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turbation terms are gradient dependent. An extension of No-Flux problems
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1. Introduction

Let
f : [0, 1]× R× R→ R

be a continuous function, such that for every M > 0 there exist constants a
and b (depending on M) so that

|f(t, u, u′)| ≤ a+ b|u′|2, t ∈ [0, 1], |u| ≤M,

(f satisfies a Bernstein - Nagumo condition), then the periodic boundary
value problem

−u′′ = f(t, u, u′), u(0) = u(1), u′(0) = u′(1), (1.1)

has a solution u such that

α(t) ≤ u(t) ≤ β(t), 0 ≤ t ≤ 1,

whenever α and β are sub - and supersolutions (upper and lower solutions),
with

α(t) ≤ β(t), 0 ≤ t ≤ 1,
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i.e.

−α′′ ≤ f(t, α, α′), α(0) = α(1), α′(0) ≥ α′(1), (1.2)

−β′′ ≥ f(t, β, β′), β(0) = β(1), β′(0) ≤ β′(1). (1.3)

This is an old result and essentially goes back to Knobloch [11]; several al-
ternate proofs (covering more general cases than those in [11]) were given
later, e.g., [22], [23], cf., also [7]. Higher dimensional analogues of the pe-
riodic boundary value problem, the no flux problem introduced later in [2],
and several examples (with f independent of gradient terms) were studied
in [1], [13], [14], [17], [18], [24]; see also [6].

Our main purpose in this paper is to establish a new version of sub-
supersolution theorems when (1.1) is replaced by the following no-flux prob-
lem 

−div[a(x, u)∇u] = f(x, u,∇u) in Ω,
u = constant on ∂Ω,∫

∂Ω
a(x, u)∂νudσ = 0,

(1.4)

where Ω is a smooth bounded domain in RN , N ≥ 1. It is to be noted that
the constant value of the boundary data is not specified and corresponds
to the one-dimensional case u(0) = u(1), whereas the requirement in one
dimension that u′(0) = u′(1), corresponds to the boundary integral term, in
the case that a ≡ 1. The approach to prove our sub-supersolution theorem
for (1.4) is to solve a family of Dirichlet problems for the same equation and
then establish that at least one of these solutions satisfies the boundary con-
dition above. We therefore shall introduce first a sub-supersolution theorem
for a Dirichlet problem; this will be done in Section 4.

The property that∫
∂Ω
a(x, u)∂νudσ ≥

∫
∂Ω
a(x, v)∂νvdσ

for all u, v ∈ H2(Ω) with u ≤ v and u ≡ v on ∂Ω will play an important role
in the existence proof. This motivates us to introduce a generalization of
(1.4) by replacing the boundary expression above by a map that shares this
property and we shall state a sub-supersolution result for this generalized
problem, as well.

We mention that the main points, which make the equation under con-
sideration interesting, are the gradient dependence of the nonlinear term
f and the presence of weight a(x, u). We cite the papers of Callegari and
Nachman [4, 5] and Fulks and Maybe [9], including some of their references,
for providing physical situations from which problems involving the gradient
dependence arise, and the paper [15], where degenerate (near the boundary)
nonlinear elliptic problems have been studied.
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2. General settings

We shall assume, as in Section 1, that a is a smooth function with

a(x, s) ≥ 1, (2.1)

for all x ∈ Ω and s ∈ R, and that

a(x, s) ≤ a1(x)|s|+ b1(x), (2.2)

for some a1 ∈ L∞(Ω) and b1 ∈ L2(Ω). Under these two conditions, the map

A : Ω× R× RN → RN

(x, s, p) 7→ a(x, s)p

satisfies the Leray-Lions conditions (see [12]).
We recall here the concept of the class (S+), which was introduced in [3]

(see also [8]).

