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Abstract - We prove the existence of multiple solutions to the Dirich-
let problem associated to an asymptotically linear hamiltonian system in
R2N , N ≥ 1. Solutions are distinguished by means of the Maslov index of
suitable auxiliary linear systems.
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1. Introduction

In this paper we give a multiplicity result (Theorem 2.1) for a boundary
value problem of the form

Jz′ = S(t, z)z, z = (x, y) ∈ RN × RN , t ∈ [0, π]

x(0) = 0 = x(π),
(1.1)

where S is a continuous function defined in [0, π]×R2N which takes values in
the space of 2N × 2N real symmetric matrices. We are concerned with the
case when the nonlinearity S is asymptotically linear (cf. (H1) and (2.2)).

The literature for the above described problem is not very rich. In the
framework of variational methods, we refer to the important papers by
Benci-Fortunato [2] and Fortunato [6] (for the periodic BVP and for the
Dirichlet BVP associated to second order problems, respectively). A con-
tinuation method has been used by Manásevich-Mawhin [8] for proving the
existence of boundary value problems associated to strongly nonlinear sys-
tems of second order equations. In the framework of bifurcation theory, a
multiplicity result has been given by the authors in [4]; as for systems of
second order problems we refer to [5], which can be considered as the start-
ing point of the present research. All the above quoted results deal with a
Morse/Maslov-type index, for whom we refer to [1, 3] and references therein.
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For the proof of our main result, we combine the study of the Maslov
index associated to some linear systems arising from (H1) and (2.2) with the
classical shooting method. More precisely, under the technical assumption
(H2), we are led to study an auxiliary linear system in R2N (cf. (2.9)) which
uncouples in N planar systems (cf. (3.8)); to each of these planar systems
we can then apply a version of Sturm comparison theorem and complete the
proof.

We end this introductory section with a list of notations. For every
integer k ∈ {1, . . . , N}, we define

Πk = {w ∈ RN |wk = 0}.

For every vector w ∈ RN and for every j ∈ {1, . . . , N}, let ORDj(w) be
the j-th component of the vector obtained from w arranging its components
from the smallest to the largest.

We also denote by J the usual standard 2N ×2N symplectic matrix and
by J2 the 2× 2 symplectic matrix (i.e. J2 coincides with J when N = 1).

Finally, by M2N
s we denote the set of 2N × 2N real symmetric matrices

B such that, writing B in the form

B =

 B11 B12

B21 B22

 ,

where Bij is an N ×N matrix (i, j = 1, . . . , N), the matrix B22 is positive
definite.

2. Statement of the result

In this Section we consider a boundary value problem of the form
Jz′ = S(t, z)z, z = (x, y) ∈ RN × RN , t ∈ [0, π]

x(0) = 0 = x(π),
(2.1)

where S : [0, π]×R2N −→M2N
s is a continuous function such that uniqueness

and global continuability of solutions to initial value problems associated
to the equation in (2.1) are guaranteed. We denote by si,j(t, z), (t, z) ∈
[0, π]× R2N , i, j = 1, . . . , 2N , the coefficients of the matrix S(t, z).

We assume the following hypotheses:

(H1) There exists a continuous map S∞ : [0, π] −→M2N
s such that

lim
|z|→+∞

S(t, z) = S∞(t), uniformly in t ∈ [0, π].

(H2) For every k ∈ {1, . . . , N}, the matrix S|[0,π]×Πk×Πk
is diagonal.
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Moreover, let

S0(t) = S(t, 0), ∀ t ∈ [0, π]. (2.2)

In order to state our result, we need some preliminary facts about prob-
lem (2.1) and some related linear systems.

Indeed, let us first observe that (H1) implies that the function S is
bounded; as a consequence, we have the following result (cf. [5, Proposition
4.6]):

Proposition 2.1. For every R > 0 there exists R′ > 0 such that for every
solution z of

Jz′ = S(t, z)z

we have

|z(0)| ≤ R ⇒ |z(t)| ≤ R′, ∀ t ∈ [0, π]. (2.3)

Now, let us recall some facts about oscillatory theory for linear hamilto-
nian systems. Let us consider a continuous map B : [0, π] → M2N

s and the
linear system

Jz′ = B(t)z, z = (x, y) ∈ RN × RN . (2.4)

We are interested in solutions of (2.4) such that

x(0) = 0 = x(π). (2.5)

From [3, 5, 7] we know that there exist N continuous functions θ1, . . . , θN :
[0, π]→ R such that

θi(0) = 0, ∀ i = 1, . . . , N

θ1(t) ≤ . . . ≤ θN (t), ∀ t ∈ [0, π],

and (2.4)-(2.5) has a nontrivial solution if ond only if there exist an integer
j ∈ {1, . . . , N} and hj ∈ N such that

θj(π) = hjπ. (2.6)

Moreover, the number of linearly independent solutions of (2.4)-(2.5) is ex-
actly the number of indeces j ∈ {1, . . . , N} such that θj(π)/π ∈ N.

