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Abstract - We consider a nonlinear parametric periodic problem driven by
a nonhomogeneous differential operator, and with a Carathéodory reaction
which is (p− 1)− sublinear in the x- variable, both near +∞ and near 0+.
Using variational methods coupled with truncation and comparison tech-
niques, we prove a bifurcation-type theorem describing the existence and
multiplicity of positive solutions as the parameter varies.
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1. Introduction

We consider the following nonlinear periodic problem{
− (a (|u′ (t)|)u′ (t))′ + β (t) |u′ (t)|p−2 u (t) = λf (t, u (t)) on T = [0, b]
u (0) = u (b) , u′ (0) = u′ (b) .

(Pλ)
In this problem, the differential operator u→ (a (|u′|)u′)′, where a : (0,∞)→
(0,∞) , needs not be homogeneous and incorporates as special cases the
scalar p−Laplacian (1 < p < ∞), the scalar (p, q)−differential opera-
tor (1 < q < p < ∞), and the generalized p−mean curvature operator
(1 < p <∞) . Also β ∈ L∞ (T ) , β ≥ 0, β 6= 0, λ > 0 is a parameter and
f (t, x) is a Carathéodory reaction term (i.e., for all x ∈ R, t → f (t, x) is
measurable and for a.a. t ∈ T, x → f (t, x) is continuous) which exhibits
(p− 1)−sublinear growth in x as it approaches +∞ and 0+. Our aim is to
establish the existence and multiplicity of positive solutions as the parameter
λ varies.

Multiplicity results for positive solutions of equations driven by the
p−Laplacian were proved for Dirichlet and Sturm-Liouville boundary value
problems. We mention the works of Ben Naoum-De Coster [4], De Coster [6],
Manasevich-Njoku-Zanolin [8], Njoku-Zanolin [9] and Wang [11]. Positive
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solutions for periodic problems driven by the scalar p−Laplacian were in-
vestigated by Aizicovici-Papageorgiou-Staicu in [2] and by Hu-Papageorgiou
in [7]. In fact, in [2] the authors considered parametric problems involving
competing nonlinearities, i.e., a reaction term of the form

λxq−1 + f (t, x) for all t ∈ T, all x ≥ 0,

with λ > 0 being a parameter, 1 < q < p, and f (t, x) a Carathéodory
perturbation which is (p− 1)−superlinear in x as it approaches +∞. So,
the reaction of the equation studied in [2] involves the competing effects of
a ‘concave’ term (λxq−1) and of a ‘convex’ term (f (t, x)). In [2] the authors
proved a bifurcation-type theorem for such equations.

In the present paper, we consider a somehow complementary situation,
since we deal with a reaction which has an opposite growth pattern near
+∞ and near 0+. Again, we prove a bifurcation-type theorem.

Our approach uses variational methods based on the critical point theory
together with suitable truncation and comparison techniques. In the next
section, for easy reference, we recall the main mathematical tools which will
be used in this work.

2. Mathematical background

Let (X, ‖.‖) be a Banach space and X∗ its topological dual. By 〈·, ·〉 we
denote the duality brackets for the pair (X∗, X). Also

w−→ denotes weak
convergence in X.

A map A : X → X∗ is said to be of type (S)+ , if for every sequence

{xn}n≥1 ⊆ X such that xn
w−→ x in X and

lim sup
n→∞

〈A (xn) , xn − x〉 ≤ 0,

one has
xn → x in X as n→∞.

Let ϕ ∈ C1 (X) . We say that x∗ ∈ X is a critical point of ϕ if ϕ′ (x∗) = 0.
If x∗ ∈ X is a critical point of ϕ, then c := ϕ (x∗) is said to be a critical
value of ϕ.

We say that ϕ ∈ C1(X) satisfies the Palais-Smale condition (PS-condi-
tion, for short), if the following is true:

‘every sequence {xn}n≥1 ⊆ X such that {ϕ (xn)}n≥1 ⊆ R is
bounded and

ϕ′ (xn)→ 0 in X∗ as n→∞

admits a strongly convergent subsequence.’
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Using this compactness-type condition, we have the following minimax
characterization of certain critical values of ϕ. The result is known in he
literature as the ‘mountain pass theorem’.

