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A variational approach to nonlinear diffusion
equations with time periodic coefficients
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Abstract - The paper studies the validity of the equivalent formulation
of a nonlinear diffusion equation with periodic data, as the minimization
of a certain convex functional, by using the Legendre-Fenchel relations be-
tween two conjugated functions, j and j*. The function j, occurring in the
equation, is proper, convex and lower semicontinuous and it represents the
potential related to the diffusion coefficient. In this paper we assume that
j has a polynomial growth. It is proved that the diffusion equation has a
unique solution if and only if this is the solution to the associated minimiza-
tion problem. In fact it is shown that the dual formulation of our problem
verifies the Brezis-Ekeland variational principle.
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1. Introduction

We are concerned with the study of the existence of a periodic solution to a
diffusion problem with time periodic coefficients, by verifying the application
of the Brezis-Ekeland principle. We consider the problem

— —A9j(t,z,y) > f in Ry x Q,
y(t,z) = 0 on Ry x T, (1.1)
y(t,2) = yt+Tox) inQ,

where € is an open bounded subset of RY | with the boundary I' sufficiently
smooth, and T is positive and finite. We assume that:

(a) j(t,z,-) : R = (—o00,00] is proper, convex and lower semicontinuous
(Ls.c. for short), for (t,z) € Ry x Q,

(b) the function (t,z) — j(t,x,r) is measurable for (¢,z) € R4 x Q, for
any r € R,
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(c) f and j are periodic with respect to ¢, with the period T,

flt,x)=f(t+T,x), j(t,z,r)=j({t+T,x,r), ae. (t,z) e R xQ, r € R.
(1.2)
By (a) it follows that the subdifferential of 7,

dj(t,xz,-) = B(t,z, ) a.e. (t,z) € Ry X, (1.3)

is a maximal monotone graph (possibly multivalued) on R, (see [3, p.47]).
From the physical point of view [ is related to the coefficient of diffusion of
the process modeled by (1.1).

Moreover we assume that

Cylr|™4+CY < j(t,z,r) < Cy|r|™+CY, for any r € R, a.e. (t,z) € Ry xQ,
(1.4)
with C7 > 0,

r— (07)"(t, z,r) is single valued a.e. (t,z) € Q, (1.5)
and r — 0j(t, x,r) is strongly monotone, i.e., there exists p > 0 such that

(n(t, ;) =7(t,2,7)(r =7) = plr =72, (1.6)

Vr, 7 € R, n(t,x,r) € dj(t,x,r), 7(t,z,7) € Ij(t,z,T) a.e. (t,x) € Ry x Q.
The conjugate of j denoted by j* is defined as

J (t,x,w) = sup(wr — j(t,x,r)), a.e. on Ry x Q (1.7)
reR

and it is proper, convex, ls.c. (see [3, p.6]) and periodic. Moreover, the
following two Legendre-Fenchel relations take place (see [3, p.8]),

jt,x,r)+ j*(t,z,w) > rw for any r,w € R, a.e. on Ry x Q, (1.8)

jt,z,r) 4+ j*(t,x,w) = rw if and only if w € Jj(t,x,r), a.e. on Ry x Q.
(1.9)
Our purpose is to prove an equivalence between (1.1) and a certain min-
imization problem for a functional defined using j, 7% and (1.8)-(1.9).
This idea originates in the papers of Brezis and Ekeland from 1976 (see
[4] and [5]) where a minimum principle for certain evolution equations (in
particular for the classical heat equation) was formulated. More exactly,
they considered the evolution equation with a potential operator

By L ap(t) 5 f(t) ae te(0,T), (1.10)

dt
u(0) =y,
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where ¢ is proper, convex, ls.c. on H a Hilbert space, ug € D(p), f €
L?(0,T; H). One defines

K { veC([0,T); H); % e L2(0,T; H), ¢(v) € L1(0,T), }
B ©* (f - %) € Ll(OvT)v v(0) = uo

and

s = [ fewrre (1= %) - fas .