Remark 2.1. According to the previous results, every solution of (2.4) such
that x(0) = 0 satisfies also x(π) = 0 if and only if

θj(π)

π
∈ N, ∀ j = 1, . . . , N.
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Remark 2.2. When N = 1 the function θ1 is the usual angular coordi-
nate associated to the planar system (2.4). In this situation θ1 satisfies a
monotonicity property; indeed, let B1, B2 : [0, π] → M2N

s be continuous
functions and let θ1,B1 and θ1,B2 be the angular coordinates associated to
J2z
′ = B1(t)z and J2z

′ = B2(t)z, respectively.

We then have (cfr. [9, Theorem 16.1])

B1(t) ≤ B2(t), ∀ t ∈ [0, π] ⇒ θ1,B1(π) ≤ θ1,B2(π),

where the inequality B1(t) ≤ B2(t), for t ∈ [0, π], means that the matrix
B1(t)−B2(t) is semi-definite negative.

Finally, for every j ∈ {1, . . . , N}, let us set

θj(π) = kjπ + αj ,

with kj ∈ N and 0 < αj ≤ π. Then, the Maslov index associated to (2.4) is
the number

m(B) = k1 + . . .+ kN .

Now, for every α ∈ RN we denote by zα the unique solution of the Cauchy
problem 

Jz′ = S(t, z)z, t ∈ (0, π), z = (x, y) ∈ RN × RN

x(0) = 0, y(0) = α,
(2.7)

and let

Sα(t) = S(t, zα(t)), ∀ t ∈ [0, π]. (2.8)

Consider the linearized system

Jz′ = Sα(t)z (2.9)

and denote by θ1,α, . . . , θN,α its phase-angles. The following result is a
straightforward variant of the corresponding Propositions in [5]:

Proposition 2.2. Under the previous assumptions we have:

θj,α → θj,∞, |α| → +∞, in L∞([0, π]), j = 1, . . . , N,

tj,α → θj,0, |α| → 0, in L∞([0, π]), j = 1, . . . , N.

Now, let us denote by m0 and m∞ the numbers m(S0) and m(S∞),
respectively, and assume that the set

S =
{

(h1, . . . , hN ) ∈ NN | m0 +N < h1 + . . .+ hN < m∞, h1 ≤ . . . ≤ hN
}
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is not empty. A completely analogous result holds true if the set

S ′ =
{

(h1, . . . , hN ) ∈ NN | m∞ +N < h1 + . . .+ hN < m0, h1 ≤ . . . ≤ hN
}

is not empty. Then, there exist ε > 0 such that

ε < (h1 + . . .+ hN )π − (m0 +N)π, ε < m∞π − (h1 + . . .+ hN )π, (2.10)

for every (h1, . . . , hN ) ∈ S. From Proposition 2.2 we deduce that there exists
α∞ > 0 such that

|α| ≥ α∞ ⇒ θ1,α(π)+. . .+θN,α(π) > θ1,∞(π)+. . .+θN,∞(π)−ε. (2.11)

With α∞ as above, let α′∞ > 0 as in Proposition 2.1 and define

Π̃k = {w ∈ Πk | |w| ≤ α′∞}, ∀ k = 1, . . . , N.

Now, for every k = 1, . . . , N , consider the diagonal matrix

S|
[0,π]×Π̃k×Π̃k

(recall assumption (H2)) and denote by ski,i its non zero elements, i =
1, . . . , 2N ; define then

λki = max
(t,z)∈[0,π]×Π̃k×Π̃k

ski,i(t, z), i = 1, . . . , 2N,

and the matrix

Λki =

 λki 0

0 λki+N

 , i = 1, . . . , N.

Let θki be the angular coordinate of the planar system

J2w
′ = Λkiw, w ∈ R2, i = 1, . . . , N,

and let

µki =
θki (π)

π
, i, k = 1, . . . , N, (2.12)

and

nk = ORDk(µ
k), k = 1, . . . , N. (2.13)

We are now in position to state our result:

Theorem 2.1. Assume conditions (H1) and (H2). Moreover, let m0, m∞,
n1, . . . , nN as above.
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Let us define

T =

(h1, . . . , hN ) ∈ NN |

m0 +N < h1 + . . .+ hN < m∞,

h1 > n1, . . . , hN > nN ,

h1 ≤ . . . ≤ hN

 .

Then, for every h = (h1, . . . , hN ) ∈ T there exist 2N nontrivial solutions zh
of (2.1) such that the linear system

Jz′ = S(t, zh(t))z

has Maslov index h1 + . . .+ hN .

3. Proof and remarks

In order to prove Theorem 2.1 we use a shooting argument; to this aim, let
us fix h = (h1, . . . , hN ) ∈ T and let α ∈ RN . Let zα be, as in Section 2, the
solution of (2.7) and let Sα and θ1,α, . . . , θN,α be as in the previous Section.

According to Remark 2.1, if α is such that

θj a(π)− hjπ = 0, ∀ j = 1, . . . , N, (3.1)

then every solution of (2.9) satisfies also x(0) = 0 = x(π); this is also true for
zα (which, trivially, is a solution of (2.9)). Hence zα satisfies the boundary
value problem (2.1); moreover, by the definition of the Maslov index,

m(Sα) = h1 + . . .+ hN .