Theorem 2.1. If ϕ ∈ C1 (X) satisfies the PS-condition, x0, x1 ∈ X and
r > 0 are such that

‖x1 − x0‖ > r, max {ϕ (x0) , ϕ (x1)} < inf {ϕ (x) | ‖x− x0‖ = r} =: ηr,

and c = inf
γ∈Γ

max
t∈[0,1]

ϕ (γ (t)) , where

Γ = {γ ∈ C ([0, 1] , X) | γ (0) = x0, γ (1) = x1} ,

then c ≥ ηr and c is a critical value of ϕ.

In the study of problem (Pλ), we use the following two Banach spaces:

W 1,p
per (0, b) =

{
u ∈W 1,p (0, b) |u (0) = u (b)

}
,

and
Ĉ1 (T ) = C1 (T ) ∩W 1,p

per (0, b) .

The space Ĉ1 (T ) is an ordered Banach space with positive cone given by

Ĉ+ =
{
u ∈ Ĉ1 (T ) |u (t) ≥ 0 for all t ∈ T

}
.

This cone has nonempty interior given by

int Ĉ+ =
{
u ∈ Ĉ+ |u (t) > 0 for all t ∈ T

}
.

Throughout this paper, the norm of the Banach space W 1,p
per (0, b) will be

denoted by ‖.‖ , while ‖.‖p will designate the norm of Lp (0, b). Also, for

every x ∈ R, we set x± = max {±x, 0}. Then for every u ∈ W 1,p
per (0, b) , we

define u± (.) = u (.)± .
We know that

u± ∈W 1,p
per (0, b) , |u| = u+ + u−, u = u+ − u−.

If h : T × R→ R is a measurable function, then we set

Nh (u) (.) = h (., u (.)) for all u ∈W 1,p
per (0, b) .

Finally, by |.|1 we denote the Lebesgue measure on R.
We next introduce the following conditions on the map a (.) :

H (a) : a : (0,∞)→ (0,∞) is a C1−function such that



132 Sergiu Aizicovici, Nikolaos S. Papageorgiou and Vasile Staicu

(i) x→ a (x)x is strictly increasing on (0,∞) with

a (x)x→ 0 and
xa′ (x)

a (x)
→ C > −1 as x→ 0+;

(ii) there exists C0 > 0 such that

C0 |x|p ≤ a (|x|)x2 for all x ∈ R;

(iii) there exist C1 > 0 and p ∈ (1,∞) such that

|a (|x|)x| ≤ C1

(
1 + |x|p−1

)
for all x ∈ R.

Remark. Let G0 (x) =

x∫
0

a (s) s ds for all x > 0. Evidently, G0 is strictly

convex and strictly increasing. We set

G (x) = G0 (|x|) for all x ∈ R.

Then G (.) is convex, G (0) = 0 and for all x 6= 0 we have

G′ (x) = G′0 (|x|) x

|x|
= a (|x|)x

while G′ (0) = 0 (see H (a) (i)). Therefore G (.) is the primitive of x →
a (|x|)x. Evidently we have

C0

p
|x|p ≤ G (x) ≤ C2 (1 + |x|p) for all x ∈ R and some C2 > 0. (2.1)

Examples. The following functions satisfy hypotheses H (a) :
(i) a (x) = xp−2 for all x ∈ R, with 1 < p <∞.
In this case the differential operator is the scalar p−Laplacian defined

by (∣∣u′∣∣p−2
u′
)′
, for all u ∈W 1,p

per (0, b) .

(ii) a (x) = |x|p−2 + µ |x|q−2 for all x > 0, with 1 < q < p <∞, µ ≥ 0.
In this case the differential operator is the scalar (p, q)−differential op-

erator defined by(∣∣u′∣∣p−2
u′
)′

+ µ
(∣∣u′∣∣q−2

u′
)′
, for all u ∈W 1,p

per (0, b) .

