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Abstract - The existence and uniqueness of a strong solution for the
stochastic logarithmic diffusion equation with multiplicative noise is proved.
This equation is relevant in the description of fast diffusion processes in
plasma physics perturbed by a Gaussian noise proportional with mass con-
centration.
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1. Introduction

Consider the stochastic nonlinear diffusion equation

dXt −∆ logXt dt = Xt dWt in QT = (0, T )×O,
X0 = x in O,
Xt = 1 on ΣT = (0, T )× ∂O.

(1.1)

Here O is a bounded and open subset of Rd with smooth boundary ∂O and
Wt is a Wiener cylindrical process in a probability space {Ω,F ,Ft,P} of the
form

Wt =
∞∑
k=1

µkekβk(t), (1.2)

where µk ∈ R, {βk}∞k=1 are mutually independent Brownian motion over
the stochastic basis {Ω,F ,Ft,P} and {ek}∞k=1 are the eigenfunctions of the
Laplace operator ∆ with homogeneous boundary value conditions on ∂O.
This system is normalized in the space L2(O). The eigenvalues are de-
noted λk.

We denote by H1
0 (O), H1(O), H−1(O) the standard Sobolev spaces on

O and by Lp(O), 1 ≤ p ≤ ∞, the space of Lp-summable functions on O with
the norm | · |p. The scalar product in L2(O) is denoted by 〈·, ·〉2 and the
norm of H−1(O) is denoted by | · |−1. We recall that |u|2−1 =

〈
(−∆)−1u, u

〉
2
.
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Given a Hilbert space H with the norm ‖·‖H , we denote by Mp
P(0, T ;H) the

space of all H-valued progressively measurable processes X : Ω×(0, T )→ H
such that

E
∫ T

0
‖X(t)‖pHdt <∞, 1 ≤ p <∞, (1.3)

with the usual modification for p = ∞. (Here E is the expectation.) We
denote by CP([0, T ];H) the space of all processes X ∈ M2

P(0, T ;H) which
have a modification in C([0, T ];L2(Ω,F ,P, H)).

Finally, denote by Lpad(Ω;C([0, T ];L2(O))), 1 ≤ p <∞, the space of all
adapted processes X : Ω× (0, T )→ L2(O)) such that

E‖X‖p
C([0,T ];L2(O)) <∞.

(Here C([0, T ];Y ), Y a Banach space is the standard space of Y -valued
continuous functions on [0, T ].)

Definition 1.1. The process X is called a strong solution to (1.1) if the
following conditions hold.

X ∈ CP([0, T ];H−1(O)) ∩M2
P(0, T ;L2(O)) (1.4)

X > 0, a.e. in QT ×O (1.5)

logX ∈M2
P(0, T ;H1

0 (O)) (1.6)∫ t

0
logX(s)ds ∈ CP([0, T ];H1

0 (O)) (1.7)

X(t) = x+ ∆

∫ t

0
logX(s)ds+

∫ t

0
X(s)dWs, ∀t ∈ [0, T ], P-a.s. (1.8)

Here, the last integral is taken in sense of Itô.

There is a growing interest in the theory of nonlinear stochastic equations
of the form

dXt −∆ψ(Xt)dt = σ(Xt)dWt, t ≥ 0, (1.9)

where ψ : R → R is a monotonically nondecreasing continuous function or,
more generally, a maximal monotone, multivalued graph in R × R. The
standard growth condition on ψ is

0 ≤ rψ(r) ≤ C|r|m+1, ∀r ∈ R,

where m > 0. The case m > 1 describes the low diffusion processes, while
0 < m < 1 models the fast diffusion. The case ψ(r) = ρ sign r describes
processes with self-organized criticality. The existence theory in the low
diffusion case was developed in [1], [2] and the fast diffusion case in [3], [8].
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The self-organized criticality case with stochastic perturbation was treated
in [2], [4].

The case ψ(r) = log r we consider here models superfast diffusion pro-
cesses in plasma physics as well as in the description of the Carleman model
of Boltzman equation ([5], [7], [9]). It can be seen as a limit case m = 1 of
the porous medium equation

dXt − div(X−mt ∇Xt)dt = XtdWt, 0 < m < 2. (1.10)

The corresponding deterministic equation (1.1) arises also in Riemannian
geometry as a model for evolution of a conformally flat metric by its Ricci
curvature flow (see [11], [12]).