It was stated that the solution to (1.10) is the solution to the minimiza-
tion problem
Minimize J(v) for all v € K, (1.11)

and viceversa. The necessary implication is rather obvious due to (1.8)-(1.9),
written for ¢. The proof of the sufficient implication was possible due the
fact that it was known (by a semigroup approach) that (1.10) has a solution.

Otherwise, the implication (1.11)==- (1.10) can be hardly proved and
this has been a challenge for many researchers in the past decades. We cite
a few results on this subject, in which the study of (1.11)== (1.10) has been
approached for particular assumptions on ¢ : [1], [2], [6] [7], [8], [9], [10].

Our approach investigates the existence of a periodic solution and it is
based on the Legendre-Fenchel relations between j and j* (and not using ¢
and ¢*). We shall introduce a minimization problem (P) for a functional
defined on the basis of j and j* and we shall show that (1.1) has a solution
if and only if (P) has a solution.

1.1. Functional setting

First, we specify the functional setting of the abstract formulation.
Let m and m/ such that % + % = 1. For any m > 2, we denote by X,,
the space
X ={yp e W»™(Q), py=0on T}

and let
BO,mw = —Aw, BO,m : D(BO,m) =Xm C Lm(Q) — Lm(Q)

We extend the operator By, from L™(f2) to the dual of X, by the
relation

(Bnmy, 1/}>X4me/ = (y,Bo,m'¢) for y € L™(Q) and any ¢ € X,,,r, (1.12)

where
B,, : D(By,) =L"(Q) C X;n — X;n,
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and
(y,2) = /Qy(x)z(x)dx, for y € L™(Q), z € L™ ().

The dual X/, is the completion of L™(2) in the norm
—1
ol = [ Bosus] . g, - Tor v e L),

and the norm in X/ is defined by

Iyl = 16l ey (1.13)

where ¢ is the unique solution to B,,¢ = y.

Also, we consider the Hilbert space V = H}(Q) endowed with the stan-
dard Hilbertian norm, [|@|ly, = [[V¢|[;2(q). The scalar product on its dual
V' is defined as

Ty = B_1*> for 0,8 € V.
(yay)V <ya 0723/ V’V7 or 0,0 €

)

The results will be proved in the cases

N = 1lforallm>2, (1.14)
2N
N -1’

N > 2for2<m<
which ensure the Sobolev inequality W™ (Q) ¢ L™ ().

1.2. Statement of the problem

As usually, the problem will be studied first on a time period (0,7"), and
then extended to all Ry, so that we consider (1.1) on @ = (0,7 x Q, i.e.,

& ndj(tay) 5 nQ=(0.7)x 9
y(t,z) = 0 on ¥ =(0,T)xT, (1.15)
y(0,z) = y(T,x) in .
Definition 1.1. Let T > 0,
felL™0,T;X,). (1.16)

We call a periodic weak solution to (1.15) a pair (y,n), such that
y € L™(Q) N W™ ([0,TT; X},),

ne L™ (Q), n(t,z) € 8j(t,z,y(t,z)) a.e. (t,z) € Q,
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which satisfies the equation

T T
[ Craww)  are [ asghedsai= [ o0, x, d
X! Xm Q 0
(1.17)
for any ¢ € L™(0,T; X,,), and the condition y(0,z) = y(T,x), a.e. (t,x) €
Q.
We consider the abstract Cauchy problem

Wy 4 Bojt e y®) > 1), ae te(O,T)  (118)

dt
y(0) = y(T),
and we introduce the functional
J: L™(Q) x L™ (Q) — (—00, 0],

Jo Gt z,y(t, 2)) + 5 (¢, 2, w(t, z)) — w(t, 2)y(t, x)) dzdt,
J(y7 w) = if (yaw) € Ua
400, otherwise,
(1.19)
where

U { (,w) | y € L™(Q) N W ([0,T]; X,,), 4(0) = y(T) €V, }
we L™(Q), j(--y), j*(,w) € LYQ), (y,w) satisfies (1.20) |’

@(t) + Byw(t) = f(t) ae. te(0,T), (1.20)

dt
y(0) = y(T).

The set U is not empty, since it contains any constant in time function
y and w(t) = B} f(t), a.e. t € (0, 7).