(iii) a (x) =
(
1 + x2

) p−2
2 for all x > 0, with 1 < p <∞.
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In this case the differential operator is the generalized scalar p−mean
curvature differential operator defined by((

1 +
(
u′
)2) p−2

2
u′
)′

for all u ∈W 1,p
per (0, b) .

For problems with scalar mean curvature operator (i.e., p = 1), see Bereanu-
Mawhin [5].

(iv) a (x) = xp−2 + xp−2

1+xp for all x > 0, with 1 < p <∞.

Let A : W 1,p
per (0, b)→W 1,p

per (0, b)∗ be the nonlinear map defined by

〈A (u) , y〉 =

b∫
0

a
(∣∣u′ (t)∣∣)u′ (t) y′ (t) dt for all u, y ∈W 1,p

per (0, b) . (2.2)

From Aizicovici-Papageorgiou-Staicu (see [3]), we have:

Proposition 2.1. If hypotheses H (a) hold and A : W 1,p
per (0, b)→W 1,p

per (0, b)∗

is defined by (2.2), then A is maximal monotone, strictly monotone and of
type (S)+ .

Let f0 : T × R→R be a Carathéodory function such that

|f0 (t, x)| ≤ â (t)
(

1 + |x|r−1
)

for a.a. t ∈ T, all x ∈ R,

with 1 < r <∞ and â ∈ Lr′ (T )+ (1
r + 1

r′ = 1). We set

F0 (t, x) =

x∫
0

f0 (t, s) ds

and consider the C1−functional ψ0 : W 1,p
per (0, b)→ R defined by

ψ0 (u) =

b∫
0

G
(
u′ (t)

)
dt−

b∫
0

F0 (t, u (t)) dt for all u ∈W 1,p
per (0, b) .

From Aizicovici-Papageorgiou-Staicu (see [3]), we have the following result

relating Ĉ1 (T ) and W 1,p
per (0, b) local minimizers for the functional ψ0.

Proposition 2.2. If hypotheses H(a) hold and u0 ∈ W 1,p
per (0, b) is a lo-

cal Ĉ1 (T )-minimizer of ψ0 (i.e., there exists ρ0 > 0 such that ψ0 (u0) ≤
ψ0 (u0 + h) for all h ∈ Ĉ1 (T ) with ‖h‖

Ĉ1(T )
≤ ρ0), then u0 ∈ Ĉ1 (T ) and

it is a local W 1,p
per (0, b)-minimizer of ψ0, (i.e., there exists ρ1 > 0 such that

ψ0 (u0) ≤ ψ0 (u0 + h) for all h ∈W 1,p
per (0, b) with ‖h‖

W 1,p
per(0,b)

≤ ρ1).
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A final auxiliary result is the following simple Lemma (see [3]):

Lemma 2.1. If β ∈ L1 (T ) , β (t) ≥ 0 a.e. on T and β 6= 0, then there
exists ξ∗ > 0 such that

C0

∥∥u′∥∥p
p

+

b∫
0

β (t) |u (t)|p dt ≥ ξ∗ ‖u‖p for all u ∈W 1,p
per (0, b) .

We introduce

λ̂1 := inf

 1

‖u‖pp

C0

∥∥u′∥∥p
p

+

b∫
0

β (t) |u (t)|p dt

 |u ∈W 1,p
per (0, b) , u 6= 0

 .

(2.3)
It follows from Lemma 2.1 that

λ̂1 ≥ ξ∗ > 0.

3. A bifurcation-type theorem

The hypotheses on β (.) and f (., .) are the following:

H (β) : β ∈ L∞ (T ) , β (t) ≥ 0 a.e. on T, β 6= 0.

