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Abstract - Using a groundstate transformation, we give a new proof of
the optimal Stein–Weiss inequality of Herbst∫
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where Iα is the Riesz potential, 0 < α < N and 0 < s < min(N, 2). We also
prove the optimality of the constants. The method is flexible and yields a
sharp expression for the remainder terms in these inequalities.
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1. Introduction

E. Stein and G. Weiss [21] have proved that for every N ≥ 1 and α ∈ (0, N)
there exists a constant C > 0 such that for every ϕ ∈ L2(RN ),∫
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∫
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dy dx ≤ C
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|ϕ|2, (1.1)

where Iα is the Riesz potential defined for α ∈ (0, N) and x ∈ RN \ {0} by

Iα(x) =
Aα
|x|N−α

,
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and the constant Aα is

Aα :=
Γ
(
N−α

2

)
2απN/2Γ

(
α
2

) ,
so that the Riesz potentials satisfy the semigroup property Iα ∗ Iβ = Iα+β

for 0 < α < N and 0 < β < N − α, see [19, p. 19] or [14, chapter 1.1].
The optimal constant in Stein–Weiss inequality (1.1) was computed by

I. Herbst [13], who proved the following

Theorem A. (I. Herbst, 1977 [13, Theorem 2.5]) For every N ≥ 1 and
α ∈ (0, N) it holds

CN,α,0 := sup
ϕ∈L2(RN )

‖ϕ‖L2≤1

∫
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∫
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ϕ(x)

|x|
α
2

Iα(x− y)
ϕ(y)

|y|
α
2

dx dy =
1

2α

(Γ(N−α4 )

Γ(N+α
4 )

)2
.

Herbst’s proof consists in writing the associated linear operator on the
space L2(RN ) as a convolution for the dilation group of simpler operators.
A close inspection of his proof suggests that the equality is not achieved and
that almost extremizers of the inequality should be similar to the function
x ∈ RN 7→ |x|−N/2. The proof was rediscovered independently under the
name of Pitt’s inequality by W. Beckner [4], who also obtained in [5] for N ≥
3 the optimal constant for the combination of the Stein–Weiss inequality
with the classical Hardy inequality,∫

RN
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dx dy ≤ CN,α,1
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which holds for every ϕ ∈ Ḣ1(RN ). Here Ḣ1(RN ) is the homogeneous
Sobolev space, obtained by completion of C∞c (RN ) with respect to the norm
‖·‖Ḣ1 defined by ‖ϕ‖2

Ḣ1 =
∫
RN |∇ϕ|

2 dx.

Theorem B. (W. Beckner, 2008 [5, Theorem 4]) For every N ≥ 3 and
α ∈ (0, N), it holds

CN,α,1 := sup
ϕ∈Ḣ1(RN )

‖∇ϕ‖L2≤1

∫
RN

∫
RN

ϕ(x)

|x|
α+2
2

Iα(x− y)
ϕ(y)

|y|
α+2
2

dx dy

=
1

2α−2

( Γ(N−α4 )

(N − 2)Γ(N+α
4 )

)2
.

In the present note, we give a simple new proof of Theorems A and B.
Our proof is based on groundstate transformations in the spirit of Agmon–
Allegretto–Piepenbrink [1, 3, 18], which allow to derive sharp remainder
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representations in both inequalities. Herbst’s inequality (Theorem A) can
be deduced from the following identity

Theorem A′. If N ≥ 1 and α ∈ (0, N), then for every ϕ ∈ L2(RN ) it holds

CN,α,0
∫
RN
|ϕ|2 =

∫
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∫
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2

∣∣ϕ(x)|x|
N
2 − ϕ(y)|y|

N
2

∣∣2 dx dy.

Beckner’s inequality (Theorem B) is a consequence of its quantitative
version:

Theorem B′. If N ≥ 3 and α ∈ (0, N), then for every ϕ ∈ Ḣ1(RN ) it holds

CN,α,1
(∫
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∫
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)
=

∫
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2
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2
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2 − ϕ(y)|y|
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2

∣∣2 dx dy.