Definition 2.1. We say that L : H1
0 (Ω) → H−1(Ω) belongs to the class

(S+) provided that for all sequences {un} converging weakly to u in H1
0 (Ω),

then un converges strongly to u in H1
0 (Ω), whenever

lim sup
n→∞

〈Lun, un − u〉 ≤ 0. (2.3)

The following lemma holds.

Lemma 2.1. Let T : H1
0 (Ω)→ H1

0 (Ω) be continuous. Assume that T (H1
0 (Ω))

is bounded in L∞(Ω). Then the map AT defined by

〈ATu, v〉 :=

∫
Ω
a(x, Tu)∇u∇vdx, (2.4)

for all u, v ∈ H1
0 (Ω), is continuous and belongs to the class (S+).

Proof. The continuity of AT is obvious because A satisfies the Leray-Lions
conditions. Hence, we only provide the proof of the second assertion.

Let {un} ⊂ H1
0 (Ω) ∩ L∞(Ω) converge weakly to u in H1

0 (Ω) and be
uniformly bounded in L∞(Ω). We have

‖un − u‖2H1
0 (Ω) ≤

∫
Ω
a(x, Tun)∇(un − u)∇(un − u)dx

=

∫
Ω
a(x, Tun)∇un∇(un − u)dx

−
∫

Ω
a(x, Tu)∇u∇(un − u)dx

+

∫
Ω

(a(x, Tu)− a(x, Tun))∇u∇(un − u)dx. (2.5)
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Using Hölder’s inequality, we see that the third integral in the right hand
side of (2.5) converges to 0 as n→∞. In fact,∣∣∣∣∫

Ω
(a(x, Tu)− a(x, Tun))∇u∇(un − u)dx

∣∣∣∣
≤
(∫

Ω
(a(x, Tu)− a(x, Tun))2|∇u|2dx

) 1
2
(∫

Ω
(|∇(un − u)|2dx

) 1
2

,

which tends to 0 because of the boundedness of {|∇(un− u)|} in L2(Ω) and
that of the set T (H1

0 (Ω)) in L∞(Ω). It follows from the weak convergence
of un to u in H1

0 (Ω), that the second integral of the right hand side in (2.5)
tends to 0. Now, taking lim sup of both sides of the inequality (2.5) and
recalling (2.3), give us the strong convergence of un to u in H1

0 (Ω). 2

Throughout this paper, two continuous functions u and u, defined on Ω,
are said to be well-ordered if u(x) ≤ u(x), for all x ∈ Ω.

Let f : Ω × R × RN → R be a Carathéodory function. In this paper,
we assume that f satisfies a Bernstein-Nagumo condition on [u, u] for some
well-ordered pair of functions u and u in C(Ω), i.e., there exist a2 ∈ L2(Ω)
and b2 ∈ [0,∞), both of which are allowed to depend on u, u, such that

|f(x, s, p)| ≤ a2(x) + b2|p|2 for all x ∈ Ω, s ∈ [u(x), u(x)], p ∈ RN . (2.6)

With a and f in hand, we establish a sub-supersolution theorem for the
equation

−div[a(x, u)∇u] = f(x, u,∇u) in Ω,

subject to Dirichlet boundary conditions and then apply it to obtain a sub-
supersolution theorem for the problem containing the same differential equa-
tion and the Dirichlet boundary condition replaced by a no-flux one; i.e.,∫

∂Ω
a(ξ, u)∂νudσ = 0, (2.7)

where dσ is the surface measure defined on ∂Ω and ν denotes the outward
normal unit vector field to ∂Ω.

3. The Bernstein-Nagumo condition and its consequences

Motivated by [19, 21] and their references, we wish to establish H1
0 (Ω) a

priori bounds and the boundedness in H1
0 (Ω) for the family of functions

{u} ⊂ H1
0 (Ω) ∩ L∞(Ω) satisfying∣∣∣∣∫

Ω
a(x, u)∇u∇vdx

∣∣∣∣ ≤ ∫
Ω

(a2 + b2|∇u|2)|v|dx, (3.1)

for all v ∈ H1
0 (Ω) ∩ L∞(Ω). Although the results look similar to those

in [21], they may not be directly deduced from the results of that paper
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because of the presence of the weight function. However, the proof in [21]
may be used for the case under consideration and we present it in this
section to emphasize the beauty of the test functions used (see [25]) and for
completeness’ sake.