H (f) : f : T × R→R is a Carathéodory function such that f (t, 0) = 0 a.e.
on T and:

(i) for every ρ > 0 there exists aρ ∈ L∞ (T ) such that f (t, x) ≤ aρ (t) for
a.a. t ∈ T, all x ∈ [0, ρ] ;

(ii) lim
x→∞

f(t,x)
xp−1 = 0 uniformly for a.a. t ∈ T ;

(iii) lim
x→0+

f(t,x)
xp−1 = 0 uniformly for a.a. t ∈ T ;

(iv) for every ρ > 0, there exists ξρ > 0 such that for a.a. t ∈ T, the map

x→ f (t, x) + ξρx
p−1

is nondecreasing on [0, ρ] ;
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(v) for every τ > 0, there exists m̂τ > 0 such that f (t, x) ≥ m̂τ for a.a.
t ∈ T, all x ≥ τ.

Remark. Since our aim is to produce positive solutions and the above
hypotheses concern only the nonnegative half-axis R+ = [0,∞), without
any loss of generality we may (and will) assume that f (t, x) = 0 for all
t ∈ T and all x ≤ 0. Note that hypotheses H (f) (ii) , (iii) imply that for
a.a. t ∈ T , x→ f (t, x) is (p− 1)−sublinear near +∞ and near 0+.

We introduce the set

L = {λ > 0 |problem (Pλ) has a nontrivial positive solution} .

Also let S (λ) be the set of nontrivial positive solutions of (Pλ) . We set

λ∗ = inf L.

(of course if L = ∅, then λ∗ = +∞).

Proposition 3.1. If hypotheses H (a) , H (β) and H (f) hold, then S (λ) ⊂
int Ĉ+ and λ∗ > 0.

Proof. Suppose that L 6= ∅ and let λ ∈ L. Then we can find u ∈
W 1,p
per (0, b) , u ≥ 0, u 6= 0 such that{
− (a (|u′ (t)|)u′ (t))′ + β (t)u (t)p−1 = λf (t, u (t)) a.e. on T
u (0) = u (b) , u′ (0) = u′ (b) .

(3.1)

From (3.1) it follows that u ∈ Ĉ+ \ {0} . Then, using hypothesis H (f) (v)
and (3.1) , we have

−
(
a
(∣∣u′ (t)∣∣)u′ (t))′ + β (t)u (t)p−1 = λf (t, u (t)) ≥ 0 a.e. on T.

By virtue of the strong maximum principle of Pucci-Serrin ([10, p. 34]),
we infer that u (t) > 0 for all t ∈ (0, b) . Then, invoking the boundary point

theorem of Pucci-Serrin ([10, p. 120]), we conclude that u ∈ int Ĉ+. So, we
have proved that

S (λ) ⊂ int Ĉ+.

Hypotheses H (f) (i) , (ii) , (iii) imply that we can find C3 > 0 such that

f (t, x) ≤ C3x
p−1 for a.a. t ∈ T, all x ≥ 0. (3.2)

Recall that λ̂1 > 0 (see Section 2) and let λ0 ∈
(

0, 1
C3
λ̂1

)
. Suppose that

λ0 ∈ L. Then we can find u0 ∈ S (λ0) ⊂ int Ĉ+. We have

A (u0) + βup−1
0 = λ0Nf (u0) . (3.3)
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On (3.3) we act with u0 ∈W 1,p
per (0, b) . Then

〈A (u0) , u0〉+

b∫
0

βup0dt =

b∫
0

λ0f (t, u0)u0dt,

hence

C0

∥∥u′0∥∥pp +

b∫
0

βup0dt ≤ λ0C3 ‖u0‖pp (see H (a) (i) and (3.2)),

therefore
λ̂1 ‖u0‖pp < λ0C3 ‖u0‖pp ,

a contradiction (see (2.3) and recall the choice of λ0). Therefore λ0 /∈ L,
and so λ∗ ≥ 1

C3
λ̂1 > 0. 2

Let ϕλ : W 1,p
per (0, b) → R be the energy functional for problem (Pλ)

defined by

ϕλ(u)=

b∫
0

G
(
u′ (t)

)
dt+

1

p

b∫
0

β (t) |u (t)|p dt−λ
b∫

0

F (t, u (t)) dt,∀u ∈W 1,p
per (0, b) ,

where

F (t, x) =

x∫
0

f (t, s) ds.

We know that ϕλ ∈ C1
(
W 1,p
per (0, b)

)
.