A solution to (1.20) is a pair (y,w), y € L™(Q) N WH™([0,T]; X!.,),
w € L™ (Q), which satisfies

T d T T
/ <d§<t>,¢<t>>%xmdt+ | [ wBobar = [ @06, x, i

(1.21)
for all ¢ € L™(0,T; X,,) and y(0) = y(T).
Finally, the minimization problem to be studied is
Minimize J(y,w) for all (y,w) € U. (P)

It can be easily seen that if (y,7n) is the unique periodic weak solution to
(1.15) (equivalently the strong solution to (1.18)) then the minimum in (P)
exists and it is zero, due to (1.8) and (1.9). We shall focus on the converse
assertion meaning that (P) has a null minimizer (at which J is zero) and it
is the unique weak solution to (1.15).
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2. Main results

This section is devoted to the study of the existence of a solution to the
minimization problem (P), and to the equivalence between (P) and (1.15),
or (1.18).

We assume the hypotheses (1.16), (a)-(c), (1.4)-(1.6) replacing Ry x Q by
Q.

Theorem 2.1. Problem (P) has at least a solution (y*,w*).

Proof. First, we are going to prove that J is proper, convex and l.s.c. Let
(y,w) € U and test (1.20) by B[I,%ly(t) and integrate over (0,t¢). We get

t d t
/ <C;J(T)7Boj,1,1y(7)> dT+/ / wydzdr (2.1)
0 T X' Xm 0 JQ

= /Ot <f(T)’BO”1”y(T)>X;n,,Xm dr.

Denoting Ba’#y(T) = 9(t) a.e. t and computing the first term we find that

/ t <§§<T)7B&;1y<7>>x = (@1~ 1))

and we replace in (2.1)

- /O t | wydoar (2.2)

1 2 1 2 ! —1
= W@~ 5 WO [ (51 Bw)
a.e. t € (0,7).
: ot ¢ 1 : :
Since t — — [; [q ywdzdr+ [, <f(7'),A07my(T)>X, N dr is continuous,

m/7 m

the previous equality is true for ¢ = T, too. Then, the first two terms on the
right-hand side vanish by periodicity and resuming the expression of J we
get

J(y, w) (2.3)

—/Qj(t,af,y(t, x)) + 5% (¢, x,w(t,x)))dxdt—/0T<f(T), BO_Jlny(T)> dr.

X,:n/’Xm

This shows that J is convex and l.s.c. Also, it is proper because by (1.19)
and (1.8) it is nonnegative. Therefore, it has an infimum denoted

d = inf{J(y,w) | (y,w) € U}.
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We take (yn, wpn)n>1 a minimizing sequence for (P), i.e.,

1
d < J(yn,wp) < d+ —~ (24)
where (y,, w,) is the solution to
dyn
E(t) + Bywy(t) = f(t), ae. t € (0,T), (2.5)

Yn (O) = YUn (T) :

By the Young inequality we compute

T T
@ Bem) < [0l 1Ol @

Ci 1

< 1Yl 7m ) + Gyl T ”fH?vn’(o,T;X;n,) )

=~ m
and using (1.4) it follows that

J(y,w) (2.6)
Cq

! 1 T ’
m 0 m 0 m

By (2.4) and (2.6) we get that

”ynHLm(Q) <C, HwnHLm’(Q) <C,

with C' denoting various constants independent of n.
It follows that we can extract subsequences denoted by the same sub-
script n, such that

Yo — " in L™(0,T; L™(Q2)), as n — oo, (2.7)

wy, — w* in L™ (0, T; L™ (Q)), as n — oo. (2.8)

We denote by — and — the weak and strong convergence, respectively.
Next, by the definition of B,,; we have

[ Bactin — w0000y, = [ (a0, Bomi0)
for any ¢ € L™(0,T; X,,) and so we can deduce that
Bpwy, = Boyw* in L™ (0,T; X! ), as n — oo. (2.9)
By (2.5) we get that

dyn ., dy”
dt dt

in Lml(O,T; X)), asn — o0 (2.10)
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and we note that

/OT <f(t), B&#yn(t)>X, = /OT <f(t), Bo‘,ily*(t)>x, x,

Since L™(Q) is compact in V' it follows by (2.7) and (2.10) that
yn — y* in L™(0,T; V'), as n — oo, (2.11)

whence
yn(t) = y*(t) in V' as n — oo, a.e. t € (0, 7). (2.12)

Also, by (2.2) we have
2 2 2 r m’
lyn @l < Iy Oy + ; [[wn ()1 () It
2 (T T
o [ Oy e +2 [ U@, B ()]

< C, forany t € (0,7).