Our main result here – Theorem 2.1 – is an existence and uniqueness
result for the stochastic equation (1.1). Roughly speaking, it amounts to
saying that (1.1) has a unique strong solution Xt = X(t) for appropriate
initial data.

2. The main result

Everywhere in the following, O is a bounded and open domain of Rd,
d = 1, 2, 3, and Wt is a cylindrical Wiener process of the form (1.2), where

∞∑
k=1

λ2kµ
2
k <∞. (2.1)

The boundary ∂O is assumed sufficiently smooth (of class C2, for instance).
We set QT = (0, T )×O, ΣT = (0, T )× ∂O, where T > 0.

Theorem 2.1. Let 0<T<∞ be arbitrary but fixed. Then, for each x ∈
L2(O) such that

x log x ∈ L2(O), (2.2)

equation (1.1) has a unique strong solution X. Moreover, besides (1.4)–
(1.7), it also satisfies

X ∈ L∞(0, T ;L2(Ω;L2(O))) (2.3)

X| logX| ∈ L∞(0, T ;L2(Ω×O)). (2.4)

The proof of Theorem 2.1 is given in Section 3.1, via a regularization pro-
cedure already used in low and fast diffusion stochastic porous media equa-
tions ([1], [2], [3]). It should be said, however, that compared with situations
previously encountered in low and fast diffusion cases, the main difficulty
here comes from the fact that the logarithmic nonlinearity ψ(r) = log r is
highly singular in origin and its domain is restricted to (0,∞). This fact re-
quires sharper estimates and techniques on the corresponding approximating
equations.
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3. Proof of Theorem 2.1

We consider the approximating equation

dXλ −∆(ψλ(Xλ) + λXλ) = Jλ(Xλ)dWt in QT ,

Xλ(0) = x in O,
ψλ(Xλ) + λXλ = 0 on ΣT ,

(3.1)

where Jλ = (1 + λψ)−1 and ψλ : R→ R is the Yosida approximation of the
maximal monotone graph ψ : R→ R

ψ(r) =


log r if r > 0

, r ∈ R.
∅ if r ≤ 0

(3.2)

In other words,

ψλ(r) =
1

λ
(r − (1 + λψ)−1r) = log((1 + λψ)−1r), ∀λ > 0, r ∈ R. (3.3)

We recall that ψλ is monotonically increasing, Lipschitzian and ψλ(r) →
ψ(r) as λ→ 0.

We set H = H−1(O). By [1], [2], we know that (3.1) has a unique strong
solution

Xλ ∈ L2
ad(Ω;C([0, T ];H)) ∩ L2(Ω× (0, T )×O), (3.4)

which is P- a.s. L2(O)-continuous on [0, T ].
We set

jλ(r) =

∫ r

1
ψλ(s)ds, j(r) = r log r − r, ∀r ∈ R+. (3.5)

1◦. Apriori estimates

By Itô’s formula in H, we obtain by (3.1) that

1

2
|Xλ(t)|22 +

∫ t

0

∫
O
∇(ψλ(Xλ) + λXλ) · ∇Xλdξ ds

=
1

2
|x|22 +

1

2

∞∑
k=1

µ2k

∫ t

0

∫
O
|Jλ(Xλ)ek|2dξ ds

+
∞∑
k=1

µk

∫ t

0

∫
O
XλJλ(Xλ)ekdξ dβk, P-a.s., t ∈ (0, T ).

(As a matter of fact, we apply here the Itô formula to the function
(1− ν∆)−1Xλ = Xν

λ , which satisfies the equation

Xν
λ(t)− (1− ν∆)−1∆

∫ t

0
(ψλ(Xλ(s)) + λXλ(s))ds

= (1− ν∆)−1
∫ t

0
Jλ(Xλ)(s)dWs
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and get

1

2
|Xν

λ(t)|22 +

∫ t

0

∫
O
∇(1− ν∆)−1(ψλ(Xλ) + λXλ) · ∇Xν

λdξ ds

=
1

2
|x|22 +

1

2

∞∑
k=1

µ2k

∫ t

0

∫
O
|(1− ν∆)−1Jλ(Xλ)ek|2dξ dt

+
∞∑
k=1

µk

∫ t

0

〈
(1− ν∆)−1Jλ(Xλ)dWs, X

ν
λ

〉
2

and let ν → 0 to get the above formula.) This approach will be used several
times in the following, when using Itô’s formula in L2(O) to equation (3.1).