Assume that there are two well-ordered continuous functions u ≤ u.
Let u satisfy (3.1) with u ∈ [u, u]. Fix t > 0. Using the test function
vt = etu

2
u ∈ H1

0 (Ω) ∩ L∞(Ω) gives∫
Ω
etu

2
(2tu2 + 1)|∇u|2dx ≤

∫
Ω
etu

2
(2tu2 + 1)a(x, u)|∇u|2dx

≤
∫

Ω
(a2 + b2|∇u|2)etu

2 |u|dx.

It follows that∫
Ω
etu

2
(2tu2 + 1− b2|u|)|∇u|2dx ≤MetM

2‖a2‖L1(Ω) = C(M),

where

M = max{‖u‖L∞(Ω), ‖u‖L∞(Ω)}.

We have written C(M), instead of C(M, ‖a2‖L1(Ω)), because a2 may itself

depend on M. Noting that etu
2 ≥ 1 and choosing t large, we have the

following theorem.

Theorem 3.1. Let u and u be a well-ordered pair of continuous functions.
Then there exists C > 0, depending on u and u, such that for all u ∈
H1

0 (Ω) ∩ L∞(Ω) which solve (3.1) with u ∈ [u, u],

‖u‖H1
0 (Ω) ≤ C. (3.2)

Theorem 3.2. Let u, u be as in Theorem 3.1. The set {u} ⊂ H1
0 (Ω) ∩

L∞(Ω) of solutions to (3.1) with u ∈ [u, u] is compact in H1
0 (Ω).

Proof. Let {un} be an arbitrary sequence in the set of solutions to (3.1) of
the theorem. Applying Theorem 3.1, we obtain the boundedness in H1

0 (Ω)
of {un}. Assume that

un ⇀ u in H1
0 (Ω),

un → u in L2(Ω),

un → u a.e. in Ω,

for some u ∈ H1
0 (Ω). It is obvious that u ∈ [u, u].
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Using vt = et(un−u)2(un − u) ∈ H1
0 (Ω) ∩ L∞(Ω) as a test function for

(3.1), we have∫
Ω
et(un−u)2(2t(un − u)2 + 1)|∇(un − u)|2dx

≤
∫

Ω
et(un−u)2(2t(un − u)2 + 1)a(x, un)|∇(un − u)|2dx

≤
∫

Ω
et(un−u)2(a2 + b2|∇(un − u)|2)|un − u|dx.

Letting M = ‖u− u‖L∞(Ω) gives∫
Ω
et(un−u)2(2t(un − u)2 + 1− b2|un − u|)|∇(un − u)|2dx

≤ etM2

∫
Ω
a2|un − u|dx.

The right hand side of the inequality tends to 0 for all t > 0 by an application
of Hölder’s inequality. Choosing t large, we obtain the strong convergence
of {un} to u. It is not hard to verify that u is a solution of (3.1). 2

The remark bellow explains how to link the Bernstein-Nagumo condition
to the equation under consideration and inequality (3.1).

Remark 3.1. Let u and u, with u ≤ u, be two given continuous functions
and let f satisfy a Bernstein-Nagumo condition on [u, u]. If u ∈ [u, u] is a
solution of

| − div[a(x, u)∇u]| ≤ |f(x, u,∇u)|

in the classical sense, then (3.1) is obviously true; therefore, (3.2) holds and
the set of such functions {u} is compact in H1

0 (Ω).