Since y,,(0) = yn(T) € V' it follows that (y,(t)), is bounded in V' for any
t € [0,T]. Therefore, by the Ascoli-Arzela theorem we can deduce that

yn(t) = y*(t) in X/, as n — oo, uniformly in ¢ € [0, T] (2.13)
and so, by the periodicity condition, we get y*(0) = y*(T).
Now, we can pass to the limit in (2.4). We use the fact that the functions

e(yn) = Jo it @, yn)dzdt and @™ (wn) = [ j*(t, @, wn)dwdt are weakly Ls.c.
(see [3, p.56]) and get

d < J(y",w") < linr_1>inf J (Y, wp) < d

which shows that (y*, w*) realizes the minimum in (P). Passing to the limit
in the equivalent form of (2.5)

T dyn o T
/ <dt(t)+Bm/wn(t),¢(t)>x7/n”xmdt— | 0.0, x,

(2.14)
for any ¢ € L™(0,T; X,,), we obtain

T dy* . B T
[ (% 0+ B <t>,¢<t>>X;n”det— RO O—

(2.15)
for any ¢ € L™(0,T; X,,). Therefore (y*,w*) is the solution to (1.20) and
so it belongs to U.

In conclusion (P) reaches at (y*,w*) its minimum on U. O
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We mention that by some algebra, hypothesis (1.4) implies
Cs |w|™ + CY < j*(t,2,w) < Cy |w]™ + CY, (2.16)
for any w € R, a.e. (t,z) € Ry x Q, with C3 > 0,
lg(t, )| < Cs |r|™ 1+ C0, q(t,x) € Dj(t,z,7) ae. on Ry x Q,  (2.17)

2(t,2)| < Cg lw|™ 2+ CY, 2(t,z) € 85*(t, x,w) ae. on Ry x Q, (2.18)

and we recall that 97* (¢, z,w) = (97) "L (t,z,w) (see [3, p.8]).
Moreover, by (2.17) and (2.18) we get

ze L™Q), ¢ L™ (Q). (2.19)

The next result shows the equivalence between (1.15) and (P), i.e., that
the minimum in (P) is zero and that it is reached at the solution to (1.15).

Theorem 2.2. Let the pair (y*,w*) be a solution to (P). Then,

w*(t,z) € 0j(t,x,y*(t,x)) a.e. (t,x) € Q, (2.20)
min J(y,w) =0=J(y*,w"), (2.21)
(y,w)eU

and (y*,w*) is the unique weak solution to (1.15).

Proof. Let (y*,w*) be a solution to (P). Then (y*,w*) satisfies (1.20),
dy*
dt

(t) + Bpyw*(t) = f(t)ae. te€(0,T), (2.22)
y'(0) = y* (1),
and it minimizes J, i.e.,
J(y*,w*) < J(y,w) for any (y,w) € U. (2.23)
We introduce the variations
P =y 4+ N, Wt = wt AW, A >0

with (Y, W) regular enough, e.g., C>°(Q), Y (0) = Y (T), such that (y*,w?) €
U. Then, the pair (y*,w?*) satisfies (1.20)

@(t) + Bywt(t) = f(t) ae. te (0,T),

dt
y'0) = yNT)
and so (Y, W) is the solution to the problem

D L BomW(t) = 0ae. te(0,T), (2.24)

dt
Y(0) = Y(T).
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This implies that
ay
iz
D,m dt
We replace (y,w) by (y*,w?) in (2.23), and taking into account the
expression (2.3) we get

/ (j(ta x,y)‘) - j(t,:r,y*) +j*(ta x,w’\) - j*(t7x7w*)) dxdt
Q

W(t) = (t), t € [0,T]. (2.25)

