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Abstract - The paper studies the validity of the equivalent formulation
of a nonlinear diffusion equation with periodic data, as the minimization
of a certain convex functional, by using the Legendre-Fenchel relations be-
tween two conjugated functions, j and j∗. The function j, occurring in the
equation, is proper, convex and lower semicontinuous and it represents the
potential related to the diffusion coefficient. In this paper we assume that
j has a polynomial growth. It is proved that the diffusion equation has a
unique solution if and only if this is the solution to the associated minimiza-
tion problem. In fact it is shown that the dual formulation of our problem
verifies the Brezis-Ekeland variational principle.
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1. Introduction

We are concerned with the study of the existence of a periodic solution to a
diffusion problem with time periodic coefficients, by verifying the application
of the Brezis-Ekeland principle. We consider the problem

∂y

∂t
−∆∂j(t, x, y) 3 f in R+ × Ω,

y(t, x) = 0 on R+ × Γ, (1.1)

y(t, x) = y(t+ T, x) in Ω,

where Ω is an open bounded subset of RN , with the boundary Γ sufficiently
smooth, and T is positive and finite. We assume that:

(a) j(t, x, ·) : R→ (−∞,∞] is proper, convex and lower semicontinuous
(l.s.c. for short), for (t, x) ∈ R+ × Ω,

(b) the function (t, x)→ j(t, x, r) is measurable for (t, x) ∈ R+ ×Ω, for
any r ∈ R,
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(c) f and j are periodic with respect to t, with the period T ,

f(t, x) = f(t+ T, x), j(t, x, r) = j(t+ T, x, r), a.e. (t, x) ∈ R+ × Ω, r ∈ R.
(1.2)

By (a) it follows that the subdifferential of j,

∂j(t, x, ·) = β(t, x, ·) a.e. (t, x) ∈ R+ × Ω, (1.3)

is a maximal monotone graph (possibly multivalued) on R, (see [3, p. 47]).
From the physical point of view β is related to the coefficient of diffusion of
the process modeled by (1.1).

Moreover we assume that

C1 |r|m+C0
1 ≤ j(t, x, r) ≤ C2 |r|m+C0

2 , for any r ∈ R, a.e. (t, x) ∈ R+×Ω,
(1.4)

with C1 > 0,

r → (∂j)−1(t, x, r) is single valued a.e. (t, x) ∈ Q, (1.5)

and r → ∂j(t, x, r) is strongly monotone, i.e., there exists ρ > 0 such that

(η(t, x, r)− η(t, x, r))(r − r) ≥ ρ |r − r|2 , (1.6)

∀r, r ∈ R, η(t, x, r) ∈ ∂j(t, x, r), η(t, x, r) ∈ ∂j(t, x, r) a.e. (t, x) ∈ R+ × Ω.

The conjugate of j denoted by j∗ is defined as

j∗(t, x, ω) = sup
r∈R

(ωr − j(t, x, r)), a.e. on R+ × Ω (1.7)

and it is proper, convex, l.s.c. (see [3, p. 6]) and periodic. Moreover, the
following two Legendre-Fenchel relations take place (see [3, p. 8]),

j(t, x, r) + j∗(t, x, ω) ≥ rω for any r, ω ∈ R, a.e. on R+ × Ω, (1.8)

j(t, x, r) + j∗(t, x, ω) = rω if and only if ω ∈ ∂j(t, x, r), a.e. on R+ × Ω.
(1.9)

Our purpose is to prove an equivalence between (1.1) and a certain min-
imization problem for a functional defined using j, j∗ and (1.8)-(1.9).

This idea originates in the papers of Brezis and Ekeland from 1976 (see
[4] and [5]) where a minimum principle for certain evolution equations (in
particular for the classical heat equation) was formulated. More exactly,
they considered the evolution equation with a potential operator

du

dt
(t) + ∂ϕ(u(t)) 3 f(t) a.e. t ∈ (0, T ), (1.10)

u(0) = u0,
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where ϕ is proper, convex, l.s.c. on H a Hilbert space, u0 ∈ D(ϕ), f ∈
L2(0, T ;H). One defines

K =

{
v ∈ C([0, T ];H); dvdt ∈ L

2(0, T ;H), ϕ(v) ∈ L1(0, T ),

ϕ∗
(
f − dv

dt

)
∈ L1(0, T ), v(0) = u0

}
and

J(v) =

∫ T

0

{
ϕ(v) + ϕ∗

(
f − dv

dt

)
− (f, v)

}
dt+

1

2
‖v(T )‖2H .