4. A sub-supersolution theorem for Dirichlet boundary problems

During the last several years we have studied sub-supersolution theorems for
boundary value problems (and other types of boundary conditions, like Neu-
mann or Robin); see [15, 16, 18, 20, 19]. In these papers, we paid attention
to the case that the principal part does not depend on u. Hence, the pres-
ence of the weight a(x, u) makes the results in this paper somewhat more
general, although the arguments used to verify them are not significantly
more complicated.

Let us recall the concepts of weak subsolution, supersolution and solution
to the problem{

−div[a(x, u)∇u] = f(x, u,∇u) in Ω,
u = 0 on ∂Ω.

(4.1)
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Definition 4.1. The function u ∈ H1(Ω) is called a weak subsolution (su-
persolution) of (4.1) if, and only if:

i. u|∂Ω ≤ (≥)0,

ii. for all nonnegative functions v ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω
a(x, u)∇u∇vdx ≤ (≥)

∫
Ω
f(x, u,∇u)dx.

Definition 4.2. The function u ∈ H1
0 (Ω) is a weak solution if, and only if,∫

Ω
a(x, u)∇u∇vdx =

∫
Ω
f(x, u,∇u)vdx

for all v ∈ H1
0 (Ω) ∩ L∞(Ω).

We have the theorem.

Theorem 4.1. Assume that (4.1) has a subsolution u and a supersolution
u, both of which are in C1(Ω). Assume further that

i. u ≤ u in Ω,

ii. f satisfies a Bernstein-Nagumo condition on [u, u].

Then, (4.1) has a solution u ∈ C1(Ω).

The proof of this theorem is a combination of arguments used in [15, 16,
18], where the dependence of f on the gradient term ∇u was not assumed
and those in [19], where f may depend upon ∇u.
Proof of Theorem 4.1. Define

hn(p) :=

{
p |p| ≤ n
np
|p| |p| > n

for all n ≥ 1, p ∈ RN ,

and
Tu := max{min{u, u}, u} for all u ∈ H1

0 (Ω).

It is obvious that T : H1
0 (Ω) → H1

0 (Ω) is continuous and T (H1
0 (Ω)) is

bounded in L∞(Ω). Hence, the map AT , defined in (2.4), is of class (S+) by
Lemma 2.1.

Consider the map Ln : H1
0 (Ω)→ H−1(Ω), defined by

〈Lnu, v〉 :=

∫
Ω
a(x, Tu)∇u∇vdx−

∫
Ω
f(x, Tu, hn(∇Tu))vdx.

It follows from the continuity of T and AT and the growth condition of f in
(2.6) that Ln is demicontinuous; i.e. if um → u in H1

0 (Ω) as m→∞, then

lim
m→∞

〈Lnum, v〉 = 〈Lnu, v〉.
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Moreover, sinceAT is of class (S+), so is Ln because of (2.6). Moreover, since
the weight a is such that a ≥ 1, Ln is coercive. Employing the topological
degree defined by Browder [3] and arguing as in [19], we can find a zero of
Ln in H1

0 (Ω), called un. In other words, un is a solution of{
−div[a(x, Tun)∇un] = f(x, Tun, hn(∇Tun)) in Ω,

un = 0 on ∂Ω.
(4.2)

We next prove that un ∈ [u, u], for n sufficiently large. In fact, using the
test function v = (un − u)+ ∈ H1

0 (Ω) in (4.2) gives∫
Ω
a(x, u)∇un∇(un − u)+dx =

∫
Ω
a(x, Tun)∇un∇(un − u)+dx

=

∫
Ω
f(x, Tun, hn(∇Tun))(un − u)+dx

=

∫
Ω
f(x, u, hn(∇u))(un − u)+dx.

We now consider n so large such that

n ≥ max{‖∇u‖L∞(Ω), ‖∇u‖L∞(Ω)} (4.3)

and therefore

hn(∇u) = ∇u.

