), D(x), polynomials. Magnus proved in [13] the ex-
istence of a 4th order ODE for the rth associate families, and J. Dzoumba
(see [6]), in a thesis in Paris VI with P. Maroni, not published, obtained the
4th order ODE for OP built from any Stieltjes function solution of a Riccati
equation. These results are in accordance with a theorem of Hahn in [8]
saying that the order of any OP families solution of an ODE of any order
can be reduced to an ODE of order 2 or 4.

iv) Sturm-Liouville equations (N even)

ODE for OP can be also Sturm-Liouville equations generating orthogonal
solutions, not always polynomials, and of type:

L[y(x)] =

2r∑
i=1

i∑
j=0

(`ijx
j)y(i)(x) = λny(x) (2.14)

in which the degree n of polynomial solution y = Pn(x) does not appear
in the operator L. This property is already lost for the ODE of associate
classical as in (2.6) and also for semi-classical OP as shown in the equation
(2.10). H.L. Krall and A.M. Krall investigate in great details the operators L
in [9] generating families of OP and give some exemples involving operators
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of order 4 and 6. H.L. Krall also showed that the order of L is always even
(N = 2r).

If Sturm-Liouville equations are easier to manipulate than equations of
Laguerre-Perron with polynomials θn and Kn often unknown, the weight
of the OP Pn(x) are difficult to obtain because the moments µn satisfy
recurrence relations involving the coefficients `ij .

L.L. Littlejohn and A.M. Krall presented in [12] the following equation
(N = 4):

L4[y(x)] = x2y
′′′′ − (2x2 − 4x)y

′′′
+ (x2 − [2R+ 6]x)y

′′

+[2R+ 2]x− 2Ry
′

= λny. (2.15)

with λn = n[2R + n− 1]. The polynomial solution Pn(x) are OP of weight
ρ(x)

P (x) =
1

R
δ(x) + e−xH(x). (2.16)

The recurrence relation for the moments can be solved in this case and gives:

µ0 =
R+ 1

R
, µm = m! m = 1, 2, . . .

On the other side, these polynomials Pn(x) are also solutions of the Laguerre-
Perron equation (N = 2)

q2(x, n)y′′ + q1(x, n)y′ + q0(x, n)y = 0 (2.17)

q2 = (R2 +R+ λn)x2 −Rx,
q1 = −(R2 +B + λn)x2 + (R2 + 2R+ λn)x− 2R

q0 = (2Rλn + 22λn − χn)x− λn,

with χn = (3R2 + 45R+ 42)n+ 18n(n− 1)− n(n− 1)(n− 2).

3. Sobolev orthogonality. Very short survey (N =?)

i) Introduction

The first appearance of Orthogonal Polynomials with Sobolev inner product
is generally credited to Lewis (see [19]), who considered the generalization
of a least square approximation problem.

In order to approximate by polynomial qn(x) of degree n a function f(x),
taking into account all derivatives of f(x) up to the order r, the following
L2 minimization problem appears in a natural way:

I(ci) =

∫
R
dx

r∑
k=0

ρk(x)

[
n∑
i=0

ciq
(k)
i (x)− f (k)(x)

]2
(3.1)
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where ρk(x) are non negative weight functions. The condition ∂I
∂ci

= 0,
i = 0 . . . n, privileges polynomials qi(x) which are orthogonal with respect
to the Sobolev (diagonal) inner product:

〈qi, qj〉s =

∫
R
dx

r∑
k=0

ρk(s)q
(k)
i (x)q

(k)
j (x) (3.2)

The presence of derivative in the scalar product changes drastically the
standard properties of polynomials orthogonal with respect to a positive
measure: the 3 terms recurrence relation (1.3) is lost, the zeroes are not
always inside the supports of the measures, differential equations satisfied
by these polynomials (when existing) are not always of even order.

ii) Brenner exemple (N = 4)

In 1972, Brenner (see [1]) investiged polynomials Rm(x), orthogonal with
respect to the Sobolev scalar product:

〈Rn, Rm〉s =

∫ ∞
0

e−x
[
Rn(x)Rm(x) + γR′n(x)R′m(x)