In the limiting case α = 0, Iα is Dirac’s delta and we recover the Agmon–
Allegretto–Piepenbrink groundstate representation [1, 3, 18] for the classical
local Hardy’s inequality,∫

RN
|∇ϕ|2 dx =

(N − 2

2

)2
∫
RN

|ϕ(x)|2

|x|2
dx+

∫
RN

∣∣∇(|x|N−2
2 ϕ(x)

)∣∣2
|x|N−2

dx.

Our proof of Theorems A′ and B′ combines previously known ground-
state representations with a novel version of a groundstate representations
which is designed to handle the nonlocal term on the right-hand side. Our
method is flexible enough to establish the optimal constants and sharp re-
mainder representations in a family of nonlocal Hardy type inequalities,
which includes Theorems A′ and B′ as the limit cases. We prove

Theorem C. Let N ≥ 1, α ∈ (0, N), s ∈ (0, 2) and s < N . Then

CN,α,s := sup
ϕ∈Ḣs/2(RN )

‖ϕ‖
Ḣs/2

≤1

∫
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∫
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|x|
α+s
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2

dx dy

=
1

2α+s

(Γ
(
N−s

4

)
Γ
(
N−α

4

)
Γ
(
N+s

4

)
Γ
(
N+α

4

))2
.
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Here Ḣs(RN ) denotes the homogeneous Sobolev space obtained by com-
pletion of C∞c (RN ) with respect to the norm ‖·‖

Ḣ
s
2

defined by

‖ϕ‖2
Ḣ
s
2

= DN,s
∫
RN

∫
RN

∣∣ϕ(x)− ϕ(y)
∣∣2

|x− y|N+s
dx dy,

where

DN,s =
Γ
(
N+s

2

)
s

22−sπN/2Γ
(
1− s

2

) .
The constant DN,s ensures that lims→0‖ϕ‖Ḣs/2 = ‖ϕ‖L2 and lims→2‖ϕ‖Ḣs/2

= ‖∇ϕ‖L2 [15]. In the limit α = 0, Iα is Dirac’s delta and Theorem C yields
the fractional Hardy inequality,

∫
RN

|ϕ(x)|2

|x|s
dx ≤ CN,0,s‖ϕ‖Ḣ s

2
, (1.2)

obtained by I. Herbst [13] and independently by D. Yafaev [22].

The quantitative version of Theorem C is

Theorem C′. Let N ≥ 1, α ∈ (0, N), s ∈ (0, 2) and s < N . Then for all
ϕ ∈ Ḣs/2(RN ), it holds
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)
.

The groundstate representation of Theorem C′ implies that the infimum
in Theorem C is never achieved in Ḣs/2(RN ). In fact, the form of the re-
mainder terms suggests that optimality in Theorem C is related to functions
ϕ that satisfy ϕ(x) ≈ |x|−(N−s)/2 for x ∈ RN \ {0}.

In the limiting case α = 0 the nonlocal remainder term was obtained by
R. Frank, E. Lieb and R. Seiringer [11, section 4] (see also [12] and [6]) in a
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nonlocal groundstate representation for the fractional Hardy inequality,

DN,s

(∫
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∫
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∣∣ϕ(x)− ϕ(y)
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|x− y|N+s
dx dy

−
∫
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∫
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N−s
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|x|

N−s
2 |x− y|N+s|y|

N−s
2

dx dy

)

=
1

CN,0,s

∫
RN

|ϕ(x)|2

|x|2
dx.

A nonlocal groundstate transformation for a local Schrödinger operator
is derived in Section 2, from which Theorems A, A′, B and B′ are deduced in
Section 3. A general version of a groundstate representations for fractional
operators is then obtained in Section 4 below. The proof of Theorem C and
C′ is given in Section 5.