Taking into account that |ek|∞ ≤ Cλk, ∀k, we obtain by (2.1) the esti-
mate

|Xλ(t)|22 + 2λ

∫ t

0
|∇Xλ|2ds ≤ |x|22 + C

∞∑
k=1

µ2kλ
2
k

∫ t

0
|Jλ(Xλ(s)|22ds

+

∞∑
k=1

µk

∫ t

0

∫
O
Jλ(Xλ)Xλ(s)ekβkdξ ds, P-a.s.,

and, finally, by the Burkholder–Davis–Gundy inequality, we obtain (see [2],
estimate (3.6))

E sup
0≤t≤T

|Xλ(t)|22 + λE

∫ T

0
|∇Xλ(s)|22ds ≤ CT |x|22. (3.6)

We apply Itô’s formula in H to the function X → |X|2−1. We obtain that

1

2
|Xλ(t)|2−1 +

∫ t

0

∫
O

(ψλ(Xλ) + λXλ)Xλdξ ds =
1

2
|x|2−1

+
1

2

∞∑
k=1

µ2k

∫ t

0
|Jλ(Xλ)ek|2−1ds+

∞∑
k=1

µk

∫ t

0
〈Xλ, Jλ(Xλ)ek〉−1 dβk.

(3.7)
Next, we apply the Itô formula in (3.1) to the function

φελ((1− ε∆)−1x) =

∫
O
jελ(x(ξ))dξ, ∀x ∈ L2(O),

where jελ is a smooth regularization of jλ, for instance,

jελ(r) = (jλ ∗ ρε)(r), ∀r ∈ R,

where ρε = 1
ε ρ
(
s
ρ

)
is a mollifier, that is, ρ ∈ C∞(R), support ρ ⊂ [−1, 1],∫

R ρ(s)ds = 1. We obtain (by using the same approximating procedure Xλ →
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(1− ν∆)−1Xλ))

Eφελ(Xλ(t)) + E
∫ t

0

∫
O

(∇ψλ(Xλ) + λ∇Xλ) · ∇ψελ(Xλ)dξ ds

= φελ(x) +
1

2

∞∑
k=1

µ2kE
∫ t

0

∫
O
|Jλ(Xλ)ek|2(ψελ)′(Xλ)dξ ds,

(3.8)

where

ψελ(r) = (jελ)′(r) = (ψλ ∗ ρε)(r).

Keeping in mind that by (2.2), φελ(x) ≤ C, ∀λ > 0, and ε > 0 and also that

ψ′λ(r) =
1

r + (1 + λψ)−1r
, ∀r ∈ R,

we obtain by (3.8) that, for ε→ 0,

E
∫
O
jλ(Xλ(t, ξ))dξ + E

∫ t

0

∫
O
|∇ψλ(Xλ)|2dξ ds

≤
∫
O
jλ(x(ξ))dξ + CE

∫ t

0

∫
O
|Jλ(Xλ)|dξ ds

and, taking into account that jλ(r) = j(1 + λψ)−1r) + (2λ)−1(r − (1 +
λψ)−1r)2, we obtain that

E
∫
O jλ(Xλ(t, ξ)dξ)) + E

∫ t

0

∫
O
|∇ψλ(Xλ)|2dξ ds ≤ CT , ∀λ > 0, t ∈ [0, T ].

(3.9)
Then, again applying the Itô formula in H to |Xλ(t)−Xµ(t)|2−1, we obtain,
via the Burkholder-Davis-Gundy inequality (see Lemma 3.1 in [2])

E sup
0≤t≤T

|Xλ(t)−Xµ(t)|2−1e−αt ≤ C max(λ, µ). (3.10)

2◦. Letting λ→ 0

By estimates (3.6), (3.9), (3.10), it follows that there are

X ∈ L2
ad(Ω;C([0, T ];H)∩L2

ad(Ω;L∞(0, T ;L2(O)) and η ∈M2
P(0, T ;H1

0 (O))

such that for λ→ 0

Xλ → X weak∗ in L∞(0, T ;L2(Ω, L2(O)) and (3.11)

strongly in L2(Ω;C([0, T ];H)).