It was stated that the solution to (1.10) is the solution to the minimiza-
tion problem

Minimize J(v) for all v ∈ K, (1.11)

and viceversa. The necessary implication is rather obvious due to (1.8)-(1.9),
written for ϕ. The proof of the sufficient implication was possible due the
fact that it was known (by a semigroup approach) that (1.10) has a solution.

Otherwise, the implication (1.11)=⇒ (1.10) can be hardly proved and
this has been a challenge for many researchers in the past decades. We cite
a few results on this subject, in which the study of (1.11)=⇒ (1.10) has been
approached for particular assumptions on ϕ : [1], [2], [6] [7], [8], [9], [10].

Our approach investigates the existence of a periodic solution and it is
based on the Legendre-Fenchel relations between j and j∗ (and not using ϕ
and ϕ∗). We shall introduce a minimization problem (P ) for a functional
defined on the basis of j and j∗ and we shall show that (1.1) has a solution
if and only if (P ) has a solution.

1.1. Functional setting

First, we specify the functional setting of the abstract formulation.

Let m and m′ such that 1
m′ + 1

m = 1. For any m ≥ 2, we denote by Xm

the space

Xm :=
{
ψ ∈W 2,m(Ω), ψ = 0 on Γ

}
and let

B0,mψ = −∆ψ, B0,m : D(B0,m) = Xm ⊂ Lm(Ω)→ Lm(Ω).

We extend the operator B0,m from Lm(Ω) to the dual of Xm by the
relation

〈Bmy, ψ〉X′m,Xm′
=
(
y,B0,m′ψ

)
for y ∈ Lm(Ω) and any ψ ∈ Xm′ , (1.12)

where

Bm : D(Bm) = Lm(Ω) ⊂ X ′m → X ′m,
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and

(y, z) :=

∫
Ω
y(x)z(x)dx, for y ∈ Lm(Ω), z ∈ Lm′(Ω).

The dual X ′m is the completion of Lm(Ω) in the norm

|‖y‖| =
∥∥∥B−1

0,my
∥∥∥
Lm(Ω)

, for y ∈ Lm(Ω),

and the norm in X ′m is defined by

‖y‖X′m = ‖φ‖Lm(Ω) (1.13)

where φ is the unique solution to Bmφ = y.
Also, we consider the Hilbert space V = H1

0 (Ω) endowed with the stan-
dard Hilbertian norm, ‖φ‖V = ‖∇φ‖L2(Ω). The scalar product on its dual

V ′ is defined as

(y, y)V ′ =
〈
y,B−1

0,2y
〉
V ′,V

, for θ, θ ∈ V ′.

The results will be proved in the cases

N = 1 for all m ≥ 2, (1.14)

N ≥ 2 for 2 ≤ m ≤ 2N

N − 1
,

which ensure the Sobolev inequality W 1,m′(Ω) ⊂ Lm(Ω).

1.2. Statement of the problem

As usually, the problem will be studied first on a time period (0, T ), and
then extended to all R+, so that we consider (1.1) on Q = (0, T )× Ω, i.e.,

∂y

∂t
−∆∂j(t, x, y) 3 f in Q = (0, T )× Ω,

y(t, x) = 0 on Σ = (0, T )× Γ, (1.15)

y(0, x) = y(T, x) in Ω.

Definition 1.1. Let T > 0,

f ∈ Lm′(0, T ;X ′m′). (1.16)

We call a periodic weak solution to (1.15) a pair (y, η), such that

y ∈ Lm(Q) ∩W 1,m′([0, T ];X ′m′),

η ∈ Lm′(Q), η(t, x) ∈ ∂j(t, x, y(t, x)) a.e. (t, x) ∈ Q,
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which satisfies the equation∫ T

0

〈
dy

dt
(t), ψ(t)

〉
X′

m′ ,Xm

dt+

∫
Q
ηB−1

0,mψdxdt =

∫ T

0
〈f(t), ψ(t)〉X′

m′ ,Xm
dt

(1.17)
for any ψ ∈ Lm(0, T ;Xm), and the condition y(0, x) = y(T, x), a.e. (t, x) ∈
Q.