2. A nonlocal groundstate representation for a Schrödinger oper-
ator

Recall that if u > 0 is a solution of the local Schrödinger equation

−∆u+ V u = 0 in RN , (2.1)

then for all ϕ ∈ C∞c (RN ) it holds∫
RN
|∇ϕ2|+

∫
RN

V ϕ2 =

∫
RN

∣∣∣∇(ϕ
u

)∣∣∣2u2. (2.2)

This identity can be derived by simply testing the equation (2.1) against ϕ2

u
and by integrating by parts.

Identity (2.2) is known as the groundstate representation of the Schrödin-
ger operator −∆+V with respect to a positive solution u. It was discovered
independently by W. Allegretto [3] and J. Piepenbrink [18]. We refer the
readers to the lecture notes [1, 2] by S. Agmon for a review of powerful ap-
plications of the groundstate representation in the context of general second
order elliptic operators on Riemannian manifolds.

In this section we are going to derive a version of the groundstate rep-
resentation for the nonlocal equation with a Schrödinger operator and an
additional integral operator in the right-hand side,

−∆u+ V u =

∫
RN

K(·, y)u(y) dy in RN .

Nonlocal linear equation with such structure occur, for instance, in the anal-
ysis of nonlinear Choquard (Schrödinger–Newton) equations, where ground-
state representations become an important tool for proving decay bounds
on the solutions and nonlinear Liouville theorems [16].
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Proposition 2.1. Let Ω ⊂ RN , u ∈ H1
loc(Ω), A ∈ L∞loc(Ω; Lin(RN ;RN )) be

self-adjoint almost everywhere in Ω, V ∈ L1
loc(Ω) and K : Ω × Ω → [0,∞)

measurable such that for every x, y ∈ Ω, K(x, y) = K(y, x). If V u ∈ L1
loc(Ω),

u−1 ∈ L∞loc(Ω) and for every nonnegative ψ ∈ C1
c (Ω),∫

Ω
A[∇u] · ∇ψ + V uψ =

∫
Ω

∫
Ω
K(x, y)u(x)ψ(y) dy dx,

then for every ϕ ∈ C1
c (Ω),

∫
Ω
A[∇ϕ] · ∇ϕ+ V |ϕ|2 =

∫
Ω

∫
Ω
K(x, y)ϕ(x)ϕ(y) dy dx

+

∫
Ω
A
[
∇
(ϕ
u

)]
· ∇
(ϕ
u

)
+

1

2

∫
Ω

∫
Ω
K(x, y)u(x)u(y)

∣∣∣ϕ(x)

u(x)
− ϕ(y)

u(y)

∣∣∣2 dy dx.

In the local case s = 2 an adaptation of groundstate representation
(2.2) to distributional solutions u ∈ L1

loc(RN ) and singular potentials V ∈
L1

loc(RN ) was developed in [8, Lemma 1.4] (see also [7, Theorem 2.12], [10,
Lemma B.1], [16, Proposition 3.1]).

Proof of Proposition 2.1. First note that since A is locally bounded and
V u ∈ L1(Ω), by classical regularization arguments, we can take nonnegative
and compactly supported ψ ∈ H1(Ω)∩L∞(Ω) as test functions. In particu-
lar, we can thus take ψ = ϕ2/u as a test function. We compute, since A(x)
is self-adjoint for almost every x ∈ Ω, that

A[∇ϕ] · ∇ϕ = A[∇u] · ∇
(ϕ2

u

)
+A

[
∇
(ϕ
u

)]
· ∇
(ϕ
u

)
and since K is symmetric,∫

Ω

∫
Ω
K(x, y)u(x)

ϕ(y)2

u(y)
dy dx

=
1

2

∫
Ω

∫
Ω
K(x, y)

(
u(x)

ϕ(y)2

u(y)
+ u(y)

ϕ(x)2

u(x)

)
dy dx

=

∫
Ω

∫
Ω
K(x, y)ϕ(x)ϕ(y) dy dx

+
1

2

∫
Ω

∫
Ω
K(x, y)u(x)u(y)

(ϕ(x)

u(x)
− ϕ(y)

u(y)

)2
dy dx;

this yields the conclusion. 2
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3. Proofs of the inequalities of Herbst and Beckner

We first prove the quantitative version of Herbst’s inequality:

Proof of TheoremA′. Take u(x) = |x|−
N
2 and

K(x, y) =
Iα(x− y)

|x|
α
2 |y|

α
2

.