]
dx (γ > 0) (3.3)

and showed that the polynomials Rn(x) are linked to the Laguerre polyno-
mials Ln(x), [weight e−x, support (0,∞)] by a relation as:

γ[R′′n −R′n]−Rn = AnL
′
n+1 +BnL

′
n (3.4)

giving recurrence relations for An and Bn. He seemed not interested by the
ODE of Rn(x), but it is easy to build it, eliminating L′n and L′n+1, using the

killing operator L(D) = xD2 + (2− x)D + nI with D = d
dx .

iii) Sobolev type OP (N = 2) and general Sobolev

The 3 term RR (1.3) for ‘standard’ orthogonality (not Sobolev) is a conse-
quence of the trivial property:

〈xpi, pj〉 = 〈pi, xpj〉. (3.5)

For Sobolev OP qn(x), in order to expand a polynomial Fr(x)qn(x) in a
limited sum of qj from n+ r to n− r:

Fr(x)qn(x) =

n+r∑
n−r

cm,nqm(x), (3.6)

the scalar product must satisfy the symmetry property:

〈Frqi, qj〉s = 〈qi, Frqj〉s. (3.7)
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Fr is called ‘symmetric function’ and is essential in order to create an ODE
for the qn family.

An instructive situation appears with the Sobolev-type scalar product
(see [14])

〈qn, qm〉s =

∫
I
dxρ(x)qn(x)qm(x) + λ−1q(r)n (c)q(r)m (c) (λ > 0), (3.8)

where the family Pn(x) is orthogonal with respect to the (standard) scalar
product

〈pn, pm〉 =

∫
I
dxρ(x)pn(x)pm(x) (3.9)

and the hypothesis ρ(x) semi-classical weight.
For all semi-classical family as pn(x) there exists a differential relation

called ‘structure relation’ (see [16]) between p′n and pj :

σ(x)p′n(x) =
i=n−1+s∑
i=n−1−t

αi,npi(x) (3.10)

with s = degree of σ(x),

and t = max(s− 2,degree of τ − 1)

The expansions of monic polynomials pn(x) and qn(x)

qn(x) = pn(x) +
n−1∑
j=0

βn,jpj(x) (3.11)

(x− c)r+1qn(x) =

n+r+1∑
j=n−r−1

αn,jpj(x), from (3.7) with Fr = (x− c)r+1

(3.12)
and the structure relation allows, after many transformations to link pn to
qn in order to obtain a second order ODE for qn(x). It is interesting to point
that N is 2, whatever the degree r of the derivative in the scalar product,
because the next exemple involving also r derivatives produces an ODE of
order N = 2r+ 2. This non Sobolev type situation was treated in [15] using
the Sobolev inner product (with λj > 0)

〈qn, qm〉s =

∫
I
dxρ(x)qn(x)qm(x) +

∫
I

r∑
j=1

λjρ(x)q(j)n (x)q(j)m (x)dx. (3.13)

In this case, in order to limit expansions of qn in qj (j = 0 to n) as in the
Sobolev type in iii), the symetric function must be replaced by a symmetric
differential operator F of order 2r such that:

〈Fqn, qm〉s = 〈qn,Fqm〉s (3.14)
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One ODE of order N = 2r + 2 is build, generalising the Brenner case with
r = 1.

More general situations involving several weights ρi(x) (only one weight
in (3.13)) were already investigated for a scalar product, in a matrix form
as:

(f, g) =

∫
R
~F t[A]~G , [A] = [A]t

with ~F t = [f(x), f(x), . . . f (r)(x)] , ~G = [g(x), g′(x) . . . g(r)(x)]

and [A] ≡ Aijρij(x) (i, j ≤ r)
where ρij(x) are arbitrary positive weights of support Iij .

Let us conclude by saying that many more other situations, described in
hundred of publications, can be investigated with for instance scalar product
as [20]

〈f, g〉 =

∫
I
ρ(x)dxLf · Lg (3.15)

with L appropriate linear differential operator which can generate for the
corresponding polynomial one ODE of order odd. . .
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