ψλ(Xλ)→ η weakly in L2(0, T ;L2(Ω, H1
0 (O))) (3.12)

(1 + λψ)−1Xλ → X weakly in L2(Ω× (0, T )×O). (3.13)



The fast logarithmic equation with multiplicative Gaussian noise 151

By (3.9), (3.11), it follows also via Fatou’s lemma that

E sup
0≤t≤T

∫
O
j((t, ξ))dξ ≤ C <∞

and, therefore,

E sup
0≤t≤T

∫
O
| logX(t, ξ)|X(t, ξ)dξ ≤ C1 <∞. (3.14)

Now, if we write (3.1) as

Xλ(t)−∆

∫ t

0
(ψλ(Xλ(s)) + λXλ(s))ds = x+

∫ t

0
Xλ(s)dWs, ∀t ∈ [0, T ],

(3.15)
and let λ→ 0, we obtain that

X(t)−∆

∫ t

0
η(s)ds = x+

∫ t

0
X(s)dWs, t ∈ [0, T ]. (3.16)

To conclude the proof of the existence, it suffices to show that

η = logX, a.e. in Ω× (0, T )×O. (3.17)

Taking into account (3.11), (3.12) and that the realization of operator ψ is
maximal monotone in L2(Ω×QT ) to get (3.17) it suffices to check that

lim sup
λ→0

E
∫
QT

ψλ(Xλ)Xλdξ dt ≤ E
∫
QT

ηX dξ dt. (3.18)

To this end, we note first that by (3.7) and (3.12) we have

lim sup
λ→0

E
∫
QT

ψλ(Xλ)Xλ dξ dt ≤ −
1

2

(
E|X(T )|2−1 − |x|2−1

)
+

1

2

∞∑
k=1

µ2kE
∫ T

0
|X(t)ek|2−1dt.

(3.19)

Now, applying the Itô formula in (3.16) to the function X → 1
2 |X|

2
−1, we ob-

tain that

1

2
(E|X(T )|2−1 − |x|2−1) + E

∫ T

0
H1

0 (O) 〈η(t), X(t)〉H−1(O) dt

=
1

2

∞∑
k=1

µ2kE
∫ T

0
|X(t)ek|2−1dt.

(3.20)

In order to obtain (3.18) by (3.19) and (3.20), it suffices to note that by
(3.11) and (3.12) we have

E
∫ T

0
H1

0 (O) 〈η(t), X(t)〉H−1(O) dt = E
∫
QT

ηX dξ dt. (3.21)
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Hence, X is a solution to (1.1) in sense of Definition 1.1. We note also that
X satisfies (2.2), as claimed.

Uniqueness. If X1, X2 are two solutions to (1.1), we obtain by Itô’s formula
in H−1(O) (we note that it is applicable because t→ |X(t)|2−1 is continuous)

1

2
E|X1(t)−X2(t)|2−1 + E

∫ t

0

∫
O

(logX1 − logX2)(X1 −X2)dξ ds

=
1

2
E
∞∑
k=1

µ2k

∫ t

0

∫
O
|(X1 −X2)ek|2−1dξ ds,

which yields via Gronwall’s formula X1 ≡ X2, as desired.

Remark 3.1. It is known (see [7]) that the deterministic logarithmic diffu-
sion equation (1.1) with a time-dependent deterministic source term of the
form α(t)X has an explicit solution which in 1−D is of the form

X(t, ξ) = (Z(τ(t))(1 + γ(τ(t))ξ2))−1 exp

(
−
∫ t

0
α(s)ds

)
,

where γ(t) = r0(1 + α0t)
−2, Z(t) = z0(1 + γ1z0t) and this has an extension

to d−D. Roughly speaking, the situation described by equation (1.1) is that
where α(t) is the Gaussian noise W (t) and one might expect to obtain on
the same lines an explicit solution for (1.1).

Remark 3.2. It is clear that Theorem 2.1 remains true for more general
equations of the form

dX −∆ logX dt = (X + a)dW in (0,∞)×O,
X(0) = x in O,
logX = 0 on (0,∞)× ∂O,

(3.22)

where a ∈ R. The details of proof are omitted.
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