By the semigroup property of the Riesz potentials (see [19]), for every y ∈
RN \ {0},∫

RN\{0}
K(x, y)u(x) dx

=

∫
RN\{0}

1

|x|
N+α

2

Iα(x− y)
1

|y|
α
2

dy =
1

2α

(Γ(N−α4 )

Γ(N+α
4 )

)2 1

|y|
N
2

.

By Proposition 2.1 with Ω = RN \ {0}, A = 0 and V = 1
2α

Γ(N−α
4

)2

Γ(N+α
4

)2
, we have

the conclusion for ϕ ∈ C1
c (RN \ {0}). If ϕ ∈ L2(RN ), one uses a classical

density argument, passing to the limit with the help of the inequality. 2

We now show how Theorem A can be deduced from Theorem A′.

Proof of TheoremA. Take η ∈ C
(
(0,∞); [0, 1]

)
such that η = 1 on (0, 1),

η = 0 on (2,∞). Define for λ ≥ 1,

uλ(x) = η
( |x|
λ

)
η
( 1

λ|x|

) 1

|x|
N
2

.

and estimate∫
RN

∫
RN

Iα(x− y)

|x|
N
2 |y|

N
2

∣∣uλ(x)|x|
N
2 − uλ(y)|y|

N
2

∣∣2 dx dy

≤
∫
R2N\(Bλ\B1/λ)2\(B1/2λ∪RN\B2λ)2

Iα(x− y)

|x|
N
2 |y|

N
2

dx dy

≤ 2

∫
B2λ

∫
RN\Bλ

Iα(x− y)

|x|
N
2 |y|

N
2

dx dy + 2

∫
B1/λ

∫
RN\B1/2λ

Iα(x− y)

|x|
N
2 |y|

N
2

dx dy.

By scale invariance, it suffices to note that∫
B2

∫
RN\B1

1

|x|
N
2 |x− y|N−α|y|

N
2

dx dy <∞,

to show that

sup
λ≥1

∫
RN

∫
RN

Iα(x− y)

|x|
N
2 |y|

N
2

∣∣uλ(x)|x|
N
2 − uλ(y)|y|

N
2

∣∣2 dx dy <∞.
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Since

lim
λ→∞

∫
RN
|uλ|2 =∞,

the conclusion follows. 2

Now we consider Beckner’s inequality:

Proof of TheoremB′. We begin as in the proof of Theorem A′, taking for

every x, y ∈ RN \ {0}, u(x) = |x|−
N−2

2 and

K(x, y) =
Iα(x− y)

|x|
α+2
2 |y|

α+2
2

.

We compute now, by the semigroup property of the Riesz potentials, for
every y ∈ RN \ {0},

∫
RN\{0}

K(x, y)u(x) dx =
1

2α

(Γ(N−α4 )

Γ(N+α
4 )

)2 1

|y|
N+2

2

.

On the other hand, we have for every x ∈ RN \ {0},

−∆u(x) =
(N − 2

2

)2 1

|x|
N+2

2

,

the conclusion follows from Proposition 2.1, taking

A(x) =
1

2α−2

( Γ(N−α4 )

(N − 2)Γ(N+α
4 )

)2
and V = 0

and a density argument. 2

We finally show how Theorem B follows:

Proof of TheoremB. Choose η as in the proof of Theorem A, and define
now

uλ(x) = η
( |x|
λ

)
η
( 1

λ|x|

) 1

|x|
N−2

2

.