This implies∫
Ω
a(x, u)∇un∇(un − u)+dx =

∫
Ω
f(x, u,∇u)(un − u)+dx

≤
∫

Ω
a(x, u)∇u∇(un − u)+dx

and ∫
Ω
a(x, u)∇|(un − u)+|2dx ≤ 0.

We have obtained un ≤ u a.e. in Ω. Similarly, with n satisfying (4.3), un ≥ u.
Since un ∈ [u, u], Tun = un when n is large. For such n, un solves{

−div[a(x, un)∇un] = f(x, un, hn(∇un)) in Ω,
un = 0 on ∂Ω.

(4.4)

Noting that |hn(p)| ≤ |p| for all p ∈ RN , we see that un satisfies (3.1). Hence,
by Theorem 3.1 and Theorem 3.2, un → u in H1

0 (Ω) for some function u,
which is obviously a solution to (4.1). Moreover, the zero boundary value
of u and the uniform boundedness of u imply that u ∈ C1(Ω) (see [12]). 2
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Remark 4.1. The C1 requirements for the pair of sub-supersolution in
Theorem 4.1 is necessary because of (4.3). In the case that f does not
depend on ∇u, this smoothness condition can be relaxed.

By a simple substitution, say v = u− c for any constant c, we have the
following theorem.

Theorem 4.2. Assume that{
−div[a(x, u)∇u] = f(x, u,∇u) in Ω,

u = c on ∂Ω
(4.5)

has a subsolution u and a supersolution u, both of which are in C1(Ω).
Assume further that

i. u ≤ u in Ω,

ii. f satisfies a Bernstein-Nagumo condition on [u, u].

Then, (4.5) has a solution u ∈ C1(Ω).

In the theorem above, u ∈ H1(Ω) is a subsolution of (4.5) if and only if
v = u− c is a subsolution of{

−div[a(x, v + c)∇v] = f(x, v + c,∇v) in Ω,
v = 0 on ∂Ω.

The concepts of supersolution and solution to (4.5) are defined in the same
manner.

5. A sub-supersolution theorem for no-flux problems

In this section, we are concerned with
−div[a(x, u)∇u] = f(x, u,∇u) in Ω,

u = constant on ∂Ω,∫
∂Ω
a(ξ, u)∂νdσ(ξ) = 0,

(5.1)

where the constant value of u on ∂Ω is not specified. This suggests to use
the functional space

V = {v ∈ H1(Ω) | v|∂Ω = constant} (5.2)

to study (5.1).
If u ∈ C2(Ω) ∩ C1(Ω) is a classical solution to{

−div[a(x, u)∇u] = f(x, u,∇u) in Ω,
u = c on ∂Ω,

(5.3)
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where c is a constant, then∫
∂Ω
a(ξ, c)∂νudσ = −

∫
Ω
f(x, u,∇u)dx (5.4)

by the divergence theorem. We have the following lemma.

Lemma 5.1. If u ∈ H1(Ω)∩L∞(Ω) solves equation (5.3) in the weak sense,
the identity (5.4) is still true.

Proof. Since u ∈ L∞(Ω) and u|∂Ω, u belongs to C1(Ω) (see [12]). This
explains the well-definedness of the boundary expression in the left hand
side of (5.4).

For n ≥ 1, define the function

αn(s) =

{
s 0 ≤ s < 1

n
1/n s ≥ 1

n ,

and for each x ∈ Ω, let δ(x) denote the Euclidean distance from x to ∂Ω. It
follows from the smoothness of ∂Ω, that δ is smooth on a neighborhood of
∂Ω (see [10]). Using

vn = αn ◦ δ ∈ H1
0 (Ω) ∩ L∞(Ω)

as a test function in the variational formulation of (5.3) gives

n

∫
Ω 1

n

a(x, u)∇u∇vndx = n

∫
Ω
f(x, u,∇u)vndx (5.5)

for all n ≥ 1, where

Ω 1
n

=

{
x ∈ Ω | δ(x) <

1

n

}
.