Proposition 3.2. If hypotheses H (a) , H (β) and H (f) hold, then L 6= ∅.

Proof. Hypotheses H (f) (ii) , (iii) imply that given ε > 0, we can find
C4 = C4 (ε) > 0 such that

F (t, x) ≤ ε

p
xp + C4 for a.a. t ∈ T, all x ≥ 0. (3.4)

For u ∈W 1,p
per (0, b) , we have

ϕλ (u) =

b∫
0

G (u′ (t)) dt+ 1
p

b∫
0

β (t) |u (t)|p dt− λ
b∫

0

F (t, u (t)) dt

≥ C0
p ‖u

′‖pp + 1
p

b∫
0

β (t) |u (t)|p dt− λε
p ‖u‖

p
p − λC4b (see (2.1) and (3.4))

≥ 1
p (ξ∗ − λε) ‖u‖p − λC4b (see Lemma 2.1).

(3.5)
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Choosing ε ∈
(

0, ξ∗λ

)
, from (3.5) it follows that ϕλ is coercive. Also, using

the Sobolev embedding theorem, we check easily that ϕλ is sequentially
weakly lower semicontinuous. So, by the Weierstrass theorem, we can find
uλ ∈W 1,p

per (0, b) such that

ϕλ (uλ) = inf
{
ϕλ (u) |u ∈W 1,p

per (0, b)
}
. (3.6)

If ξ > 0, then

b∫
0

F (t, ξ) dt > 0 (see H (f) (v)) and

ϕλ (ξ) =
ξp

p
‖β‖1 − λ

b∫
0

F (t, ξ) dt.

Therefore, choosing λ > 0 big enough, we have ϕλ (ξ) < 0. It follows that

ϕλ (uλ) < 0 = ϕλ (0) (see (3.6)),

hence

uλ 6= 0.

By (3.6) we have ϕ′λ (uλ) = 0, hence

A (uλ) + β |uλ|p−2 uλ = λNf (uλ) . (3.7)

On (3.7) we act with −u−λ ∈W
1,p
per (0, b) . We obtain

C0

∥∥u−λ ∥∥pp +

b∫
0

β (t)
∣∣u−λ (t)

∣∣p dt ≤ 0 (see H (a) (ii) ),

hence

uλ ≥ 0, uλ 6= 0 (see Lemma 2.1).

Then, from (3.7) it follows that uλ ∈ S (λ) ⊂ int Ĉ+ and so, L 6= ∅. 2

Proposition 3.3. If hypotheses H (a) , H (β) and H (f) hold and λ ∈ L,
then [λ,+∞) ⊂ L .

Proof. Let η > λ. Since by hypothesis λ ∈ L, by virtue of Proposition 3.1,
we can find uλ ∈ S (λ) ⊂ int Ĉ+. We consider the following Carathéodory
function

γη (t, x) =

{
ηf (t, uλ (t)) if x ≤ uλ (t)
ηf (t, x) if uλ (t) < x.

(3.8)
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We set Γη (t, x) =

x∫
0

γη (t, s) ds and consider the C1− functional ση :

W 1,p
per (0, b)→ R defined by

ση(u)=

b∫
0

G
(
u′ (t)

)
dt+

1

p

b∫
0

β (t) |u (t)|p dt−
b∫

0

Γη (t, u (t)) dt, ∀u ∈W 1,p
per(0, b).

As in the proof of Proposition 3.2, we can check that ση is coercive. Also, ση
is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem,
we can find uη ∈W 1,p

per (0, b) such that

ση (uη) = inf
{
ση (u) |u ∈W 1,p

per (0, b)
}
.