We consider the abstract Cauchy problem

dy

dt
(t) +Bm′∂j(t, x, y(t)) 3 f(t), a.e. t ∈ (0, T ) (1.18)

y(0) = y(T ),

and we introduce the functional

J : Lm(Q)× Lm′(Q)→ (−∞,∞],

J(y, w) =


∫
Q (j(t, x, y(t, x)) + j∗(t, x, w(t, x))− w(t, x)y(t, x)) dxdt,

if (y, w) ∈ U,
+∞, otherwise,

(1.19)
where

U =

{
(y, w) | y ∈ Lm(Q) ∩W 1,m′([0, T ];X ′m′), y(0) = y(T ) ∈ V ′,
w ∈ Lm′(Q), j(·, ·, y), j∗(·, ·, w) ∈ L1(Q), (y, w) satisfies (1.20)

}
,

dy

dt
(t) +Bm′w(t) = f(t) a.e. t ∈ (0, T ), (1.20)

y(0) = y(T ).

The set U is not empty, since it contains any constant in time function
y and w(t) = B−1

m′ f(t), a.e. t ∈ (0, T ).

A solution to (1.20) is a pair (y, w), y ∈ Lm(Q) ∩ W 1,m′([0, T ];X ′m′),
w ∈ Lm′(Q), which satisfies∫ T

0

〈
dy

dt
(t), ψ(t)

〉
X′

m′ ,Xm

dt+

∫ T

0

∫
Ω
wB0,mψdxdt =

∫ T

0
〈f(t), ψ(t)〉X′

m′ ,Xm
dt

(1.21)
for all ψ ∈ Lm(0, T ;Xm) and y(0) = y(T ).

Finally, the minimization problem to be studied is

Minimize J(y, w) for all (y, w) ∈ U. (P )

It can be easily seen that if (y, η) is the unique periodic weak solution to
(1.15) (equivalently the strong solution to (1.18)) then the minimum in (P )
exists and it is zero, due to (1.8) and (1.9). We shall focus on the converse
assertion meaning that (P ) has a null minimizer (at which J is zero) and it
is the unique weak solution to (1.15).



178 Gabriela Marinoschi

2. Main results

This section is devoted to the study of the existence of a solution to the
minimization problem (P ), and to the equivalence between (P ) and (1.15),
or (1.18).

We assume the hypotheses (1.16), (a)-(c), (1.4)-(1.6) replacing R+ × Ω by
Q.

Theorem 2.1. Problem (P ) has at least a solution (y∗, w∗).

Proof. First, we are going to prove that J is proper, convex and l.s.c. Let
(y, w) ∈ U and test (1.20) by B−1

0,my(t) and integrate over (0, t). We get∫ t

0

〈
dy

dτ
(τ), B−1

0,my(τ)

〉
X′

m′ ,Xm

dτ +

∫ t

0

∫
Ω
wydxdτ (2.1)

=

∫ t

0

〈
f(τ), B−1

0,my(τ)
〉
X′

m′ ,Xm

dτ.

Denoting B−1
0,my(τ) = ψ(t) a.e. t and computing the first term we find that∫ t

0

〈
dy

dτ
(τ), B−1

0,my(τ)

〉
X′

m′ ,Xm

dτ =
1

2

(
‖y(t)‖2V ′ − ‖y(0)‖2V ′

)
,

and we replace in (2.1)

−
∫ t

0

∫
Ω
wydxdτ (2.2)

=
1

2
‖y(t)‖2V ′ −

1

2
‖y(0)‖2V ′ −

∫ t

0

〈
f(τ), B−1

0,my(τ)
〉
X′

m′ ,Xm

dτ,

a.e. t ∈ (0, T ).

Since t→ −
∫ t

0

∫
Ω ywdxdτ+

∫ t
0

〈
f(τ), A−1

0,my(τ)
〉
X′

m′ ,Xm

dτ is continuous,

the previous equality is true for t = T, too. Then, the first two terms on the
right-hand side vanish by periodicity and resuming the expression of J we
get

J(y, w) (2.3)

=

∫
Q
j(t, x, y(t, x)) + j∗(t, x, w(t, x)))dxdt−

∫ T

0

〈
f(τ), B−1

0,my(τ)
〉
X′

m′ ,Xm

dτ.

This shows that J is convex and l.s.c. Also, it is proper because by (1.19)
and (1.8) it is nonnegative. Therefore, it has an infimum denoted

d := inf{J(y, w) | (y, w) ∈ U}.
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We take (yn, wn)n≥1 a minimizing sequence for (P ), i.e.,

d ≤ J(yn, wn) ≤ d+
1

n
(2.4)

where (yn, wn) is the solution to

dyn
dt

(t) +Bm′wn(t) = f(t), a.e. t ∈ (0, T ), (2.5)

yn(0) = yn(T ).