It is obvious that

lim
n→∞

n

∫
Ω
f(x, u,∇u)vndx =

∫
Ω
f(x, u,∇u)dx. (5.6)

We next evaluate the limit of the left hand side of (5.5) as n → ∞ by the
method of substitution. For each n large, define the map P that sends
x ∈ Ω 1

n
to (ξ, ρ), where ξ is the projection of x on ∂Ω and ρ = δ(x). The

map P−1(ξ, ρ) is given by

(ξ, ρ) 7→ ξ − ρν(ξ).

Thus, if we let Tξ be the tangent space to ∂Ω at ξ and B(ξ) be the or-
thonormal basis of RN , defined by an orthonormal basis of Tξ and ν(ξ),
then

matB(ξ)(DP
−1(ξ, ρ)) =

[
Id+ ρDν(ξ) 0

∗ 1

]
.
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Hence,

detDP−1(ξ, ρ) = 1 + ρdivDν(ξ) +O(ρ2) = 1 +O(ρ) = 1 +O

(
1

n

)
,

because divDν(ξ) does not depend on n. We now write the left hand side of
(5.5) as

n

∫
Ω 1

n

a(x, u)∇u∇vndx

= n

∫
∂Ω

∫ 1
n

0
a(ξ + ρν(ξ), u)∇u(ξ + ρν(ξ))α′n(ρ)∇δ(ξ + ρν(ξ))

×detDP−1(ξ + ρν(ξ))dρdσ

= n

∫
∂Ω

∫ 1
n

0
a(ξ + ρν(ξ), u)∇u(ξ + ρν(ξ))α′n(ρ)∇δ(ξ + ρν(ξ))

×(1 +O

(
1

n

)
dρdσ.

We observe that when x is in Ω 1
n

, α′n(δ(x)) = 1 and ∇(δ(x)) = −ν(ξ), hence

we may let n→∞ to obtain

lim
n→∞

n

∫
Ω 1

n

a(x, u)∇u∇vndx = −
∫
∂Ω
a(ξ, u)∇uνdσ.

This, together with (5.5) and (5.6), shows (5.4). 2

We next discuss the concept of subsolution and supersolution for (5.1).

Definition 5.1. The function u ∈ V ∩C1(Ω) is called a subsolution (super-
solution) to (5.1) if, and only if,

i. for all nonnegative functions v ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω
a(x, u)∇u∇vdx ≤ (≥)

∫
Ω
f(x, u,∇u)vdx,

ii. ∫
∂Ω
a(ξ, u)∂νudσ ≤ (≥)0.

Definition 5.2. The function u ∈ V ∩ C1(Ω) is called a solution to (5.1)
if, and only if,

i. for all functions v ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω
a(x, u)∇u∇vdx =

∫
Ω
f(x, u,∇u)vdx,
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ii. ∫
∂Ω
a(ξ, u)∂νudσ = 0.

The following is our main result in this section.

Theorem 5.1. Assume that (5.1) has a subsolution u and a supersolution
u. Assume further that

i. u ≤ u in Ω,

ii. f satisfies a Bernstein-Nagumo condition on [u, u].

Then, (5.1) has a solution u ∈ C1(Ω).

Proof. Let α = u|∂Ω and β = u|∂Ω. For each t ∈ [0, 1], define

ct = tβ + (1− t)α.

Applying Theorem 4.2, we can find ut ∈ C1(Ω) solving{
−div[a(x, ut)∇ut] = f(x, ut,∇ut) in Ω,

ut = ct on ∂Ω.
(5.7)

Let Ut be the set of such solutions ut and U = ∪t∈[0,1]Ut. Let U1 (respectively
U2) denote the set of solution ut ∈ V of (5.7) so that∫

∂Ω
a(ξ, u)∂νdσ < (respectively >)0.

Suppose that (5.1) has no solution staying between u and u. Then

U = U1 ∪ U2.