Then σ′η (uη) = 0, hence

A (uη) + β |uη|p−2 uη = Nγη (uη) . (3.9)

On (3.9) we act with (uλ − uη)+ ∈W 1,p
per (0, b) . Then

〈
A (uη) , (uλ − uη)+〉+

b∫
0

β |uη|p−2 uη (uλ − uη)+ dt

=

b∫
0

γη (t, uη) (uλ − uη)+ dt

=

b∫
0

ηf (t, uλ) (uλ − uη)+ dt (see (3.8) )

≥
b∫

0

λf (t, uλ) (uλ − uη)+ dt (since η > λ and f ≥ 0))

=
〈
A (uλ) , (uλ − uη)+〉+

b∫
0

βup−1
λ (uλ − uη)+ dt,

hence ∫
{uλ>uη}

(
a (|u′λ|)u′λ − a

(∣∣u′η∣∣)u′η) (u′λ − u′η) dt
+

∫
{uλ>uη}

β
∣∣∣up−1
λ − up−2

η uη

∣∣∣ (uλ − uη) dt ≤ 0.

We conclude that
|{uλ > uη}|1 = 0
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(see H (a) (i)), hence uλ ≤ uη. Then, from (3.9) and (3.8) it follows that

uη ∈ S (η) ⊂ int Ĉ+

and so η ∈ L . This proves that [λ,+∞) ⊂ L . 2

Note that Proposition 3.3 implies that

(λ∗,+∞) ⊂ L.

Proposition 3.4. If hypotheses H (a) , H (β) and H (f) hold and λ > λ∗,
then problem (Pλ) has at least two nontrivial positive solutions u0, û ∈ int
Ĉ+.

Proof. As we have already remarked, (λ∗,+∞) ⊂ L. Let η, λ, µ ∈
(λ∗,+∞) with η < λ < µ. We can find

uη ∈ S (η) ⊂ int Ĉ+ and uµ ∈ S (µ) ⊂ int Ĉ+, with uη ≤ uµ

(see the proof of Proposition 3.3). Consider the Carathéodory function
θλ (t, x) defined by

θλ (t, x) =


λf (t, uη (t)) if x < uη (t)
λf (t, x) if uη (t) ≤ x ≤ uµ (t)
λf (t, uµ (t)) if uµ (t) < x.

(3.10)

We set Θλ(t, x)=

x∫
0

θλ(t, s)ds and consider the C1−functional ξλ :W 1,p
per (0, b)→

R defined by

ξλ(u)=

b∫
0

G
(
u′ (t)

)
dt+

1

p

b∫
0

β (t) |u (t)|p dt−
b∫

0

Θλ (t, u (t)) dt, ∀u ∈W 1,p
per (0, b) .

From (3.10) it is clear that ξλ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, there exists u0 ∈W 1,p

per (0, b) such that

ξλ (u0) = inf
{
ξλ (u) |u ∈W 1,p

per (0, b)
}
.

Then

ξ′λ (u0) = 0,

hence

A (u0) + β |u0|p−2 u0 = Nθλ (u0) . (3.11)
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On (3.11) we act with (u0 − uµ)+ ∈W 1,p
per (0, b) . Then

〈
A (u0) , (u0 − uµ)+〉+

b∫
0

β |u0|p−2 u0 (u0 − uµ)+ dt

=

b∫
0

θλ (t, u0) (u0 − uλ)+ dt

=

b∫
0

λf (t, uµ) (u0 − uλ)+ dt (see (3.10) )

≤
b∫

0

µf (t, uµ) (u0 − uλ)+ dt (since µ > λ and f ≥ 0))

=
〈
A (uµ) , (u0 − uµ)+〉+

b∫
0

βup−1
µ (u0 − uµ)+ dt,

hence ∫
{u0>uµ}

(
a (|u′0|)u′0 − a

(∣∣u′µ∣∣)u′µ) (u′0 − u′µ) dt
+

∫
{u0>uµ}

β
∣∣∣up−1

0 − up−1
µ

∣∣∣ (u0 − uµ) dt ≤ 0.

We conclude that |{u0 > uµ}|1 = 0 (see H (a) (i)), hence u0 ≤ uµ. Similarly,

acting on (3.11) with (uη − u0)+ ∈ W 1,p
per (0, b) we obtain uη ≤ u0. So, it

follows that

u0 ∈ [uη, uµ] =
{
u ∈W 1,p

per (0, b) |uη (t) ≤ u0 (t) ≤ uµ (t) for all t ∈ T
}
.