By the Young inequality we compute∫ T

0

〈
f(t), B−1

0,my(t)
〉
X′

m′ ,Xm

dt ≤
∫ T

0
‖f(t)‖X′

m′
‖y(t)‖Lm(Ω) dt

≤ C1

m
‖y‖mLm(Q) +

1

m′C1
m′/m

‖f‖m
′

Lm′ (0,T ;X′
m′ )

,

and using (1.4) it follows that

J(y, w) (2.6)

≥ C1

m′
‖y‖mLm(Q) + C0

1 + C3 ‖w‖m
′

Lm′ (Q)
+ C0

3 −
1

m′C1
m′/m

∫ T

0
‖f(t)‖m

′

X′
m′
dt.

By (2.4) and (2.6) we get that

‖yn‖Lm(Q) ≤ C, ‖wn‖Lm′ (Q) ≤ C,

with C denoting various constants independent of n.
It follows that we can extract subsequences denoted by the same sub-

script n, such that

yn ⇀ y∗ in Lm(0, T ;Lm(Ω)), as n→∞, (2.7)

wn ⇀ w∗ in Lm
′
(0, T ;Lm

′
(Ω)), as n→∞. (2.8)

We denote by ⇀ and → the weak and strong convergence, respectively.
Next, by the definition of Bm′ we have∫ T

0
〈Bm′(wn − w∗)(t), ψ(t)〉X′

m′ ,Xm
dt =

∫ T

0
((wn − w∗)(t), B0,mψ(t)) dt

for any ψ ∈ Lm(0, T ;Xm) and so we can deduce that

Bm′wn ⇀ Bm′w
∗ in Lm

′
(0, T ;X ′m′), as n→∞. (2.9)

By (2.5) we get that

dyn
dt

⇀
dy∗

dt
in Lm

′
(0, T ;X ′m′), as n→∞ (2.10)
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and we note that∫ T

0

〈
f(t), B−1

0,myn(t)
〉
X′

m′ ,Xm

dt→
∫ T

0

〈
f(t), B−1

0,my
∗(t)
〉
X′

m′ ,Xm

dt.

Since Lm(Ω) is compact in V ′ it follows by (2.7) and (2.10) that

yn → y∗ in Lm(0, T ;V ′), as n→∞, (2.11)

whence
yn(t)→ y∗(t) in V ′, as n→∞, a.e. t ∈ (0, T ). (2.12)

Also, by (2.2) we have

‖yn(t)‖2V ′ ≤ ‖y(0)‖2V ′ +
2

m′

∫ T

0
‖wn(t)‖m

′

Lm′ (Ω)
dt

+
2

m

∫ T

0
‖yn(t)‖mLm(Ω) dt+ 2

∫ T

0
‖f(t)‖X′

m′
‖yn(t)‖Lm(Q) dt

≤ C, for any t ∈ (0, T ).

Since yn(0) = yn(T ) ∈ V ′ it follows that (yn(t))n is bounded in V ′ for any
t ∈ [0, T ]. Therefore, by the Ascoli-Arzelà theorem we can deduce that

yn(t)→ y∗(t) in X ′m′ , as n→∞, uniformly in t ∈ [0, T ] (2.13)

and so, by the periodicity condition, we get y∗(0) = y∗(T ).
Now, we can pass to the limit in (2.4). We use the fact that the functions

ϕ(yn) =
∫
Q j(t, x, yn)dxdt and ϕ∗(wn) =

∫
Q j
∗(t, x, wn)dxdt are weakly l.s.c.

(see [3, p. 56]) and get

d ≤ J(y∗, w∗) ≤ lim inf
n→∞

J(yn, wn) ≤ d

which shows that (y∗, w∗) realizes the minimum in (P ). Passing to the limit
in the equivalent form of (2.5)∫ T

0

〈
dyn
dt

(t) +Bm′wn(t), φ(t)

〉
X′

m′ ,Xm

dt =

∫ T

0
〈f(t), φ(t)〉X′

m′ ,Xm
dt,

(2.14)
for any φ ∈ Lm(0, T ;Xm), we obtain∫ T

0

〈
dy∗

dt
(t) +Bm′w

∗(t), φ(t)

〉
X′

m′ ,Xm

dt =

∫ T

0
〈f(t), φ(t)〉X′

m′ ,Xm
dt,

(2.15)
for any φ ∈ Lm(0, T ;Xm). Therefore (y∗, w∗) is the solution to (1.20) and
so it belongs to U.