Therefore, in order to prove the result, it is sufficient to find α ∈ RN such
that (3.1) holds true. This will be a consequence of the application of the
following result on the existence of a zero of a vector field:

Theorem 3.1. (cfr. [5, Theorem 2.1]) Let 0 < r < R and consider the
conical shell

WR
r = {w ∈ RN | r ≤ |w| ≤ R, xi ≥ 0, ∀ i = 1, . . . , N}.

Assume that f :WR
r → RN is a continuous vector field. Let us suppose that

the vector field f satisfies the following conditions:
f1(α) + . . .+ fN (α) < 0, if α ∈ WR

r , ||α|| = r,

f1(α) + . . .+ fN (α) > 0, if α ∈ WR
r , ||α|| = R.

(3.2)
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Moreover, let us assume that we have

fk(α) < 0, if α ∈ WR
r ∩Πk, (3.3)

for every k ∈ {1, . . . , N}. Then, there is at least a point α̂ in the interior of
WR
r such that

f(α̂) = 0.

Remark 3.1. According to [5], an analogous result holds true if WR
r is

replaced by the set

W̃R
r = {w ∈ RN | r ≤ |w| ≤ R} ∩ON , (3.4)

where ON is any octant of RN .

Now, we will apply Theorem 3.1 to the vector field f whose components
are defined by

fi(α) = θi,α(π)− hiπ, (3.5)

for every α ∈ RN and i ∈ {1, . . . , N}. For ε > 0 as in (2.10), from Proposi-
tion 2.2 we deduce that there exists α0 > 0, α0 < α∞ such that

|α| ≤ α0 ⇒ θ1,α(π) + . . .+ θN,α(π) < θ1,0(π) + . . .+ θN,0(π) + ε. (3.6)

Let us consider the conical shell Wα∞
α0

; if α ∈ Wα∞
α0

and |α| = α0, then the
definition of the Maslov index m0 = m(S0) and (3.6) imply that

θ1,α(π) + . . .+ θN,α(π) < (m0 +N)π + ε,

i.e.

f1(α) + . . . fN (α) = θ1,α(π) + . . .+ θN,α(π)− (h1 + . . .+ hN )π <

< (m0 +N)π − (h1 + . . .+ hN )π + ε < 0,

by (2.10). This proves the validity of the first inequality in (3.2).
Similarly, when α ∈ Wα∞

α0
and |α| = α∞, from (2.10) and (2.11) we infer

that

f1(α) + . . . fN (α) = θ1,α(π) + . . .+ θN,α(π)− (h1 + . . .+ hN )π >

> m∞π − ε− (h1 + . . .+ hN )π > 0;

as a consequence, also the second inequality in (3.2) is satisfied.
We now check the validity of (3.3); we consider the case k = 1 (the other

cases can be proved in a very similar way). Hence, let α ∈ Wα∞
α0
∩Π1; from

an easy computation it is possible to show that

α ∈ Π1 ⇒ zα ∈ Π1 ×Π1.
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Moreover, from Proposition 2.1 we also know that

|α| ≤ α∞ ⇒ |zα(t)| ≤ α′∞, ∀ t ∈ [0, π];

hence, we have

|α| ≤ α∞, α ∈ Π1 ⇒ zα(t) ∈ Π̃1 × Π̃1, ∀ t ∈ [0, π].

This implies that the matrix

Sα(t) = S(t, zα(t))

is diagonal and its entries s1
α;i,i satisfy

s1
α;i,i(t) ≤ λ1

i , ∀ t ∈ [0, π], ∀ i = 1, . . . , N. (3.7)

Moreover, it is possible to see that the linearized system (2.9) uncouples into
N planar systems

J2w
′ = S̃α,i(t)w, w ∈ R2, i = 1, . . . , N, (3.8)

where S̃α,i is the matrix

S̃α,i =

 s1
α;i,i 0

0 s1
α;i+N,i+N

 , i = 1, . . . , N.

As a consequence, up to a reordering, the phase-angles θ1,α, . . . , θN,α coincide

with the phase-angles θ̃1,α, . . . , θ̃N,α of the planar systems (3.8). Recalling
(3.7) and Remark 2.2, we infer that

θ̃i,α(π) ≤ θ1
i (π), ∀ i = 1, . . . , N ;

hence
θ̃i,α(π)

π
≤ θ1

i (π)

π
= µ1

i , ∀ i = 1, . . . , N,

by (2.12). In particular, from (2.13) we deduce that there exists i∗ ∈
{1, . . . , N} such that

µ1
i∗ = n1;

as a consequence, we obtain

θ1,α(π) ≤ θ̃i∗,α(π) ≤ n1π.

This implies that

f1(α) = θ1,α(π)− h1π ≤ (n1 − h1)π < 0,

proving (3.3) when k = 1.
An application of Theorem 3.1 ensures the existence of α ∈ Wα∞

α0
such

that f(α) = 0; the corresponding function zα is a solution of (2.1).
To obtain the other 2N − 1 solutions of (2.1) it is sufficient to apply

Theorem 3.1 to any set of the form (3.4).
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