Let ρ = ‖uµ‖∞ and let ξρ > 0 be as postulated by hypothesis H (f) (iv) .

For δ > 0, we set uδ0 = u0 + δ ∈ int Ĉ+. Then we have

−
(
a
(∣∣∣(uδ0)′∣∣∣) (uδ0)′)′ + (β (t) + µξρ)

(
uδ0
)p−1

≤ − (a (|u′0|)u′0)′ + (β + µξρ)u
p−1
0 + ζ (δ) with ζ (δ) ↓ 0 as δ ↓ 0

= λf (t, u0) + µξρu
p−1
0 + ζ (δ)

≤ µf (t, u0) + µξρu
p−1
0 − (µ− λ) m̂τ + ζ (δ) ,

(3.12)

where τ = min
T
u0 > 0 (recall that u0 ∈ int Ĉ+) and m̂τ is as in hypothesis

H (f) (v) . Since ζ (δ) ↓ 0 as δ ↓ 0, we can find δ0 > 0 such that

ζ (δ) ≤ (µ− λ) m̂τ for all δ ∈ (0, δ0] (recall that µ > λ).
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Therefore, from (3.12) we obtain

A
(
uδ0

)
+ (β + µξρ)

(
uδ0

)p−1
≤ A (uµ) + (β + µξρ) (uµ)p−1 in W 1,p

per (0, b)∗ .

(3.13)

Acting on (3.13) with
(
uδ0 − uµ

)+ ∈W 1,p
per (0, b) , we show that

uδ0 ≤ uµ for all δ ∈ (0, δ0] ,

hence uµ − u0 ∈ int Ĉ+. In a similar fashion, we show that u0 − uη ∈ int
Ĉ+. Therefore, we have proved that

u0 ∈ intĈ1(T )
[uη, uµ] .

Note that

ϕλ |[uη ,uµ]= ξλ |[uη ,uµ] +K∗λ with K∗λ ∈ R (see (3.10) ),

hence u0 is a Ĉ1 (T )-local minimizer of ϕλ, therefore u0 is also a W 1,p
per (0, b)-

local minimizer of ϕλ (see Proposition 2.2).
By virtue of hypothesis H (f) (iii), given ε > 0, we can find δ = δ (ε) > 0

such that
F (t, x) ≤ ε

p
xp for a.a. t ∈ T, all x ∈ [0, δ] . (3.14)

Then, for u ∈ Ĉ1 (T ) with ‖u‖
Ĉ1(T )

≤ δ, we have

ϕλ (u) =

b∫
0

G
(
u′ (t)

)
dt+

1

p

b∫
0

β (t) |u (t)|p dt− λ
b∫

0

F (t, u (t)) dt

≥ C0

p

∥∥u′∥∥p
p

+
1

p

b∫
0

β (t) |u (t)|p dt− λε

p
‖u‖pp (see (2.1) and (3.14) )

≥ 1

p
(ξ∗ − λε) ‖u‖p (see Lemma 2.1).

Choosing ε ∈
(

0, ξ∗λ

)
we see that u = 0 is a Ĉ1 (T )-local minimizer of ϕλ.

Hence by virtue of Proposition 2.2, u = 0 is also a W 1,p
per (0, b)-local minimizer

of ϕλ.
Without any loss of generality, we may assume that

ϕλ (0) = 0 ≤ ϕλ (u0) .

The analysis is similar if the opposite inequality holds. As in the paper [1]
by Aizicovici-Papageorgiou-Staicu (see the proof of Proposition 29), we can
find ρ0 ∈ (0, 1) small such that

ϕλ (0) ≤ ϕλ (u0) < inf {ϕλ (u) | ‖u‖ = ρ0} =: η0, ‖u0‖ > ρ0. (3.15)
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Recall that ϕλ is coercive, hence it satisfies the PS-condition. This fact and
(3.15) permit the application of Theorem 2.1 (the mountain pass theorem).
So, we can find û ∈W 1,p

per (0, b) such that

ϕ′λ (û) = 0 and η0 ≤ ϕλ (û) . (3.16)

From (3.15) and (3.16) it follows that û /∈ {0, u0} and

A (û) + β |û|p−2 û = λNf (û) .