[ oo v o), o

X,,ln/va

Next we divide by A > 0 and pass to the limit as A — 0. We use the definition
of the directional derivative

i(t, 2, 4" + AY) — j(t, 2,y
lim/ oy + M) = jlt ey )d:cdtz/j’(t,x,y*;Y)dxdt,
Q Q

A—0 A

and we obtain

T
0y G s W [0, By @) ez

Passing from A to —\, using the property of the directional derivative
/ J(t,z,y* Y)ddt > / n*Ydxdt, for all n*(t,x) € 9j(t,z,y"),
Q Q

passing then from (Y, W) to (=Y, —W), and repeating all computations we
finally obtain that

/OT /Q(n*y W) dadt — /OT <f(t), BO’}nY(t)>X:n“Xm dt = 0,

where ¢*(t,2) = 95*(t, x,w*) = (37) " (¢, z,w*).
Now, we replace W by (2.25) and rewrite the first term, getting

/T<B “(), ByL Y(t)> dt—/T ), B2 Y dt
0 R Fom X Xm 0 At X! X

[ (o),

and next we compute

/ T<B (0. Byl Y (®) | dt / I Bty dt
o V7 TTom X! X o \ dt 7 Tom X', X

—(C@.BY (@) (0, B3 Y(0))

’ X' ,X
m!/

m!?

_ /0 T< £(0), BO_’}nY(t)>X, o
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We recall that Y(0) = Y(T), (9j)~! is single valued and periodic with
respect to ¢, by hypotheses, and so we deduce that (*(7") = ¢*(0). Then, we
can write

T *
/ <dd<t (t) + B () — (2), BQ}nY(t)> =0 (220

X,:nHXm

which take place for any Y € C°°(Q). Therefore, we can write the equation

ac*
dt

(t) + B (t) = f(t), ae. t € (0,7) (2.27)

¢(T) = ¢*(0).
Now we make the difference between (2.27) and (2.22) and denoting
p(t,x) = C(tx) —y*(t,z), pel™@)

we have

——(t)+ By (w* —n*)(t) = 0, ae. te(0,7),
p(0) = p(T).

We test the equation for By L p(t) and integrate over (0,t), obtaining

/Ot /9(77* —w*)(y* = ¢*)dxdt = 0.

Since w*(t,z) € 9j(t,x,(*(t,x)) and n*(¢t,z) € 9j(t,x,y*(t,x)) a.e. on
Q, it follows by the maximal monotony of 35 that
plly* = Cll72g) <0

which implies

y*(t,x) = C*(t,x) € (97) "t z,w*(t,z)), ae (t,z) € Q. (2.28)

This turns out into (2.20), as claimed and proves that (y*, w*) is a weak
solution to (1.15), satisfying J(y*, w*) = 0.

Now we prove that the solution is unique. Indeed, if there exists an-
other solution (7, w) to (1.15) corresponding to the same data, we write the
equations satisfied by their difference

W=Dy 4 B —i)E) = 0ae te(0,T),

dt
(=v)(0) = -y,
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where n(t,) € 9j(t, 2, y(t, 2)), (t, 2) € Dj(t, 2, §(t,)) ae. on Q, and (y,7)
and (y,n) belong to U.

We multiply the equation by B&}n(y — y)(t) and integrate over (0,t)
obtaining

A(ﬂ@—mwwm—gmwﬁ:o

We get again p [|y(t) — yj(t)H%g(Q) <0, hence y(t,x) = y(t,z) a.e. on Q. O

Corollary 2.3. Under the assumptions (a)-(c), (1.2)-(1.6) problem (1.1)
has a unique periodic solution.

Proof. Problem (1.1) is reduced to (1.15) due to the periodicity of the
functions f and j. We make the transformation ¢ = ¢ — T and by this
variable change we denote y(t',x) = y(t + T, x) with ¢ € [0, T]. Using now
the periodicity of the functions f and j we find again problem (1.18) which
has a unique periodic solution y(t') belonging to C([0,T]; V'), such that
y(0) = y(T). Coming back to the variable ¢ we obtain that (1.1) has a
continuous periodic solution on [T,27] such that y(T) = y(27") and the
procedure is continued on each time period. O
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