One has, as in the proof of Theorem A,

sup
λ≥1

∫
RN

∫
RN

Iα(x− y)

|x|
N+α

2 |y|
N+α

2

(
uλ(x)|x|

N−2
2 − uλ(y)|y|

N−2
2
)2

dx dy <∞

and

lim
λ→∞

∫
RN
|∇uλ|2 =∞.
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In order to conclude, note that if λ ≥ 1,∫
RN

∣∣∇(|x|
N−2

2 uλ(x))
∣∣2

|x|N−2
dx

=

∫
B2λ\Bλ

η′(|x|/λ)2

λ2|x|N−2
dx+

∫
B1/λ\B1/2λ

λ2η′(λ/|x|)2

|x|N+2
dx

=

∫
B2\B1

η′(|z|)2

|z|N−2
dz +

∫
B1\B1/2

η′(1/|z|)2

|z|N+2
dz,

whose right-hand side does not depend on λ. 2

4. A nonlocal groundstate representation for the fractional Lapla-
cian

A version of a nonlocal groundstate representation for the fractional Lapla-
cian (−∆)s/2 with 0 < s < 2 was introduced by R. Frank, E. Lieb and
R. Seiringer in [11, section 3] and [12], where (amongst other things) it was
used to obtain an alternative proof of the fractional Hardy’s inequality (1.2).

In this section we are going to derive a version of the groundstate rep-
resentation for the nonlocal equation with a fractional Laplacian in the left
and an integral operator in the right-hand side.

Proposition 4.1. Let N ≥ 1, s ∈ (0, 2) and s < N . Let K : RN ×
RN → [0,∞) be measurable symmetric, that is K(x, y) = K(y, x) for almost
every x, y ∈ RN . Let u ∈ L1

loc(RN ) and assume that∫
RN

u(x)

1 + |x|N+s
dx <∞ and

∫
RN

K(·, y)u(y) dy ∈ L1
loc(RN ).

If for every nonnegative ψ ∈ C∞c (RN ) it holds∫
RN

∫
RN

(
u(x)− u(y)

)(
ψ(x)− ψ(y)

)
|x− y|N+s

dx dy=

∫
RN

∫
RN
K(x, y)u(y)ψ(x) dy dx,

and u−1 ∈ L∞loc(RN ), then for every ϕ ∈ Ḣs/2(RN ) it holds

∫
RN

∫
RN

|ϕ(x)− ϕ(y)|2

|x− y|N+s
dx dy =

∫
RN

∫
RN

K(x, y)ϕ(x)ϕ(y) dy dx

+
1

2

∫
RN

∫
RN

K(x, y)u(x)u(y)
(ϕ(x)

u(x)
− ϕ(y)

u(y)

)2
dy dx

+

∫
RN

∫
RN

∣∣∣ϕ(x)

u(x)
− ϕ(y)

u(y)

∣∣∣2 u(x)u(y)

|x− y|N+s
dx dy.
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In the case K(x, y) = 0 the above result improves upon [11, Propo-

sition 4.1], where instead of
∫
RN

u(x)
1+|x|N+s dx < ∞ a stronger assumption

u ∈ Hs/2(RN ) was required. A similar improvement was obtained recently
in [9, Lemma 2.10]. In Section 5 we will use the groundstate representa-

tion with respect to a function u(x) = |x|−(N−s)/2 6∈ H
s/2
loc (RN ), so such

improvement is indeed important.

Proof of Proposition 4.1. First note that since u−1 ∈ L∞loc(RN ), for
arbitrary ϕ ∈ C∞c (RN ) we have ψ = ϕ2/u ∈ L∞c (RN ).

Let η ∈ C∞c (RN ) be such that supp η ⊂ B1,
∫
RN η = 1 and η ≥ 0. For

δ > 0 and x ∈ RN , let ηδ(x) = δ−Nη(x/δ) and let η̌δ(x) = ηδ(−x). Given

ϕ ∈ C∞c (Ω) and δ > 0, we can thus take ψδ = η̌δ ∗ ϕ2

ηδ∗u ∈ C
∞
c (Ω) as a test

function in the equation. We will handle each of the terms separately.