Acting with −û− ∈W 1,p
per (0, b) , we obtain û ∈ Ĉ+\ {0} . So, û ∈ S (λ) ⊂ int

Ĉ+. 2

Proposition 3.5. If hypotheses H (a) , H (β) and H (f) hold, then λ∗ ∈ L.

Proof. Recall that (λ∗,+∞) ⊂ L. Let {λn}n≥1 ⊂ L be such that

λ∗ < λn+1 < λn for all n ≥ 1 and λn ↓ λ∗ as n→∞.

Then, we can find un ∈ S (λn) such that

A (un) + βup−1
n = λnNf (un) for all n ≥ 1. (3.17)

In fact, since {λn}n≥1 is decreasing, from the proof of Proposition 3.3, it
follows that

un ≤ u1 for all n ≥ 1. (3.18)

Then from (3.17), (3.18) and (3.2) we infer that {un}n≥1 ⊂ W 1,p
per (0, b) is

bounded. So, we may assume that

un
w→ u∗ in W 1,p

per (0, b) and un → u∗ in C (T ) as n→∞. (3.19)

On (3.17) we act with un−u∗ ∈W 1,p
per (0, b) , pass to the limit as n→∞ and

use (3.19) . Then

lim sup
n→∞

〈A (un) , un − u∗〉 ≤ 0,

hence

un → u∗ in W 1,p
per (0, b) as n→∞ (3.20)

(see Proposition 2.1). So, if in (3.17) we pass to the limit as n → ∞ and
use (3.20) , then

A (u∗) + βup−1
∗ = λ∗Nf (u∗) . (3.21)

If we show that u∗ 6= 0, then λ∗ ∈ L. We argue by contradiction.

So, suppose that u∗ = 0. From (3.20) we have

un → 0 in C (T ) as n→∞. (3.22)
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Hypothesis H (f) (iii) implies that given ε > 0, we can find δ = δ (ε) > 0
such that

f (t, x) ≤ εxp−1 for a.a. t ∈ T, all x ∈ [0, δ] . (3.23)

From (3.22) it follows that we can find n0 ≥ 1 such that

un (t) ∈ [0, δ] for all t ∈ T, all n ≥ n0,

hence

−
(
a
(∣∣u′n (t)

∣∣)u′n (t)
)′

+ β (t)un (t)p−1 ≤ λnεun (t)p−1 a.e. on T, ∀n ≥ n0

(see (3.23)), therefore

C0

∥∥u′n∥∥pp +
1

p

b∫
0

β (t) |un (t)|p dt ≤ λnε

p
‖un‖pp for all n ≥ n0.

Then, by Lemma 2.1,

ξ̃∗
λ∗
≤ ε,

for some ξ̃∗ > 0. But ε > 0 is arbitrary. So, letting ε ↓ 0, we reach a
contradiction (recall that ξ̃∗, λ∗ > 0). Therefore u∗ 6= 0, and so u∗ ∈ S (λ) ⊂
int Ĉ+ (see (3.21)). Hence λ∗ ∈ L. 2

Summarizing Propositions 3.1-3.5, we can state the following bifurcation-
type theorem:

Theorem 3.1. If hypotheses H (a) , H (β) and H (f) hold, then there exists
λ∗ > 0 such that

(a) for all λ > λ∗, problem (Pλ) has at least two nontrivial positive solu-
tions u0, û ∈ int Ĉ+;

(b) for λ = λ∗, problem (Pλ) has at least one nontrivial positive solution
u∗ ∈ int Ĉ+;

(c) for all λ ∈ (0, λ∗) , problem (Pλ) has no nontrivial positive solution.

Remark. Note that here the bifurcation occurs at large values of λ > 0,
while in [2], where the conditions on the nonlinearity were complementary
(both at +∞ and at 0; competing nonlinearities) the bifurcation takes place
at small values of λ > 0.
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