Theorem 3.2 implies that U is compact in H1(Ω). This, together with
Lemma 5.1, shows that both U1 and U2 are also compact in H1(Ω).

If u ∈ U0 then u = u on ∂Ω and, since u ≥ u,∫
∂Ω
a(ξ, u)∂νudσ ≤

∫
∂Ω
a(ξ, u)∂νudσ ≤ 0,

and hence, because of our assumption,∫
∂Ω
a(ξ, u)∂νudσ < 0.

Similarly, if u ∈ U1, then ∫
∂Ω
a(ξ, u)∂νudσ > 0.
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Let
t∗ = sup{t ∈ [0, 1] |ut ∈ U1}.

The compactness of U1 shows that there exists a solution ut∗ ∈ U1 ∩ Ut∗ .
Considering ut∗ and u as a pair of subsolutions and supersolutions to (5.7)
with t ∈ (t∗, 1) gives us a decreasing sequence of solution u(n) to (5.7) with
u(n)|∂Ω ↘ ct∗ with u(n) ≥ ut∗ . Denote the limit of this sequence by vt∗ .
The compactness of U2 implies that vt∗ ∈ U2 ∩ Ut∗ , and we now get the
contradiction

0 <

∫
∂Ω
a(x, vt∗)∂νvt∗dσ ≤

∫
∂Ω
a(x, ut∗)∂νut∗dσ < 0,

which completes the proof. 2

6. A generalization of the no-flux problem

We shall next derive a result similar to Theorem 5.1 for the more general
boundary value problem

−div[a(x, u)∇u] = f(x, u,∇u), in Ω,
u = c on ∂Ω

Φ(u) = 0,
(6.1)

where
Φ : H2(Ω)→ R

is a functional satisfying assumptions spelled out below in Assumption 6.1.

Remark 6.1. As usual, a weak solution u of (6.1) belongs to H1(Ω). As-
sume that c = u|∂Ω. Denoting by b the map x 7→ a(x, u(x)), we can apply
the standard rules in differentiation to verify that u satisfies the problem (in
the unknown v) −∆v =

f(x, u,∇u) +∇b∇u
b

in Ω,

v = c on ∂Ω.

Since any solution of the problem above is in H2(Ω) (see [10]), so is u.
This explains how to define the term Φ(u) in (6.1) when the domain of Φ is
H2(Ω).

The following lemma will be useful.

Lemma 6.1. Assume that Φ is continuous. Let u and u be a well-ordered
pair of continuous functions on Ω. Let U− (resp. U+) be the set of all
solutions in [u, u] to{

−div[a(x, u)∇u] = f(x, u,∇u) in Ω,
u = constant on Ω,

(6.2)
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with Φ(u) ≤ (resp. ≥)0. If f satisfies a Bernstein-Nagumo condition on
[u, u], then U− and U+ are both compact in H1(Ω).

Proof. Let {un} be a sequence in U−. Theorem 3.1 and 3.2 help us find
a solution u of (6.2) with un → u in H1(Ω). Repeating the arguments
in Remark 6.1, we see that u ∈ H2(Ω) and therefore Φ(u) is well-defined.
Hence, proving Φ(u) ≤ 0 is sufficient to the compactness of U−.

For all n ≥ 1, it is not hard to see that un solves −∆un =
f(x, un,∇un) +∇bn∇un

bn
in Ω,

un = cn on ∂Ω.

where cn is a constant and bn(x) = a(x, un(x)). Letting vn,m = un− um, we
have {

−∆vn,m = gn,m in Ω,
un,m = cn − cm on ∂Ω.

where

gn,m(x) =
f(x, un,∇un) +∇bn∇un

bn
− f(x, um,∇um) +∇bm∇um

bm
.

It follows from the continuity of a, the Bernstein-Nagumo requirement on f
and the Cauchy property of {un} in H1(Ω) that ‖gm,n‖L2(Ω) → 0. Applying
the H2 regularity results in [10], we have ‖vm,n‖H2(Ω) → 0, which shows
{un} is Cauchy in H2(Ω). Its limit must be u. By the continuity of Φ,
Φ(u) ≤ 0.