Since u ∈ L1
loc(RN ), we have ηδ ∗ u → u in L1

loc(RN ) and almost ev-
erywhere in RN as δ → 0. By our assumption and Lebesgue’s dominated
convergence, we obtain

∫
RN

∫
RN

K(x, y)u(x)
(
η̌δ ∗

ϕ2

ηδ ∗ u

)
(y) dy dx

=

∫
RN

(
ηδ ∗

∫
RN

K(x, y)u(x) dx
) ϕ2

ηδ ∗ u
(y) dy

→
∫
RN

∫
RN

K(x, y)u(x)
ϕ2

u
(y) dy dx,

as δ → 0. Since K is symmetric, as in the proof of Proposition 2.1, the
latter could be transformed as

∫
RN

∫
RN

K(x, y)u(x)
ϕ(y)2

u(y)
dy dx

=
1

2

∫
RN

∫
RN

K(x, y)
(
u(x)

ϕ(y)2

u(y)
+ u(y)

ϕ(x)2

u(x)

)
dy dx

=

∫
RN

∫
RN

K(x, y)ϕ(x)ϕ(y) dy dx

+
1

2

∫
RN

∫
RN

K(x, y)u(x)u(y)
(ϕ(x)

u(x)
− ϕ(y)

u(y)

)2
dy dx.
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In the left-hand side, by a change of variable

∫
RN

∫
RN

(
u(x)− u(y)

)((
η̌δ ∗ ϕ2

ηδ∗u(x)
)
−
(
η̌δ ∗ ϕ2

ηδ∗u
)
(y)
)

|x− y|N+s
dx dy

=

∫
RN

∫
RN

∫
RN

(
u(x)− u(y)

)(
ηδ(−z) ϕ2

ηδ∗u(x− z)− ηδ(−z) ϕ2

ηδ∗u(y − z)
)

|x− y|N+s
dz dx dy

=

∫
RN

∫
RN

∫
RN

(
ηδ(w)u(x− w)− ηδ(w)u(y − w)

)( ϕ2

ηδ∗u(x)− ϕ2

ηδ∗u(y)
)

|x− y|N+s
dw dx dy

=

∫
RN

∫
RN

(
(ηδ ∗ u)(x)− (ηδ ∗ u)(y)

)( ϕ2

ηδ∗u(x)− ϕ2

ηδ∗u(y)
)

|x− y|N+s
dx dy.

Similarly to [11, Proposition 4.1], we obtain

∫
RN

∫
RN

(
(ηδ ∗ u)(x)− (ηδ ∗ u)(y)

)( ϕ2

ηδ∗u(x)− ϕ2

ηδ∗u(y)
)

|x− y|N+s
dx dy

=

∫
RN

∫
RN

|ϕ(x)− ϕ(y)|2 −
∣∣ ϕ
ηδ∗u(x)− ϕ

ηδ∗u(y)
∣∣2(ηδ ∗ u)(x) (ηδ ∗ u)(y)

|x− y|N+s
dx dy

→
∫
RN

∫
RN

|ϕ(x)− ϕ(y)|2 −
∣∣ϕ
u (x)− ϕ

u (y)
∣∣2u(x)u(y)

|x− y|N+s
dx dy,

as δ → 0, again by Lebesgue’s dominated convergence theorem. 2

5. Proofs of the inequalities in fractional spaces

In order to deduce the quantitative groundstate representation of Theo-
rem C′ from its more general version of Proposition 4.1.

Proof of TheoremC′. In Proposition 4.1, take

u(x) =
1

|x|
N−s

2

and K(x, y) = CN,α,s
Iα(x− y)

|x|
α+s
2 |y|

α+s
2

.