In conclusion (P ) reaches at (y∗, w∗) its minimum on U . 2
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We mention that by some algebra, hypothesis (1.4) implies

C3 |ω|m
′
+ C0

3 ≤ j∗(t, x, ω) ≤ C4 |ω|m
′
+ C0

4 , (2.16)

for any ω ∈ R, a.e. (t, x) ∈ R+ × Ω, with C3 > 0,

|q(t, x)| ≤ C5 |r|m−1 + C0
5 , q(t, x) ∈ ∂j(t, x, r) a.e. on R+ × Ω, (2.17)

|z(t, x)| ≤ C6 |ω|m
′−1 + C0

6 , z(t, x) ∈ ∂j∗(t, x, ω) a.e. on R+ × Ω, (2.18)

and we recall that ∂j∗(t, x, ω) = (∂j)−1(t, x, ω) (see [3, p. 8]).
Moreover, by (2.17) and (2.18) we get

z ∈ Lm(Q), q ∈ Lm′(Q). (2.19)

The next result shows the equivalence between (1.15) and (P ), i.e., that
the minimum in (P ) is zero and that it is reached at the solution to (1.15).

Theorem 2.2. Let the pair (y∗, w∗) be a solution to (P ). Then,

w∗(t, x) ∈ ∂j(t, x, y∗(t, x)) a.e. (t, x) ∈ Q, (2.20)

min
(y,w)∈U

J(y, w) = 0 = J(y∗, w∗), (2.21)

and (y∗, w∗) is the unique weak solution to (1.15).

Proof. Let (y∗, w∗) be a solution to (P ). Then (y∗, w∗) satisfies (1.20),

dy∗

dt
(t) +Bm′w

∗(t) = f(t) a.e. t ∈ (0, T ), (2.22)

y∗(0) = y∗(T ),

and it minimizes J, i.e.,

J(y∗, w∗) ≤ J(y, w) for any (y, w) ∈ U. (2.23)

We introduce the variations

yλ = y∗ + λY, wλ = w∗ + λW, λ > 0

with (Y,W ) regular enough, e.g., C∞(Q), Y (0) = Y (T ), such that (yλ, wλ) ∈
U. Then, the pair (yλ, wλ) satisfies (1.20)

dyλ

dt
(t) +Bm′w

λ(t) = f(t) a.e. t ∈ (0, T ),

yλ(0) = yλ(T )

and so (Y,W ) is the solution to the problem

dY

dt
(t) +B0,mW (t) = 0 a.e. t ∈ (0, T ), (2.24)

Y (0) = Y (T ).
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This implies that

W (t) = −B−1
0,m

dY

dt
(t), t ∈ [0, T ]. (2.25)

We replace (y, w) by (yλ, wλ) in (2.23), and taking into account the
expression (2.3) we get∫

Q

(
j(t, x, yλ)− j(t, x, y∗) + j∗(t, x, wλ)− j∗(t, x, w∗)

)
dxdt

−
∫ T

0

〈
f(t), B−1

0,m(yλ(t)− y∗(t))
〉
X′

m′ ,Xm

dt ≥ 0.

Next we divide by λ > 0 and pass to the limit as λ→ 0. We use the definition
of the directional derivative

lim
λ→0

∫
Q

j(t, x, y∗ + λY )− j(t, x, y∗)
λ

dxdt =

∫
Q
j′(t, x, y∗;Y )dxdt,

and we obtain∫
Q

(j′(t, x, y∗;Y )+(j∗)′(t, x, w∗;W ))dxdt−
∫ T

0

〈
f(t), B−1

0,mY (t)
〉
X′

m′ ,Xm

dt ≥ 0.

Passing from λ to −λ, using the property of the directional derivative∫
Q
j′(t, x, y∗;Y )dxdt ≥

∫
Q
η∗Y dxdt, for all η∗(t, x) ∈ ∂j(t, x, y∗),

passing then from (Y,W ) to (−Y,−W ), and repeating all computations we
finally obtain that∫ T

0

∫
Ω

(η∗Y + ζ∗W )dxdt−
∫ T

0

〈
f(t), B−1

0,mY (t)
〉
X′

m′ ,Xm

dt = 0,

where ζ∗(t, x) = ∂j∗(t, x, w∗) = (∂j)−1(t, x, w∗).
Now, we replace W by (2.25) and rewrite the first term, getting∫ T