The compactness of U+ can be proved in the same manner. 2

We again need the notion of sub- and supersolution for (6.1).

Definition 6.1. A function u ∈ V is called a subsolution (resp. supersolu-
tion) of (6.1) if, and only if:

i. for all nonnegative functions v ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω
a(x, u)∇u∇vdx ≤ (≥)

∫
Ω
f(x, u,∇u)vdx,

ii. Φ(u) ≤ (≥) 0.

In the definition above, we employ again the functional space V in the
previous section.

We shall impose the following assumption on the functional Φ.

Assumption 6.1. The functional Φ is continuous and satisfies: If u, v ∈
H2(Ω) are such that u ≤ v in Ω and u ≡ v on ∂Ω, then Φ(u) ≥ Φ(v).
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We next establish a theorem similar to the result about the no-flux prob-
lem (assuming conditions as before on f)

Theorem 6.1. Assume there exist functions u, u ∈ V ∩ C1(Ω) which are,
respectively, sub- and supersolutions of (6.1) and satisfy

u(x) ≤ u(x), x ∈ Ω.

Let the functional Φ satisfy Assumption 6.1 and assume that |f | satisfies
a Bernstein-Nagumo condition on [u, u]. Then there exists a solution u of
(6.1) such that

u(x) ≤ u(x) ≤ u(x), x ∈ Ω.

Proof. Let
uλ(x) := (1− λ)u(x) + λu(x), x ∈ Ω

and for any λ ∈ [0, 1] consider the Dirichlet boundary value problem{
−div[a(x, u)∇u] = f(x, u,∇u), in Ω,

u = uλ, on ∂Ω.
(6.3)

Since u and u are, respectively sub- and supersolutions of (6.1), then for any
such λ they are, respectively, sub- and supersolutions of (6.3), as follows
from the definitions. We may therefore conclude from Theorem 4.2 that
each problem (6.3) has a solution u ∈ V with

u(x) ≤ u(x) ≤ u(x), x ∈ Ω.

Let us denote, for each such λ, by Uλ the set of all such solutions. It follows
from Theorem 3.2 that

U := ∪0≤λ≤1Uλ

is a compact family in H1(Ω). By Remark 6.1, we have that U ⊂ H2(Ω).
We claim that there exists λ ∈ [0, 1] and a solution u ∈ Uλ of (6.3) such that

Φ(u) = 0

and hence that u is a solution of (6.1). This we argue indirectly. As in
Lemma 6.1, let

U− = {u ∈ U | 0 < Φ(u)}

and
U+ = {u ∈ U |Φ(u) > 0},

These two sets are nonemppty because Assumption 6.1 implies u0 ∈ U− and
u1 ∈ U+. Further, if we let

λ̄ = sup{λ ∈ [0, 1] |uλ ∈ U−},
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then, using the compactness of the families U− and U+, Theorem 4.2 and
our assumption, we conclude that for this value λ̄ there must exist solutions
u, v ∈ Uλ̄ with u ∈ U− and v ∈ U+ such that

u(x) ≤ v(x), x ∈ Ω.

This, however, will imply the impossible statement

0 < Φ(u) ≤ Φ(v) < 0.

The contradiction, arrived at, concludes the proof. 2

Remark 6.2. Let u, u and f be as in Theorem 6.1 with the condition that
both u and u take constant values on ∂Ω can be generalized to the case that
u|∂Ω and u|∂Ω are the traces of two H2(Ω) functions on ∂Ω. By the same
arguments above, we can find a solution in H2(Ω) to{

−div[a(x, u)∇u] = f(x, u,∇u) in Ω,
Φ(u) = 0

with u|∂Ω being a convex combination of u|∂Ω and u|∂Ω.
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