Since by [15],

DN,s
∫
RN

∫
RN

(
ϕ(x)− ϕ(y)

)(
u(x)− u(y)

)
|x− y|N+s

dx dy =

∫
RN

ϕ̂(ξ) |ξ|s û(ξ) dξ

and

Îγ(ξ) =
1

|ξ|γ
,

where the Fourier transform ϕ̂ is defined for every ξ ∈ RN by

ϕ̂(ξ) =
1

(2π)
N
2

∫
RN

ϕ(x)e−iξ·x dx,
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we compute

DN,s
∫
RN

∫
RN

(
ϕ(x)− ϕ(y)

)(
u(x)− u(y)

)
|x− y|N+s

dx dy

=

∫
RN

ϕ̂(ξ) |ξ|s IN−s
2

(ξ) dξ

= 2s
(Γ
(
N+s

4

)
Γ
(
N−s

4

))2
∫
RN

ϕ̂(ξ) |ξ|s IN+s
2

(ξ) dξ

= 2s
(Γ
(
N+s

4

)
Γ
(
N−s

4

))2
∫
RN

ϕ(x)

|x|
N+s
2

dx.

On the other hand, by the semigroup property of the Riesz potentials
[19], for 0 < α < β < N

1

|x|
α+s
2

(
Iα ∗

1

|x|−
N+α

2

)
= 2−α

(Γ
(
N−α

4

)
Γ
(
N+α

4

))2 1

|x|
N+s
2

.

By Proposition 4.1, we reach the required conclusion for ϕ ∈ C∞c (RN ). If
ϕ ∈ Hs/2(RN ), one uses a classical density argument, passing to the limit
with the help of inequality (1.1). 2

We now show how optimality of the constant CN,α,s can be deduced using
the remainder terms of the groundstate representation of Theorem C′.

Proof of TheoremC from TheoremC′. Take η ∈ C((0,∞); [0, 1]) such
that η = 1 on (0, 1), η = 0 on (2,∞). Define for s ∈ (0, 2) and λ ≥ 1,

uλ(x) := η
( |x|
λ

)
η
( 1

λ|x|

) 1

|x|
N−s

2

.

We shall estimate the remainders in Theorem C′.

For α ∈ (0, N) we obtain

Jα(uλ) :=

∫
RN

∫
RN

Iα(x− y)

|x|
N+α

2 |y|
N+α

2

∣∣uλ(x)|x|
N−s

2 − uλ(y)|y|
N−s

2

∣∣2 dx dy

≤ 2

∫
B2λ

∫
RN\Bλ

Iα(x− y)

|x|
N+α

2 |y|
N+α

2

dx dy

+ 2

∫
B1/λ

∫
RN\B1/2λ

Iα(x− y)

|x|
N+α

2 |y|
N+α

2

dx dy.

By scale invariance, it suffices to note that∫
B2

∫
RN\B1

Iα(x− y)

|x|
N+α

2 |y|
N+α

2

dx dy <∞,
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in order to conclude that

lim sup
λ→∞

Jα(uλ) <∞.

For 0 < s < min{2, N} we obtain

Rs(uλ) :=

∫
RN

∫
RN

∣∣uλ(x)|x|
N−s

2 − uλ(y)|y|
N−s

2

∣∣2
|x|

N−s
2 |x− y|N+s|y|

N−s
2

dx dy,

≤
∫
B2λ

∫
RN\Bλ

1

|x|
N−s

2 |x− y|N+s|y|
N−s

2

dx dy

+

∫
B1/λ

∫
RN\B1/2λ

1

|x|
N−s

2 |x− y|N+s|y|
N−s

2

dx dy.

As before, note that∫
B2

∫
RN\B1

1

|x|
N−s

2 |x− y|N+s|y|
N−s

2

dx dy <∞,

in order to conclude by scale invariance that for s ∈ (0, 2),

lim sup
λ→∞

Rs(uλ) <∞.

Finally, note that

lim
λ→∞

∫
RN

∫
RN

∣∣uλ(x)− uλ(y)
∣∣2

|x− y|N+s
dx dy

=

∫
RN

∫
RN

1

|x− y|N+s

∣∣∣∣ 1

|x|
N−s

2

− 1

|y|
N−s

2

∣∣∣∣2 dx dy =∞,

so the conclusion follows. 2
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