0

〈
Bm′η

∗(t), B−1
0,mY (t)

〉
X′

m′ ,Xm

dt−
∫ T

0

〈
ζ∗(t), B−1

0,m

dY

dt
(t)

〉
X′

m′ ,Xm

dt

=

∫ T

0

〈
f(t), B−1

0,mY (t)
〉
X′

m′ ,Xm

dt

and next we compute∫ T

0

〈
Bm′η

∗(t), B−1
0,mY (t)

〉
X′

m′ ,Xm

dt+

∫ T

0

〈
dζ∗

dt
(t), B−1

0,mY (t)

〉
X′

m′ ,Xm

dt

−
〈
ζ∗(T ), B−1

0,mY (T )
〉
X′

m′ ,Xm

+
〈
ζ∗(0), B−1

0,mY (0)
〉
X′

m′ ,Xm

=

∫ T

0

〈
f(t), B−1

0,mY (t)
〉
X′

m′ ,Xm

dt.
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We recall that Y (0) = Y (T ), (∂j)−1 is single valued and periodic with
respect to t, by hypotheses, and so we deduce that ζ∗(T ) = ζ∗(0). Then, we
can write∫ T

0

〈
dζ∗

dt
(t) +Bm′η

∗(t)− f(t), B−1
0,mY (t)

〉
X′

m′ ,Xm

dt = 0 (2.26)

which take place for any Y ∈ C∞(Q). Therefore, we can write the equation

dζ∗

dt
(t) +Bm′η

∗(t) = f(t), a.e. t ∈ (0, T ) (2.27)

ζ∗(T ) = ζ∗(0).

Now we make the difference between (2.27) and (2.22) and denoting

p(t, x) = ζ∗(t, x)− y∗(t, x), p ∈ Lm(Q)

we have

−dp
dt

(t) +Bm′(w
∗ − η∗)(t) = 0, a.e. t ∈ (0, T ),

p(0) = p(T ).

We test the equation for B−1
0,mp(t) and integrate over (0, t), obtaining∫ t

0

∫
Ω

(η∗ − w∗)(y∗ − ζ∗)dxdt = 0.

Since w∗(t, x) ∈ ∂j(t, x, ζ∗(t, x)) and η∗(t, x) ∈ ∂j(t, x, y∗(t, x)) a.e. on
Q, it follows by the maximal monotony of ∂j that

ρ ‖y∗ − ζ∗‖2L2(Q) ≤ 0

which implies

y∗(t, x) = ζ∗(t, x) ∈ (∂j)−1(t, x, w∗(t, x)), a.e. (t, x) ∈ Q. (2.28)

This turns out into (2.20), as claimed and proves that (y∗, w∗) is a weak
solution to (1.15), satisfying J(y∗, w∗) = 0.

Now we prove that the solution is unique. Indeed, if there exists an-
other solution (ỹ, w̃) to (1.15) corresponding to the same data, we write the
equations satisfied by their difference

d(y − ỹ)

dt
(t) +Bm′(η − η̃)(t) = 0 a.e. t ∈ (0, T ),

(y − ỹ)(0) = (y − ỹ)(T ),
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where η(t, x) ∈ ∂j(t, x, y(t, x)), η̃(t, x) ∈ ∂j(t, x, ỹ(t, x)) a.e. on Q, and (y, η)
and (ỹ, η̃) belong to U.

We multiply the equation by B−1
0,m(y − ỹ)(t) and integrate over (0, t)

obtaining ∫ t

0
(η(t)− η̃(t), y(t)− ỹ(t)) dt = 0.

We get again ρ ‖y(t)− ỹ(t)‖2L2(Q) ≤ 0, hence y(t, x) = ỹ(t, x) a.e. on Q. 2

Corollary 2.3. Under the assumptions (a)-(c), (1.2)-(1.6) problem (1.1)
has a unique periodic solution.

Proof. Problem (1.1) is reduced to (1.15) due to the periodicity of the
functions f and j. We make the transformation t′ = t − T and by this
variable change we denote ỹ(t′, x) = y(t + T, x) with t′ ∈ [0, T ]. Using now
the periodicity of the functions f and j we find again problem (1.18) which
has a unique periodic solution ỹ(t′) belonging to C([0, T ];V ′), such that
ỹ(0) = ỹ(T ). Coming back to the variable t we obtain that (1.1) has a
continuous periodic solution on [T, 2T ] such that y(T ) = y(2T ) and the
procedure is continued on each time period. 2
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